T RS T e T T R T e W S Lty U L R |

THE AUTHORITATIVE
INSIDERS’ GUIDE

R T R TR T S g B 8 U R, i S A R

Commodore 128
Personal Computer

Abacusliiiil

Commodore 128

Internals

an authoritative insider's guide

By K.Gerits, J.Schieb & F.Thrun

A Data Becker Book
Published by

Abacus il Sof tware

First Edition, October 1985

Printed in U.S.A.
Copyright © 1985 Data Becker GmbH
Merowingerstr. 30
4000 Dusseldorf, West Germany
Copyright © 1985 ABACUS Software, Inc.

P.O. BOX 7211
Grand Rapids, MI. 495 10

This book is copyrighted. No part of this book may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise without the
prior written permission of ABACUS Software or Data Becker, GmbH.

ISBN 0-916439-42-9

Table of Contents

Chapter 1: Fundamentals of the C-128

1.1 Introduction to the C-128
1.2 The Datasette Interface
1.3 The User Port
1.4 The RS-232 Interface
1.4.1 Programming the baud rate
1.4.2 Reading the status variable ST
1.5 Cartridge Port

Chapter 2: The VIC Chip

2.1 Register Layout of the VIC Chip
2.2 The VIC Operating Modes
2.3 Sprites
2.3.1 Address of the sprites
Turning on the sprite
Color
Sprite position
Expanding a sprite
Background
Collision: Sprite-Sprite
Collision: Sprite-Background
Multi-color sprites
23.10 Interrupts via the VIC chip
2.3.10.1 More than 8 sprites on the screen
2.4 Normal Character Display
2.4.1 Move the video RAM
2.4.2 Moving the character generator
2.4.3 The color RAM
2.5 Programming Color and Graphics
2.5.1 The hi-res mode
- 2.5.2 The multi-color mode
~ 2.5.3 The multi-color mode (text)
2.5.4 The extended-color mode
2.6 Smooth-Scrolling

PR
W W WL b Lo
VOO NP WEN

Chapter 3: Input and Output Control

3.1 General Information about the 6526
3.1.1 Pin Configuration

3.2 Register description of the CIA

3.3 I/O Ports

3.4 The Timer

3.5 The Real-time Clock
3.5.1 Real-time in BASIC

3.6 The CIAs in the Commodore 128

3.7 The Joystick

3.8 The Commodore 128 Serial Bus
3.8.1 Fast and slow modes
3.8.2 The device addresses
3.8.3 The secondary addresses
3.8.4 The system variable ST

Chapter 4: The Sound Chip SID
4.1 The Sound Controller
4.1.1 General information about the SID
4.1.2 Pin-layout of the 28-pin device
4.1.3 Register description of the SID
4.1.4 The analog/digital converter
4.1.4.1 The operation of the A/D converter
4.1.4.2 Using paddles
4.1.5 Programming the SID
4.2 The Filters
4.3 Synchronization and Ring Modulation

Chapter S: The 8563 VDC Chip

5.1 General Information about the VDC Chip
5.2 The Pin Layout
5.3 The VDC Registers
5.4 General Information about the VDC Registers
5.4.1 The character set
5.4.2 The attribute
5.5 Using the VDC Registers
5.5.1 Smooth scrolling
5.5.2 Block copying
5.5.3 Foreground and background color

5.5.4 The cursor mode

5.5.5 The character length and width
5.5.6 More than 25 lines on the screen
5.5.7 Hi-res graphics

Chapter 6: The Memory-Management Unit - The MMU

6.1 Introduction to the MMU
6.2 The Configuration Register
6.2.1 The pre-configuration register
6.3 The Mode Configuration Register
6.4 The RAM Configuration Register
6.5 The Page Pointer
6.6 The Version Register

Chapter 7: Assembly Language Programming

7.1 Introduction to Assembly Language Programmmg
7.2 The CPU - the 8502
7.3 The Kernal Routines
- 1.3.1 FETCH, STASH and CMPARE
7.3.1.1 FETCH
7.3.1.2 STASH
7.3.1.3 CMPARE
7.3.2 GETCONF
7.3.3 JSRFAR and JMPFAR
* 7.4 The Important Kernal Routines
7.4.1 Kernal routines with vectors at $FF4D
7.4.2 Other useful kernal routines
7.5 Tips and Tricks
7.5.1 Disable STOP key ,
7.5.2 Disable STOP-RESTORE combination
7.5.3 The IRQ vector
7.5.4 Disabling the BASIC interrupt
7.5.5 Positioning the cursor
7.6 The Z-80
7.6.1 The Z-80 ROM
7.7 Boot Sector and Boot Routine

113
114
114
120

129

129
131
132
133

136
139

143

143
143

144
145
146
147
147
148
151
151
175
177
177
178
179
180
181
182
184
188

Chapter 8: The ROM Listing

8.1 ROM Listings
8.2 The Zero Page
8.3 Alphabetical Listing of Kernal Routines
8.4 The Token Table
8.5 The Character Set
8.6 The Keyboard Matrix
8.7 The Computer Modes
8.7.1 The power-up modes

Chapter 9: The Hardware

Chapter 10: Decimal-Hexadecimal-Binary
Conversion Table

Index

193

194
404
427
435
438
451
454
458

463

485

489

CHAPTER 1

Abacus Software C-128 Internals

Chapter 1: Fundamentals of the C-128

1.1 Introduction to the Commodore 128

After the success of the C-64, Commodore brought out the Plus 4,
C-16, and C-116. These computers didn't really offer anything new, but
the Commodore 128 does. It's really three computers in one: the
well-known C-64, with mountains of software available for it; also, it
contains a new computer based on the "success chips" (the 6510 (6502),
VIC, SID, 6526, etc); and last, it is a CP/M computer. In total, it's a brand
new computer with lots to offer.

The C-128 has an 80-column video controller, so it has the potential of
becoming a professional machine. The VIC chip and the 6510 have been
changed slightly, though they remain basically the same. It's hard to
understand why the 65C02 was not selected as the microprocessor for the
C-128, since it runs faster, is compatible with the 6502, and has additional
useful commands. This would not have affected the C-64 mode at all. The
microprocessor which Commodore did choose is the 8500, which can run
twice as fast as its predecessor, the 6510.

The C-128 is also a CP/M computer, it uses CP/M 3.0+. CP/M 3.0 is
the version for 128K computers. The Z-80 processor runs at 4MHz. The

speed decreases when the bus is accessed, since it was not designed to
handle this speed.

We'll be concentrating on both the C-64 and C-128 modes, since they
are equally important and equally interesting. The most interesting is the
C-128 mode. As a result, the operating system ROM listing and zero page
maps are for this mode. Some things can be better explained in the C-64
mode, such as the VIC chip.

This book is the latest in a compehensive series of books from
ABACUS Software & Data Becker. We'll go into each component
individually and in detail so that the BASIC programmer, whether beginner
or advanced, can get an in-depth look. The assembly-language programmer
can get the most out of the information presented as well. Naturally, we
cannot include all of the C-128's capabilities. This book is not intended as
an introduction to BASIC.

Abacus Software C-128 Internals

Commodore has provided the 128 with an advanced version of BASIC
to make use of their advanced computer, BASIC 7.0. Here are some of the
important features of the C-128:

* 128K of dynamic RAM

* 2 x 4K character generator

* Color video controller (VIC) with hi-res graphics

* 80-column video controller (VDC) with RGB output

* Hi-res graphics on the 80-column monitor

* Synthesizer with three independent voices (polyphonic)
* 32K BASIC ROM

* 16K operating system

* 2 parallel I/O ports

* 2 output screens available

At this time we'll be discussing the various input and output ports of the
C-128. The outputs for the monitors are not discussed here, since a special
chapter is devoted to the chips that generate the video signals.

bl

1.2 The Datasette Connection

The Datasette connections is virtually identical to that found in the C-64.
The importance of the Datasette has dropped markedly since the price of the
disk drive has been reduced. Only Commodore cassette recorders can be
connected to this interface. The recorders are of high quality and have
proven very reliable in the past.

The Datasette gets its power via its connector to the C-128. The data
travels serially to and from the Datasette through the cable. In addition to the
lines for read and write data, there is a line for turning the motor on and off
and a line to check to see if the PLAY button is depressed. The figure gives
the pin layout for this interface:

Cassette —Fin_Signal
B-2 +5V

1 2 3 4 5 6 C-3 CASSETTE MOTOR

D-4 CASSETTE READ

E-5 CASSETTE WRITE

A B C D E F F-6 CASSETTE SENSE

Abacus Software C-128 Internals

1.3 The User Port

The user port is a 8-bit parallel interface. The user port can be
programmed to set any or all of the 8 bits to either input or output. This
interface is used frequently by experimenters and individuals interested in
computer hardware. The user port can be programmed from BASIC using
PEEK and POKE commands. Two handshake lines are available for
process control.

To give you an idea of how to program the user port, we have included
a short example. Our example circuit consists of four switches, four
light-emitting diodes, eight resistors, and one IC. This should be enough to
teach you the basic concepts of data input and output using the user port.
The circuit diagram is shown at the end of this section,; it is very simple, so
we have not documented it here.

Since there are so many connections on the user port, we must first
explain which connections are actually available to the user. If you are not
using an RS-232 cartridge, you can use the following lines without
affecting the normal operation of the computer: (1, 2, 4-8, 10-12, A-N).

The layout of the user port lines:

GND

+5V; up to 100mA

-Reset; connected to the processor reset line
CNT1; connected to CNT on CIA1

SP1; connected to SP on CIA1

CNT2; CNT line on CIA2

SP2; connected to SP on CIA2

-PC2; handshake output on CIA2

ATN OUT; control line of the serial bus, comes from
PA3 on CIA2

9V; 100 mA max.

Opposite pole for 10
GND

GND

-FLAG?2; handshake input on CIA2
- PBO-PB7; I/O lines from CIA2
PA2; I/O line from CIA2

GND

OO NP WN -

ZZ2OWr5rs

Abacus Software C-128 Internals

Back to our example. Data lines PBO-PB7 can be programmed
individually for input or output. We will use lines PBO-PB3 as input and
lines PB4-PB-7 as output. This data direction is assigned by simply setting
the data direction register for data port B at address 56579. A set bit
indicates output on the corresponding bit of data port B (address 56577); a
cleared bit indicates input on the corresponding bit of port B. We use the
following command to set the data directions for our example (bits 0-3 as
input, 4-7 as output):

POKE 56579,240

This sets the high order bits and the corresponding bits of data port B
are set to output while the rest are set to input.

How do we use our little circuit? Nothing could be easier!
PRINT PEEK(56577) AND 15
returns the values of the four switches and the command
POKE 56577,X

can be used to turn the LEDs on and off, where the value X may be a
combination of the values 16, 32, 64, and 128--the lower bits are only used
for reading.

If you have a project of your own already planned--you want to help
your wife and connect the washing machine to the Commodore 128--be
sure to pay attention to the following so as not to damage your computer:

When using the user port for input, the input voltage must not exceed 5
volts. A voltage from 0 to 0.6 volts is interpreted as zero, while a voltage
from 1.6 to 5 volts is interpreted as one. All voltages between 0.7 and 1.5
volts will be randomly interpreted as zero or one.

If you use the user port for output, note that the outputs can drive only
one TTL input. They cannot directly drive an LED--this would lead to
damage to the CIA. It is recommended that you use a buffer, as in our
example.

Above all, NEVER connect an external voltage to a port with a bit

programmed as output. Make sure you load the data direction register with
the proper values so you don't mistakenly program an input bit as output.

6

Abacus Software C-128 Internals

If you want the computer to power your project, remember that no more
than 100 mA of current are available. If this maximum is exceeded slightly,
the cassette recorder will refuse to work properly and then the fuse inside
the C-128 will blow; finally the primary fuse in the power supply will blow.
Hopefully, nothing else will be damaged.

This is intended only as a brief introduction to using the user port in a
simple application. If you want to use the other lines for more complex
tasks, see Chapter 4 for more information on the CIA.

USER-PORT
2 -

4 * 3300 Q
c— —
p 3 —
i — — 1
F— —1
| 4 Switches

7 142
HC 1 L G
K 312 4 8~
—— < m
J Sl s E—RH
L 9olo |8_—H”
4 *3300Q

Abacus Software C-128 Internals

1.4 The RS-232 interface

The RS-232 interface opens up the whole world of communications for
the Commodore computer user. Most peripherals have an RS-232 interface,
such as the laser printer used to print this book. Telephone modems are also
connected using such an interface. RS-232 is the designation for an
interface for serial data transfer only--parallel data transfer over the phone
lines, for example, is not possible.

In serial transmission, the eight bits of a byte are sent one bit at a time,
not all eight at once as in parallel data transmission. Serial transmission has
the advantage that fewer lines are needed; the disadvantage is that it's
slower. It is well-suited for transferring data via telephone lines because so
few lines are required.

The software for using the RS-232 interface is built into the C-128
operating system. The interface is available from Commodore as a cartridge
which is inserted in the user port. The cartridge is necessary to make the
voltage conversions to +12Volts for the true RS-232 standard.

The RS-232 interface is assigned device address 2 by the operating
system. If a logical file is opened with device 2, two 256-byte buffers are
allocated: an input buffer and an output buffer. In the 128 mode these
buffers are placed at addresses $0C00 and $0DOO. In the 64 mode, two
pointers point to these buffers: $F7/$F8 points to the RS-232 input buffer
and $F9/$FA points to the output buffer. You must also remember the
following in C-64 mode: the buffer area is usually located in the upper area
of unused memory. If a BASIC program uses the RS-232 interface, the
program should begin with the OPEN command because it will erase all of
the variables that BASIC stores in upper memory. Furthermore, no check is
made to see if enough memory space is available. The CLOSE command
frees the buffers again, but the variables are also erased since a CLR
command is executed (other files are "forgotten"!). For this reason, you
should not close the file until the end of the program. Only one RS-232 file
may be open at a time.

When an RS-232 data channel is closed, any transmission is broken off
and the buffer is reset. If you want to wait until the entire contents of the
buffer have been transmitted, use the command:

SYS 61604 (JSR $F0A4) in the 64 mode or
SYS 59372 (JSR $E7EC) in the 128 mode

Abacus Software C-128 Internals

This command should always be used before the CLOSE command.

The parameters for data transfer are determined with a control register
and a command register. These two registers are passed together with the
filename when the file is opened.

The control register defines the baud rate and determines the number of
data bits and stop bits transmitted. The baud rate determines the speed of
the data transfer. 1000 baud means that 1000 bits are transmitted per
second. The stop bits are sent after the data word (5-8 bits).

The command register determines the method of transfer, the parity
checking, and the type of handshake.

In the control register, the lowest four bits determine the baud rate
according to the following table:

Bit 3210 Decimal Baud rate
0000 0 user baud rate, see below
0001 1 50
0010 2 75
0011 3 110
0100 4 134.5
0101 5 150
0110 6 300
0111 7 600
1000 8 1200
1001 9 1800
1010 10 2400
1011 11 3600 (n.i.)
1100 12 4800 (n.i.)
1101 13 7200 (n.i.)
1110 14 9600 (n.i.)
1111 15 19200 (n.i.)

The (n.i.) means that the given baud rate is not implemented and
cannot be attained by the C-128. Therefore we can program baud rates
between 50 and 2400. ’

The number of data bits is determined by bits 5 and 6:

Abacus Software C-128 Internals

Bit 6 5 Decimal Number of data bits
00 0 8 bits
01 32 7 bits
10 64 6 bits
11 96 5 bits

Bit 7 controls the number of stop bits:

Bit 7 Decimal Number of stop bits
0 0 1 stop bit
1 128 2 stop bits

After we have defined the first byte, we must define the second byte,
the command register.

Bit 0 Decimal Handshake
0 0 3-wire handshake
1 1 X-wire handshake
Bit 4 Decimal Transfer method
0 0 Full duplex
1 16 Half duplex
Bit 765 Decimal Parity checking
xx0 0 No parity checking
no 8th data bit
001 32 Odd parity
011 96 Even parity
101 160 8th data bit always 1
no parity checking
111 224 8th data bit always 0

A comment about handshaking: if you select a 3-wire handshake, the
control lines CTS (Clear To Send) and DSR (Data Set Ready) are not
checked when sending and receiving. This means that the computer sends
the data (to a printer for example) whether the receiver is ready to process
the data or not. If we want the device to be able to stop the transmission, we
must select X-wire handshake. The two control lines just mentioned must

10

Abacus Software C-128 Internals

be wired; the assumption is that the receiver can service these lines. If two
computers are being connected, a 3-wire handshake is usually sufficient.

Let's go through an example: We want to open an RS-232 data channel
with the following parameters:

* 2400 baud

* 7 data bits (ASCII)
* 2 stop bits

* No parity checking
* 8th data bit always 0
* Full duplex

* 3.wire handshake

After you have determined all the bits from the above tables, open the
channel with the following OPEN instruction:

OPEN 1,2,0,CHR$(10+0+128)+CHR$(0+0+224)
The second byte in the OPEN instruction is usually CHR$(0).

1.4.1 Programming the baud rate

The various baud rates are implemented through the timers in the CIAs.
You can also program baud rates that are not in the table, such as 111 baud.
The maximum rate of 2400 baud cannot be exceeded, because the software
in the operating system is too slow. The CIAs (or the timers) generate an
NMI after a certain amount of time dependent on the baud rate. If we want
to use our own baud rate, we can pass the corresponding timer values as the
third and fourth characters of the filename in the OPEN command. The
timer values can be obtained from the following formula:

T = 492662/BAUD - 101

The value which we get from this formula must be split into high and
low bytes and then passed as the third and fourth characters of the filename.
In the control register we use a zero instead of the baud rate (user baud
rate), so that the operating system knows that we want to use our own baud
rate.

11

Abacus Software C-128 Internals

The following example uses the same parameters as the previous
example, except that the baud rate is set to 1000.

100 BAUD=1000

110 T=492662/BAUD-101

120 TH=INT(T/256): TL=T AND 255

130 OPEN 1,2,0,CHR$ (128)+CHRS$ (224) +CHRS (TL) +
CHRS (TH)

Baud rates between 8 and 2400 baud can be obtained with the user
baud-rate programming option.

1.4.2 Reading the status variable ST

The status variable ST is used to determine if any errors occurred while
transferring data via the RS-232, just as with the serial bus. The meaning of
ST is somewhat different for the RS-232, however. The variable ST is reset
(to zero) each time it is read in BASIC. Therefore, if you'll be checking the
status variable multiple times you must store the value in a temporary value:
A=ST. Now A can be checked multiple times without resetting the status
variable ST. The status value should be available for multiple checks, so it
must be stored in a temporary variable.

Here is the bit by bit breakdown of the status variable ST. A set bit
indicates that the given event occurred.

Bit Description
0 Parity error
1 Framing error
2 Receiving buffer full
3 Receiving buffer empty
4 CTS (Clear To Send) signal missing
5 Unused
6 DSR (Data Set Ready) signal missing
7 Break signal received

In the C-64 mode you can assign the memory area the RS-232 input
and output buffers will be located. In the C-128 mode these buffers have

preassigned locations. The pointers for these buffers are at addresses
$F7-$FA.

12

Abacus Software C-128 Internals

1.5 Cartridge Port

The cartridge port--also known as the expansion bus--is one of the most
useful interfaces on the C-128. ROM cartridges can be inserted in this port;
they might be games, BASIC extensions or something altogether different
such as a MIDI interface. The address lines as well as the data lines of the
computer are available on this interface. For this reason the computer is also
very sensitive to damage here.

First the pinout of the 44-pin connector:

1 GND

23 +5V

4 -IRQ; connected to the processor IRQ line

5 CR/-W; connected to the processor R/-W line

6 DOT CLOCK; dot raster clock for the VIC, about 7.83 MHz
7 -I/O1; usually =0 in address range $DEOO to $DEFF

8 -GAME; input to AM (Address Manager)

9 -EXROM; as above

10 -1/02; usually =0 in area $DF00 to $DFFF

11 -ROML,; output from AM '
12 BA,; signal from VIC, indicates the validity of read data

13 -DMA; input. O=bus system reserved for external access
14-21 CD7-CDO; data bus

22 GND

A GND

B -ROMH,; output from AM

C -RESET

D -NMI

E 02; system clock output

F-Y CA15-CAQ; address bus

Z GND

Both the 128 and 64 modes test to see if the cartridge port is occupied
when the computer is turned on or reset. If the cartridge port is occupied,
the memory configuration is set appropriately in the address manager, and
control of the computer is given to the cartridge and not the built-in ROM
operating system. This is a very user-friendly feature, since the user need
only insert the cartridge and turn the computer on to start the application.

13

Abacus Software

C-128 Internals

EXPANSION PORT
222120 1918 17 16 15 141312 11109 8 7 6 5 4 3 2 1
ZYXWVUTSRPNMLKJHFEDCB A

PIN SIGNAL PIN SIGNAL
22| GND Z | GND
21| CDO X | CAO
20| CD1 Y | CA1
19| CD2 W | CA2
18| CD3 V | CAS3
17| CD4 U | CA4
16| CD5 T |CA5
15| CD6 S | CA6
14| CD7 R | CA7
13| DMA P | CA8
12| BA N | CA9
11 { ROML M | CA10
10| 1102 L | CA11
9| EXROM K | CA12
8| GAME J |CA13
7| VO1 H | CA14
6| DOT CLOCK F | CA15
5| CRW E |02

4| IRQ D |NMI_
3| 45V C | RESET
2| +5V B | ROMH
1] GND A | GND

14

Abacus Software C-128 Internals

USER PORT

12 3 4 5§67 8 9101112

ABCDEFHJKLMN

PIN SIGNAL CAPACITY. PIN SIGNAL
1 GND A | GND
2 | +5V MAX. 100mA| | B | FLAG2
3 | RESET C | PBO
4 | CNT1 D | PB1

5 SP1 E | PB2

6 | CNT2 F | PB3

7 SP2 H | PB4
8 | PC2 J PB5
9 | SER.ATNIN K | PB6
10 | 9 VAC L | PB7
11 | 9VAC M PA2
12 | GND N | GND

15

Abacus Software C-128 Internals

Chapter 2: The VIC Chip

As you already know, the Commodore 128 has three plugs for
connecting monitors. Theoretically, all three can be used at once, but this
wouldn't be terribly useful, since the two 40 column screens would be
identical.

Two of the three connectors are connected to the VIC chip. The VIC
chip has been well-proven in the Commodore 64. The VIC chip is well
liked since it has many fine features like the ability to display sprites. The
VIC chip in the Commodore 128 has two additional registers which will be
described later. It runs the display in the 40-column mode as well as BASIC
7.0's representation of graphics.

A television can be connected via the RF connector. This is a relatively
popular solution because of the low cost. Depending on the television, the
screen quality may also be satisfactory, though it is not suited for long
periods of working with the computer. This is because the carrier frequency
is first modulated by the computer (it must be "broadcast") and then
demodulated by the television receiver. The picture quality naturally suffers
as aresult of all this manipulation.

If your wallet has recovered from the purchase of the Commodore 128,
you might consider a color monitor such as the Commodore 1702. This
monitor uses the second connection: the composite video output. Here ‘the
signal does not need to be modulated or demodulated--pure screen
information plus the synchronization pulse is sent to the monitor. These
monitors are a bit more expensive, but they offer significantly better screen
quality because the screen resolution is better.

The VIC chip in the Commodore 128 has the same address as the 64,
which makes sense, since it must also be accessed in the 64 mode. For the
sake of compatibility the addresses must remain the same.

Start address: $D000

The VIC-II chip (we will call it VIC-II since it is not identical to its
predecessor) cannot function with the 2MHz clock frequency (fast mode).
The VIC-II chip contains the system clock. As you may know, the VIC chip
uses the clock gaps (times in which the processor does not access the
memory) in order to get characters out of the video RAM to refresh the

19

Abacus Software C-128 Internals

picture. This is done so as not to slow down the processor. If the processor
is clocked at 2MHz, the operating speed is doubled and the clock gaps are
halved. These clock gaps aren't long enough to access memory. The VIC-II
chip switches the video output off and you get a single color picture (which
you may recognize from cassette loading). The video controller responsible
for the 80-column screen is not affected by this. It continues to display its
80 columns per line. Switching from 1 to 2MHz can also be done in the 64
mode! To do this, you must set bit O in register 48 of the VIC.

POKE 53296,1 corresponds to the command FAST
POKE 53296,0 corresponds to the command SLOW

These two POKEs can also be used in the 64 mode. The FAST
command is a bit different from the POKE command; the BASIC 7.0
command FAST also causes the 40-column screen to be automatically
switched off, so that the colorful garbage caused by the 2MHz mode does
not appear on the screen.

The VIC chip not only performs all the tasks required to create a screen,
it also handles the timing for the dynamic memory.

Here are some features of the VIC chip:

* 16 colors

* graphics-capable with 320x200 pixels (hi-res mode)

* Four color graphics with 160x200 pixels (multi-color mode)
* Multi-color mode possible in text mode

* Display and management of 8 sprites -

* Raster and sprite-collision interrupt

* Creation of a standard NTSC signal

* Movable video RAM and character generator

* Independent handling of 16K of dynamic RAM

20

Abacus Software

C-128 Internals

The pin layout of the VIC-II chip:

D6-DO;
-IRQ;

-CS:
R/W;

All;
AOQO/A8--A5/A1
AG-AT;
AS8-A10;
D11-DS;

D7;

VCC;

KO0-K3;

Processor data bus :

0 when one bit of the IMR and the IRR are equal
Input, Light pen strobe

Processor-bus action only takes place if CS=0
0 = taking over data from bus

0 = data not ready at receiving device
+12VDC

Color information output

Impulses to synchronize lines and screen

0 = VIC uses system bus, 1 = bus free

Clock output

Dynamic RAM control

as above

Input color frequency

Input dot frequency

Processor address-bus

3; Multiplexed (video-) RAM address-bus
(video-) RAM address-bus

Processor address-bus

Data from color RAM

Processor data-bus

+5V

Keyboard-Interface-Control. These pins go
directly to the (expanded) keyboard.

2.1 Register Layout of the VIC Chip

The VIC-II chip has 49 registers at the address $D000+(the register
number). These registers are individually described:

REGO

REG 1

Sprite register 0: X-coordinate . _
Here are 8 bits of the X screen coordinate of sprite 0. Bit 9
(overflow bit) is found in register 16 of the VIC chip.

Sprite register 0: Y-coordinate . .

This register contains the Y-position of sprite 0. The
Y-coordinate does not need an overflow (9th bit) because the
maximum Y-value is 199.

21

Abacus Software C-128 Internals

Registers 2 through 15 correspond to registers 0 and 1 for sprites 1 to
7. Each sprite has a register pair in the VIC chip: Sprite 0 has register pair
0/1, sprite 1 the pair 2/3 ... sprite 7 the pair 14/15.

REG 16

REG 17

REG 18

REG 19

REG 20

REG 21

REG 22

REG 23

MSDb of the X-coordinates (note that the lower-case b in MSb is
intentional! [This is to indicate bit, not byte]). This register
contains the overflow bits from the X-coordinates of the sprites.
A set bit means that the MSb (9th bit) of the corresponding sprite
is set, 0 means not set. The MSb of sprite 0 is represented by bit
0, the MSb of sprite 7 is set by bit 7.

Control register 1

Bit 0-2 : Offset of the upper screen border in raster lines.
Bit3 :0=24 lines, 1=25 lines

Bit4 :O=screen off

Bit5 :1=standard bit-map mode (graphics)

Bit6 : 1=extended color mode (text)

Bit7 : Carry from register 18.

Raster IRQ .
Number of the raster line at which a raster IRQ should be
generated. The 9th bit of the raster line is found in register 17.

X-portion of the screen position at which the beam was found
when a strobe was generated.

As register 19, but the Y-portion.

Sprite enable

This register indicates whether a sprite is turned on (bit = 1) or
off (bit = 0). Sprite 0 is represented by bit position 0, sprite 7 by
bit 7 of the register.

Control register 2

Bits 0-2: Offset of the left screen border in raster dots.
Bit 3: 0=38 characters, 1=40 characters (horizontal)
Bit 4: Multi-color mode (graphics)

Sprite expand X

The sprites can be doubled in the x direction by setting the
corresponding bit in this register.

22

Abacus Software C-128 Internals

REG 24

REG 25

REG 26

REG 27

REG 28

REG 29

REG 30

REG 31

REG 32

Base address of the character generator and vidleo RAM
Bits 1-3: Address bits 11-13 for the character RAM base
Bits 4-7: Address bits 10-13 for the video RAM

IRR: Interrupt Request Register

This register indicates which register generated an interrupt.
Bit O: generator is REG 18

Bit 1: generator is REG 31

Bit 2: generator is REG 30

Bit 3: generator is pin LP

Bit 7: =1 when at least one other bit is one

IMR: Interrupt Mask Register
Layout like REG 25. If at least one bit in the IRR and IMR agree
(IRR AND IMR<>0), an interrupt is generated (pin IRQ=0).

Priority register (sprites)
If the corresponding bit is set, the background character has
precedence over the sprite.

Multi-color register (sprites)
If the bit representing a given sprite is set, that sprite is
represented in multi-color mode.

Sprite expand Y
The sprites can be doubled in the Y-direction by setting the
appropriate bit in this register.

Sprite/sprite collision

Each sprite is assigned a bit. If two sprites touch each other, the
two corresponding bits are set. These bits remain set until they
are explicitly cleared! At the same time, bit 2 in the IRR is set. If
bit 2 in the IMR is also set, an interrupt will be generated.

Sprite/background collision

Each sprite is assigned a bit. If a sprite touches the background,
the corresponding bit is set. The bits remain set until they are
explicitly reset! Bit 3 in the IRR is set; if bit 3 in the IMR is also
set, an interrupt is generated.

Exterior color (border color)
The border color is set in this register (0-15).

23

Abacus Software C-128 Internals

REG 33 Background color registers 0-3 '
to Background color register 0 determines the background color in
REG 36 the "normal" text mode. If the multi-color mode is enabled, it
accesses registers 1-3.

REG 37 Sprite multi-color color 0/1
and Sprites which are represented in multi-color can assume the back-
REG 38 ground color, the sprite color, or the multi-color 0 and 1.

REG 39 Color sprite 0-8
t(cj: s The colors for the individual sprites are placed in these registers.
REG 46

REG 47 Keyboard control register
This register contains the status of the four keyboard interface
pins KO to K3. Bits 0 to 3 are responsible for this. Bits 4-7 are
unused and are always 1.

REG 48 2MHz bit
Bit 0 of this register determines whether the computer operates at
2MHz or 1MHz. Bits 1-7 are unused. If the bit is set, all accesses
from the VIC-II chip to the memory are halted, except for
refreshing the dynamic RAM.

NOTE: All of the following example programs must be entered in the
64 mode. This is necessary because the BASIC 7.0 interpreter makes inputs
to the VIC-II chip practically "ineffective". For example, if you switch the
graphics on with the necessary POKE instructions, you will see only a flash
on the screen. The same applies to programming sprites, etc. The reason for
this is that the BASIC 7.0 interpreter must have its own method of interrupt
control. You can, for example, create a moving sprite with the MOVSPR
command; this can be done only with BASIC 7.0 using the interrupts. We
will tell you how you can get around this interrupt control in Section 7.5.

But even when the sprites aren't moving, the coordinates are always
corrected by the BASIC 7.0 interpreter. You are probably asking yourself
why you should program in the 64 mode when you own a 128. This is a
good question, but the VIC chip can be programmed just as well from the
64 mode as it can from the 128 mode. We will use "simple"” POKE
commands in the following sections, in order to give examples as close to
assembly language as possible. Since programming the VIC chip would be
ruined by the BASIC 7.0 interpreter, we will try out the following examples
in the 64 mode. This will allow us to learn and understand the operation of

24

Abacus Software C-128 Internals

the VIC chip. Machine language programmers have to feel their way
through step by step. In machine language (in the 128 mode), you can get
around the annoying sprite corrections by changing the IRQ vector.

2.2 The VIC Operating Modes

As you may already know and can gather from the many registers, there
are a number of possible ways to arrange the screen with the VIC chip. It is
quite easy to do this in the 128 mode thanks to easy-to-use BASIC 7.0
commands. In the 64 mode, it is somewhat more difficult to switch between
the various modes since it must be done with POKE commands.
Programming sprites in the 64 mode is also more complicated than it is in
the 128 mode, in which you can easily move them about with the MOVSPR
command. If you think the layout of the VIC chip doesn't interest you since
you don't want to program in the 64 mode, you may not be right. If you
want to program in machine language, you will need to learn more about the
register layout of the VIC, which is what we want to do now.

2.3 Sprites

Sprites are movable, freely-definable figures with a resolution of 24 by
21 points. Sprites can be represented in either the two-color mode (sprite
color and background color) or the multi-color mode (four colors, but the
resolution is cut to 12 by 21 points). The VIC chip can manage 8 sprites,
which can be moved simultaneously on the screen. The sprites can assume
their positions in a frame of 512 by 256 raster points, which means that
sprites can be moved completely outside of the screen.

If a sprite is defined in the two-color mode, a set bit means a set point in
the color defined for this sprite. An unset bit means transparent (the
background color will be displayed). In the multi-color mode, two bits
apply to one point, which means that one can define four colors. The
possible bit combinations refer to the following colors:

00: Transparent, background color (REG 33)

01: Multi-color register 0 (REG 37)
11: Multi-color register 1 (REG 38)
10: Sprite-color register (REG 39-46)

25

Abacus Software C-128 Internals

You see that two colors (multi-color registers O and 1) are defined to be
the same for all sprites. The sprites can differ from each other in at most one
color. But let's define a sprite "from scratch". We won't use the BASIC 7.0
commands, but only the commands available to us in the 64 mode (which
can be used in the 128 mode as well). First we must define a sprite by
means of DATA statements (the sprite editor does not exist in the 64 mode).
These DATA lines should look like the following:

1000 DATA 000,000,000
1010 DATA 000,000,000
1020 DATA 000,000,000
1030 DATA 000,000,000
1040 DATA 000,000,000
1050 DATA 000,000,000
1060 DATA 000,000,000
1070 DATA 003,255,255
1080 DATA 000,002,000
1090 DATA 192,170,128
1100 DATA 194,150,080
1110 DATA 234,150,080
1120 DATA 194,170,168
1130 DATA 192,170,168
1140 DATA 000,032,128
1150 DATA 000,170,160
1160 DATA 000,000,000
1170 DATA 000,000,000
1180 DATA 000,000,000
1190 DATA 000,000,000
1200 DATA 000,000,000

In the normal development of a sprite, you would draw out the figure
on paper before programming, and divide the paper up into a grid of 24 by
21 points. This gives 21 lines of 24 points each. These 24 points are then
grouped into three 8-bit groups which can then be stored as bytes. Every
filled box means a set bit, an empty box means an unset bit. In the
multi-color mode this is more difficult. You must insert one of four bit
combinations from a self-defined color table.

Note: You must first consider what colors you will define in common to

all sprites, and which you want to have as the individual color for each
sprite.

26

Abacus Software C-128 Internals

Once you have done this you can calculate the individual bytes and
write them down. These values are then given in rows of DATA lines, as in
our example. Our example sprite is a helicopter. You probably didn't
recognize it in the DATA statements.

2.3.1 Address of the sprites

We have our data and now we need to store it someplace. There is a
pointer for each sprite which tells the VIC chip where it can find the sprite.
These pointers are found in addresses 2040 to 2047, immediately following
the video RAM. Each sprite needs 3x21=63 bytes. You have probably
already noticed that each pointer need only be one byte long and does not
give an absolute address. It gives the position "pointer times 64," which
accounts for exactly 16K. If you move the start address of the video RAM,
the sprite pointers also move as well as their start addresses. For the sake of

simplicity, let us assume that sprite number 1 is defined at address
13*%64=832.

POKE 2041,13

Address: 2040 2041 2042 2043 2044 2045 2046 2047
Sprite#: 0 1 2 3 4 S5 6 17

You can assign this address to other sprites, meaning that several
sprites will have the same appearance. But to display our sprite, we first
need to POKE the values from the DATA statements into the correct
memory addresses.

10 FOR I=0 TO 63

20 READ D

30 POKE 13*64+I,D

40 NEXT

50 POKE 2041,13: REM SPRITE 1 AT ADDRESS 832

27

Abacus Software C-128 Internals

2.3.2 Turning on the sprite

When you start the program, you will notice that something is still
missing. We need to explicitly turn our sprite on! The best way to do this is
with a logical OR of the corresponding bit in register 21, since a direct
POKE would erase any other sprites.

POKE 53248+21,PEEK(53248+21) OR 2
turns sprite 1 on. If you want to turn on sprites 0 and 7, for example:
POKES3248+21,PEEK(53248+21) OR 1 OR 128, or better yet:
POKES53248+21,PEEK(53248+21) OR 129.
To turn off sprite 1: |

POKE 53248+21,PEEK(53248+21) AND NOT(2).
If you want to turn off several sprites at once, such as sprites 0 and 7,
POKE 53281+21,PEEK(53248+21) AND NOT(1 OR 128)

it can be done by a logical OR of the sprites to be turned off, which is then
negated and then ANDed with the original value. In our example program,
we want to turn our sprite on:
60 POKE 53248+21,1: REM TURN ON SPRITE 1
Sprite: 76543210
Bitt 76543210
2.3.3 Color

We want to be able to define the color of our sprite, otherwise we might
not be able \to see it:

70 POKE 53248+39+1, 5: REM COLOR = GREEN

This is done in registers 39 through 46: register 39 defines the color for
sprite 0; register 46, correspondingly, defines the color of sprite 7.

28

Abacus Software C-128 Internals

The following colors are available:

0 Black 8 Orange

1 White 9 Brown

2 Red 10 Light red
3 Cyan 11 Grey 1

4 Purple 12 Grey 2

5 Green 13 Light green
6 Blue 14 Light blue
7 Yellow 15 Grey 3

2.3.4 Position

After you have made the color specification and started the program
with RUN, you still won't see anything because the sprite is positioned
outside of the screen area. Registers 2 and 3 must be loaded with the
appropriate values in order to assign a position to sprite 1:

80 POKE 53248+2, 50 : REM X-COORDINATE
90 POKE 53248+3, 70 : REM Y-COORDINATE

You can move your sprite across the whole screen with a loop. Many
readers may start to groan here. You know that BASIC 7.0 handles all of
the work with sprites for you. But there's even more that must be done in
64 mode. If you want to position the sprite at X-coordinate 310, for
example, eight bits aren't enough. Here you must set the ninth bit of the
corresponding sprite in register 16 (or reset it if you are moving the sprite
from right to left). We position our sprite at X-coordinate 310:

POKE 53248+16, 2: REM SPRITE 1 - SET 9TH BIT

If you want to avoid disturbing other sprites with this command, you
must again address the appropriate bit explicitly:

POKE 53248+16, PEEK(53248+16) OR 2

Let's move our sprite from left to right across the screen:

29

Abacus Software C-128 Internals

FOR I=0 TO 400
POKE 53248+2, I AND 255 :

REM MASK OUT LOWER 8 BITS
POKE 53248+16,PEEK(53248+16) AND NOT 2 OR
2*ABS (I>255)
NEXT I

The line just before the last is a bit complicated: The most-significant bit
of sprite 1 is reset to zero by AND NOT 2. The corresponding bit is again
set if necessary (X-coordinate greater than 255) by OR 2*ABS(I>255).
This is all done without disturbing the other bits.

2.3.5 Expanding a sprite

Another important and useful capability is the ability to display sprites
twice as large in the horizontal and/or vertical directions. The VIC chip has
two registers available for this purpose: X-expand and Y-expand. Again,
each sprite is represented by a bit. By setting this bit, the corresponding
sprite is expanded in the X or Y direction. In our example we will expand
our sprite in both the X and Y directions:

POKE 53248+23,2 : REM DOUBLE SPRITE 1 IN Y-DIRECTION
POKE 53248+29,2 : REM DOUBLE SPRITE 1 IN X-DIRECTION

Since we can expand a sprite in both the X and Y directions, we have
the ability to enlarge our sprite by a factor of four.

2.3.6 Background

You have no doubt noticed when entering or changing the example
program that the sprite does not scroll along with the rest of the screen.
Sprites also remain visible when the screen is cleared. The sprites are
ultimately determined by their position. If you want to remove a sprite from
the screen, you can either a) turn it off, or b) position it outside the screen.

Sprites have another noteworthy property. If you move the text cursor
over a sprite and start typing, the sprite covers the letters--the letters are
visible only where the sprite is transparent. It almost has the appearance of a
three-dimensional picture.

30

Abacus Software C-128 Internals

The sprites and the background can be imagined as two separate layers.
It is possible to inform the VIC chip that we do not want to have individual
sprites in the foreground. There is a priority level for each sprite that tells
the VIC whether the sprite has precedence over the background or not. In
our example, the letters would appear on top and the sprite would be
covered up. In order to move a sprite behind the background, the
corresponding bit in register 27 must be set. We want to take away the
priority of our helicopter:

POKE 53248+27,2

Now the helicopter appears behind the letters. In order to put it in front
again, we need only reset the bit:

POKE 53248+27,0
Register 27 : Background priority

Bitt 76543210
Prior: 76543210

You have no doubt noticed that all registers are organized in the same
manner. One byte is all that is required in order to represent all eight
possible sprites. Bit 0, the lowest order bit, always stands for sprite 0 while
bit 7 always corresponds to sprite 7.

You may be wondering what happens when several sprites occupy the
same space on the screen. There are set rules for determining the appearance
of the result. The sprite with the lowest number appears on "top" of the
others. If sprites 0 and 6 come in contact with each other, for example, all
of sprite 0 will be visible, while at best only an outline of sprite 6 will be
visible. Sprite 6 will appear on top of sprite 7, sprite 5 on top of sprite 6, up
to sprite O on top of sprite 1. The lower the sprite number, the higher the
priority.

2.3.7 Collision: Sprite-sprite

It is also possible that two sprites will come into contact with each
other, that is, they have at least one point in common. Often it is desirable
to be able to detect such contact, especially for games. The VIC has a
register just for this purpose: Register 30 gives the information if sprites

31

Abacus Software 4 C-128 Internals

have collided, and if so, which sprites were involved. If, for example,
sprites 0 and 6 collide, bits 0 and 6 of register 30 are set. If more than two
sprites encounter each other, the bits of all the sprites involved are set. In
our example--if sprites 0 and 6 encounter each other--we would get the
following result:

PRINT PEEK(53248+30)
65

The number 65 is a combination of bits 0 and 6 set: 64+1=65. After
you have read register 30, you must set it back to 0, or you will not be able
to detect future collisions since the register is not automatically reset.

POKE 53248+30,0
2.3.8. Collision: Sprite-background

Sprites can also come into contact with the background characters. It is
possible to check to see if our helicopter comes into contact with the cursor
or not. This test is independent of whether the sprite has precedence over
the background or not. If a sprite does contact some part of the background,
the corresponding bit in register 31 is set. Here the same applies as for
register 30: You must clear the register after reading it. The register can only
tell that the given sprite has come into contact with a background character,
it cannot tell you which character, though that usually doesn't matter. This
can be determined by the position of the sprite.

2.3.9 Multi-color sprites

Certainly the "icing on the cake" of sprite programming is the ability to
define sprites in multi-color. Multi-color simply means four-color. One
color is the background color; two additional colors are the same for all
eight sprites. If you want to display several sprites in multi-color, you must
consider carefully what colors you will choose. You must then define these
in the two fixed sprite color registers. The multi-color mode does have a
price: the resolution is cut in half. This usually does not present a problem
since the resolution is usually more than enough. This gives you a
resolution of 12x21 points. The size of the sprites remains the same since
the points themselves become twice as large--two bits define one color.

32

Abacus Software C-128 Internals

The various bit combinations have the following meanings:

The point has the background color (no point is visible)
The color is taken from register 37

The color is taken from the given sprite color register
The color is taken from register 38

We must tell the VIC chip which sprites are multi-color. This is

naturally done bit by bit, in register 22. To display our helicopter as
multi-color:

POKE 53248+22,2

And look: it appears in shimmering color. The helicopter looks so ugly
because we defined it as a single color sprite. The various bit combinations
of a monochrome sprite naturally have a different character than they do
with a multi-color sprite. We'll now list the entire program responsible for
bringing our helicopter to life. This program will help show you how
sprites are programmed, whether in BASIC or machine language.

10
20
30
40
50
60
70
80
90

REM SPRITE DEMONSTRATION PROGRAM

V = 53248: REM START ADDRESS OF THE VIC CHIP
POKE V+32, 15; POKE V+33,14:REM BACKGROUND COLOR
PRINT"<CTRL-7>": REM <CRTL> KEY AND 7

POKE V+21, 3 : REM ENABLE SPRITE O AND 1

POKE V+28, 3: REM SPRITE O AND 1 IN MULTICOLOR
POKE V+39, 6 : REM COLOR FOR SPRITE 0 = BLUE
POKE V+40, 2: REM COLOR FOR SPRITE 1 = RED
POKE V+37, 14: REM MULTI-COLOR 1 = LIGHT BLUE

100 POKE V+39, 0: REM MULTI-COLOR 2 = WHITE
110 POKE 2040, 13: REM SPRITE 0 AT 832 TO 895
120 POKE 2041, 13 : REM SPRITE 1 THE SAME

130 FOR I = 0 TO 62: REM NUMBER OF DATA ITEMS

140 : READ X : REM READ THE VALUES
150 : POKE I+832, X : REM STORE THE VALUES
160 NEXT I

170 POKE V+0,25:POKE V+1, 50:REM POSITION SPRITE O
180 POKE V+2, 60:POKEV+3,50 :REM POSITION SPRITE 1
190 FOR D = I TO 2000 : NEXT:REM DELAY LOOP

200 FOR I = 0 TO 200 : REM MOVE

210: POKE V, I=24 : REM X-COORD. SPRITE O

220: POKEV=2, 200-I :REM Y-COORD. SPRITE 1

33

Abacus Software C-128 Internals

230: POKE V=1, 40+I: REM Y=COORD. SPRITE O
240: POKE V+3, 200-I:REM X-COORD. SPRITE 1
250 NEXT

260 GOTO 200: REM MOVE CONTINUALLY

1000 DATA 000,000,000
1010 DATA 000,000,000
1020 DATA 000,000,000
1030 DATA 000,000,000
1040 DATA 000,000,000
1050 pATA 000,000,000
1060 DATA 000,000,000
1070 DATA 003,255,255
1080 DATA 000,002,000
1090 DATA 192,170,128
1100 DATA 194,150,080
1110 DATA 234,150,080
1120 DATA 194,170,168
1130 DATA 192,170,168
1140 DATA 000,032,128
1150 DATA 000,170,160
1160 DATA 000,000,000
1170 DATA 000,000,000
1180 DATA 000,000,000
1190 DATA 000,000,000
1200 DATA 000,000,000

It is certainly more complicated to prepare multi-color sprites than
single-color sprites, in which a point on paper corresponds directly to a
point on the screen. Fortunately there are sprite editors which make the
work a good deal easier. Such an editor is built in to BASIC 7.0
(SPRDEF). But as we said before, it is very important for the machine
language programmer to know how sprites are programmed without BASIC
commands.

The sprites that you define and use with the sprite editor built into
BASIC 7.0 are stored in RAM at $OE00-$1000.

Sprites in any of the possible modes can be covered by the background,
whether it be in text, graphic, or multi-color graphic mode.

34

Abacus Software C-128 Internals

2.3.10 Interrupts through the VIC chip

The VIC chip is capable of generating interrupts. Interrupts temporaily
halt the machine language program currently being executed by the
microprocessor because a certain event occurred. There are four different
sources of interrupt on the VIC:

* The lightpen

* The raster-line interrupt

* A sprite/sprite collision

* A sprite/background collision

Because of the VIC chip's ability to generate raster-line interrupts, it is
possible for BASIC 7.0 to mix text and graphics (by means of the
GRAPHIC command). To program an interrupt, you set the appropriate bits
in the IMR register specifying which interrupt source(s) you want. In
addition, you must change the interrupt vector to your own interrupt routine
so that you can react appropriately to the interrupt.

If the interrupt comes from CIA1l, you must branch to the kernal
routine. The CIA1 generates interrupts every sixtieth of a second in order to
read the keyboard. Otherwise you can branch to you own routine. You can
determine if the CIA1 caused the interrupt by reading register 13, ICR
(Interrupt Control Register).

If the interrupt came from the VIC chip, bit 7 of the IRR (Interrupt
Request Register) is set in addition to the bit of the generator. You need
only test for the generator bit if multiple interrupts are enabled on the VIC.

If you use only the raster-line interrupt, you must check bit 7. You can
specify which raster line is to cause the interrupt by setting registers 18 and
17 (overflow). When this line is encountered while the screen is being
constructed, an interrupt is generated. By the time the routine reacts, the
beam creating the picture is already a few lines farther down. You must be
sure to take this time delay into consideration.

The possibilities which interrupt programming offers, as well as the
flood of programming tricks to be mentioned and explained would go far
beyond the scope of this book.

35

Abacus Software C-128 Internals

2.3.10.1 More than 8 sprites on the screen

We will use the following program as a small example of what can be
done with the raster-line interrupt. The raster-line interrupt makes it possible
to display more than the usual 8 sprites on the screen at one time. The
control program need only exchange the data for the sprites with an area
reserved for this purpose or redefine the pointers at a specific raster-line.

If you display more than 8 sprites using the raster-line interrupt, the
freedom of movement in the vertical direction is somewhat limited. If you
use 16 sprites, for example, the first eight sprites must move above the
middle line (0--99) while the second set of eight must be satisfied with the
lower half (100-199). The sprites can move freely in the horizontal
direction. For many games the vertical restriction is not a problem so you
can make extensive use of the raster-line interrupt.

Our example program displays 16 sprites in various colors and moves
them across the screen. Eight sprites are to be displayed in the upper half of
the screen. If the video controller has displayed the upper half, we generate
an interrupt. In the interrupt routine we set the parameters for the sprites
which are to be displayed in the lower half of the screen. At the same time,
we must prepare the next raster interrupt for the end of the screen so that we
can again switch back to the upper 8 sprites.

1 REM 16 SPRITES

5 PRINT CHRS$ (147)

100 FOR I = 0 TO 7: POKE 2040+I, 15: NEXT

110 VvV = 53248

120 POKE V+21, 255 : POKE V+ 33, O

130 FOR I = 0 TO 7: POKE V+42*I, (I+1)*30:
POKE V+2*I+1,70;NEXT

140 FOR I = 0 TO 7: POKE V+39+I,I+1: NEXT

200 FOR I = 828 TO 907: READ X: POKE I, X : NEXT
300 FOR I = 960 TO 960 + 62 :READ X:POKE I, X: NEXT
350 SYS 828

430 D =D + 1; FOR I = 0 TO 7: POKE V+2*I, (I+1)* D:
POKE V+2*I=1,I*5+60: NEXT

440 IF D> 28 THEN D=1

450 GOTO 430

900 DATA 120, 169,100,141,18,208,173,17

910 DATA 208,41,127,141,17,208,169,129

36

Abacus Software

C-128 Internals

920 DATA 141,

930
940
950
960
970

DATA
DATA
DATA
DATA
DATA
980 DATA
990 DATA
1000 DATA
1001 DATA
1002 DATA

26,208,169,91,160,3,141
20,3,140,21,3,88,96,173
25,208,141,25,208,41,1,208
3,76,49,234,173,18,208,201
200,176,22,160,200,169,170,140
18,208,162,14,157,1,208,202
202,16,249,104,168,104,170,104
64,160,100,169,90,76,115,3
255,255,255,182,210,73,164,155
109,255,255,255,164,155,109,182
211,109,182,218,109,182,219,77

1003 DATA
1004 DATA

182,219,105,182,219,109,255,255
255,0,0,0,0,0,0,0
1005pAaTA 0,0,0,0,0,0,0,0
1006 DATA 0,0,0,0,0,0,0,0
1007 bATA 0,0,0,0,0,0,0,0

Examine line 430 closely. In addition to the sprite coordinates, you can
change all of the other sprite parameters as well, such as the color or size.

You can also change the sprite pointers so that other sprite patterns can be
displayed, even multicolor.

You can do more than display 16 sprites. If you change the display
mode in the raster interrupt routine, you can display a split screen--The top
half could display hi-res graphics while the lower half displays text.
Superimposed effects can also be achieved in this manner.

Now that we have described the programming and use of sprites in
detail, we want to look at the other operating modes of the VIC chip.

37

Abacus Software C-128 Internals

2.4 Normal Character Display

This mode is the most "normal" of all the display modes of the VIC: the
text mode. It is automatically enabled when the machine is turned on. One
thousand characters from the video RAM are displayed as a page of text on
the screen. Each character has a code which is used as a pointer to the
character generator. This pointer is used to display the bit pattern stored in
the character generator at the current screen position. In this manner the
computer can display 256 different characters on the screen. Two different
characters sets are stored in the Commodore 128. You can select between
upper/lower case and upper/graphics mode with SHIFT/Commodore. These
are two of the character sets. You can also select between the 40 column and
80 column screens, giving another character set which is a combination of
the upper/lower case and upper/graphics case sets.

There is a separate location in the color RAM for each character on the
screen. This location determines the color of the character. When the
character is displayed, the color of each set bit is fetched from the lower
nibble of the color RAM. 16 colors can be defined here. If a bit is not set,
the color is fetched from the background color register 0; the point is
therefore transparent.

2.4.1 Moving the video RAM

A useful feature of the VIC chip is the ability to move the location of the
video RAM and/or the character generator. In this manner you can have two
or more text screens. For example, while you display one screen, you can
build another behind the scenes. The same applies to the graphic mode.
Color RAM cannot be moved, however.

As already mentioned, the VIC chip can address only 16K. Normally
the first 16K of bank O is addressed--the video RAM is found at address
$0400-$07FF. Register 24 of the VIC chip supplies the address of the video
RAM in 1K increments. Bits 4-7 of this register represent the address bits
10-13 of the video RAM. The address $0400 looks like this in binary:

0000 1000 0000 0000 = $0400

38

Abacus Software C-128 Internals

The left-most bit is address bit 15, the right-most is address bit 0.
Address bits 10-13 read: 0010. This bit combination is also found in
register 24, bits 4-7. To move the vidleo RAM by 1K, the new address
would be $0800.

0001 0000 0000 0000 = $0800

Address bits 10-13 now read 0100. To write this address to register 24,
you must first mask out (=erase) bits 4-7 and then the bit combination can
be defined with a logical OR operation.

P=PEEK(53248+24) : REM OLD CONTENTS
POKE 53248+24,(P AND 240) OR 64

This OR operation is necessary to make sure you do not disturb the
other bits in the register because they define the address of the character
generator.

The limit of movement is reached when you try to move the video RAM
by more than 16K. Registers 24 has bits 10-13 of the address available,
enough for movements within a 16K range. Since address bits 14 and 15
cannot be defined in the VIC chip, these bits must be stored outside it.
These two bits are found in register 0 of CIA2 (address $DDO00), bits 0 and
1. Note that these two bits are active low, meaning that their values are
inverted. In order to address the lowest 16K (address bits 14 and 15 are 0),
bits 0 and 1 of register 0 in CIA2 must be set.

IMPORTANT! :

If you change bits 0 and 1 of CIA2, not only does the video RAM move by
16K, the base of the character generator moves too. Remember this when
doing graphics programing.

The following values stand for given memory ranges:

Bits Range

00 $C000-$FFFF

01 $8000-$BFFF

10 $4000-$7FFF

11 $0000-$3FFF (power-up condition)

POKE 56576, A: REM SELECT THE 16K PAGE

W= O M

39

Abacus Software C-128 Internals

2.4.2 Moving the character generator

The CIA2 bits define the 16K page for both the video RAM and the
character generator. The character generator can also be moved, but in 2K
increments instead of 1K increments. Bits 1-3 of register 24 in the VIC
represent address bits 11-13 of the character generator.

Normally this pointer points to the character ROM, which is responsible
for the appearance of the characters on the screen. In the graphics mode, the
character generator must be moved, however, in order to define the base of
the graphic page (the video RAM becomes the color RAM). The character
ROM is found physically outside the readable range of the VIC chip,
because the address $D000 is not addressable when a lower page is
selected. This character ROM has a special status thanks to the address
manager, however: If the relative addresses $1000-$1FFF or $9000-$9FFF
are addressed, the character ROM is automatically accessed
($D000-$DFFF). If you disturb this by programing in the graphics mode,
for example, you must use either page 1 or 3 or move the area for the
character generator.

If, for example, you want to program and use a couple of self-defined
characters, first copy the original character set out of the character ROM into
RAM. Then you can redefine individual characters or completely redefine
the entire set. You need only tell the VIC where it can find the new character
set.

2.4.3 The color RAM

The color RAM is probably the only thing which you cannot redefine
on the VIC. This is not a hindrance for it is important to always know
where the color RAM will be. The color RAM serves as the color palette for
the text display; the VIC gets the color for each character from this RAM.
When you work in the hi-res mode, the color RAM is unused. You can use
this RAM for other purposes. In the multi-color mode, the color RAM
comes back into play--it yields color values for the entire screen area.

The color RAM begins at address $D800 and ends at address
$D800+999.

40

Abacus Software C-128 Internals

2.5 Programming Color and Graphics

We will clarify the theory behind video programming by using
examples.

Whenever you have the opportunity to define a color, whether it be in
the color RAM for a character on your text screen or the color for a sprite,
the following codes apply to the given colors:

Key Color Number
Ctrl-1 Black 0
Ctrl-2 White 1
Ctrl-3 Red 2
Ctrl-4 Cyan 3
Cul-5 Purple 4
Ctrl-6 Green 5
Ctrl-7 Blue 6
Ctrl-8 Yellow 7
=-1 Orange 8
C=-2 Brown 9
C=-3 Light red 10
C=4 Grey 1 11
C=-5 Grey 2 12
C=-6 Light green 13
C=-7 Light blue 14
=-8 Grey 3 15

For example, to make the border and background black, the following
instructions are necessary:

POKE 53280,0
POKE 53281,0

To fill the screen (which is now black) with white A's we must fill the
video-RAM, at address $0400 to address $0400+999, with the color code
1. In addition, we must put 1 (for white) in all locations of the color RAM at
address $D800 to $D800+999 :

10 PRINT CHR$(147); : REM CLEAR THE SCREEN

20 FOR I=0 TO 999 : REM 1000 CHARACTERS
30 POKE 55296+I,1 : REM WHITE

41

Abacus Software C-128 Internals

40 POKE I+1024,1 : REM AN A
50 NEXT I
60 GET A$: IF AS$="" THEN 60

Line 60 prevents the screen from being scrolled. The program is

stopped when a key is pressed. If this is too boring for you, try the
following:

30 POKE 55296+I,RND(0)*16 : REM COLOR
40 POKE 1024+I,RND(0)*255 : REM CHARACTER

You should try it out to see what happens. But since programming the
text screen is as simple as it is boring, we will now turn to graphics
programing:

2.5.1 The hi-res mode

Since we wish to program at the lowest programming level, machine
language, we don't have commands for drawing lines or circles--not even a
command to set a point. Those who want to program in the 64 mode should
get rid of the idea of using BASIC 7.0 commands. If you program in
machine language, you can naturally access the routines stored in the ROM.
But it usually better if you you write such routines yourself, since you can
adapt these routines to meet your individual needs. In addition, the
operating system routines make time-consuming checks that we can
dispense with entirely in machine language.

Here is a program which plots a sine curve on the screen in the hi-res
mode, without using a single command from BASIC 7.0; everything is
done "by hand". This program can also be translated directly into machine
language, in which only the sine calculation will present a problem.

5 REM 128 MODE ONLY: GRAPHIC 1,1
10 REM SINE-PLOT-PROGRAM FOR C-64 MODE AND 128 MODE

20 Vv=53248: REM START ADDRESS OF VIC
30 AD=8192: REM START ADDRESS OF HI-RES BIT
MAP

32 REM 128 MODE ONLY: GOTO 120

40 POKE V+17,59: REM TURN ON GRAPHICS

50 POKE V+24,24: REM DEFINITION OF CHAR-GENERATORS
60 FOR I=1024 TO 2023: REM SET THE HIRES COLOR RAM

42

Abacus Software C-128 Internals

70 POKE I,16: REM COLOR
80 NEXT I :
90 FOR I=8192 TO 16383: REM CLEAR THE HIRES BIT MAT
100 : POKE I,O
110 NEXT I
120 ¥=100: REM POSITION X AXIS
130 FOR X=0 TO 319: REM MARK THE X AXIS
140 : GOSUB 1000:REM POINT SET
150 NEXT X
160 X=160: REM POSITION Y AXIS
170 FOR Y=0 TO 199: REM MARK Y AXIS
180 : GOSUB 1000
190 NEXT Y
200 X=0
210 FOR I=-3.141592654 TO 3.141592654
STEP 0.0196349541
220 : Y= 100+99*SIN(I): REM FUNCTION
230 : GOSUB 1000

240 : X=X+1: REM NEXT FUNCTION
250 NEXT I
260 GET AS$:IF AS$S="" THEN 260

265 REM C-128 MODE ONLY : GRAPHIC O

1000 OY= 320* INT(Y/8) + (Y AND 7): REM Y-OFFSET
1010 OX= 8* INT(X/8) : REM X-OFFSET
1020 MA = 2*~(7-(X AND 7))

1020 AV = AD + OX + OY

1040 POKE AV, PEEK(AV) OR MA: REM SET POINT ON OR
1050 RETURN

When you start the program, you will not be very impressed by the
execution speed. This is because of the time-consuming calculations and the
REM commands. A very time-intensive calculation is the (2”a) calculation
which can be replaced by a table in both BASIC and machine language.
Naturally this all can be done in BASIC 7.0 more effectively, but you
would never know a point is set internally. The program contains the
BASIC 7.0 commands in REM statements so you can see the differences.

We'll take a closer look at the program to find out how we produced the
graphics on the screen.

In order to make the calculations in the program reference the VIC chip,

we have first defined the starting address of the chip. This-also makes it
easier to see which register is being accessed. First we change register 17

43

Abacus Software C-128 Internals

by writing the value 59 into it. Bit 5 is set to tell the VIC that we are in the
graphics mode. The start addresses of the video RAM and character
generator are placed in register 24. We write a 24 in this register.

24 = $18 = %0001 1000

Bits 4-7 of the register determine the address bits 10-13 of the video
RAM--we get the start address $0400, the normal value of the screen.
Furthermore, bits 1-3 determine address bits 11-13 of the character base:

%0010 0000 0000 0000 = $2000 = 8192

We have defined the address of the video RAM as well as the address
of the bit map with one POKE command. Based on our own experience,
most of the errors occur in the conversion of these two addresses. For this
reason you should do everything in detail, as in our example, by writing the
two addresses down and then putting together the bits that are required.

When you start the program, you return to BASIC again by pressing a
key. But you can see that the graphics mode is not turned off, and you can
see that the text is quite colorful. This is because the video RAM is filled
with the values that refer to these colors. You should save the contents of
registers 17 and 24 before you overwrite them so that you can reconstruct
them later. Insert the following lines to return to the text mode when you
press a key:

35 A1=PEEK(V+17): A2=PEEK (V+24)
270 POKE V+17, Al: POKE V+24, A2: END

This program makes use of the hi-res mode in which we have a
resolution of 320x200 points. This gives exactly 64,000 points available to
us. Since 8 points=8 bits that can be combined into one byte, we need a
memory area of exactly 8000 bytes in order to display the graphics. Three
hundred and twenty (320) points can be displayed in one line, or 40 bytes
(320/8); we recognize this from the text mode. Further, we have 25 lines of
8 points. Notice the parallel to the text mode.

One character in the text mode consists of 8x8=64 points which can be
independently set or cleared. The color for the set points comes from the
color RAM while the color for the unset points is taken from the
background color register 0. The graphic mode is similar. Here too 8x8
points are taken together as a unit. Two colors can be displayed in this little
box of 64 points. If a memory location were provided for the color of each

44

Abacus Software C-128 Internals

point, we would need 64K of color memory! By combining the points into -
8x8 groups, we only need 1000 bytes for the color definition. We will take
a closer look at such an 8x8 unit.

Such a unit is also called a character matrix. All of our letters and
special characters that we can see on the screen in the text mode are defined
in this matrix. In the hi-res mode we can define all of the matrices ourselves
and no longer have just a "pointer table" to pre-defined matrices (character
generator). This may sound complicated, but it really isn't.

You see that it must be possible to mix text and graphics or to "draw"
text in the graphic area without too much programming effort. Writing
directly to the graphic storage naturally doesn't work. But exactly how is
the graphic brought to the screen? What memory location in our graphic
storage defines which 8 points in our graphic? The following figure should
clarify these questions:

8192:« ¢ « . . 8200:
8193: o . . 8201:
8194:« .+ . . 8202:
8195:« .« . . 8203:
8196:+ . . 8204:
8197:« .« « . 8205:
8198:« . . 8206:
8199: 8207:
8124: 8257:
etc.

This figure shows the shift between columns and lines as far as the
addressing goes. Our graphic storage starts at address 8192 and defines the
first 8 points of our graphic with the first byte. If we want to address the
ninth point in our first line, we must use the address 8200 which is where
this point resides. The scheme of representation is similar to the text mode;

45

Abacus Software C-128 Internals

it is displayed character by character and line by line. But how do we
address a given point? We must first calculate the address in which it is
located. To establish such an algorithm we first simplify the conditions.
First we will just try addressing a point in the first line:

AD = 8192 + INT(X/8)*8
For the sake of simplicity, we will call the term INT(X/8)*8, OX (or
offset of the X-position). This is all we need to do for the X-coordinate, We

now have the address of the point, but we don't know what bit to access.
We don't want to disturb any of the others:

BIT = X - INT(X/8)*8

We need to find the remainder of X/8. This is done by masking out the
lowest three bits with a logical AND operation.

BIT=X AND 7
Try it once; it works and is much faster than the division, especially in

machine language. Now, however, we must consider that the left-most bit
is not labeled 0, but 7. We must reverse this relationship:

BIT=7-(XAND7)

Now the formula is correct. To set such a point in assembly language or
BASIC we have to set the appropriate memory location with a logical OR
operation. To do this, we have to calculate the power of two:

2M7-(X AND 7))

Now we can set any point in the first line:

POKE 8192+0X,PEEK (8192+0X) OR 2A(7-(X AND 7))

To address the first eight lines, we need only add the Y-coordinate. If
we want to access the ninth line, we have to skip 320 bytes. The following
addition takes the Y-position into account:

OY = INT(Y/8)*320 + (Y AND 7)

46

Abacus Software C-128 Internals

In order to address a point, add the offset of the X and Y positions to
the base address of the graphics memory. The following formula results for
the address calculation:

AD =0X + OY + 8192

Our terms for calculating the X and Y offsets are integrated into the
formula. We have now derived all of the calculations necessary to set a
point. The following sequence of commands in BASIC give us the correct
results: ‘

0Y=320*INT(Y/8) + (Y AND 7)
OX=8*INT (X/8)

BI=2" (X AND 7)

AD=8192 + OX + OY

POKE AV, PEEK(AV) OR BI

If we want to erase a point, the address calculation does not change, but
we must modify the POKE command. We must also mask out the
calculated bit:

POKE AV, PEEK(AV) AND NOT BI

Now we know how to set and clear points. But we still don't know
how the colors to be displayed for set and cleared bits can be set. In our
example the bit map is found at addresses 8192-16192. You recall than we
have moved the normal RAM to color RAM. This means that the
information to determine the color of the points on the hi-res screen will
come from this memory, memory which otherwise contains the contents of
the screen. This memory area is located at address 1024 thru 2023.

Since we can define two colors with one bit, we must also place these
two colors in video RAM. Recall the construction of the graphic screen. We
always had "matrices" of 8 bytes--eight sequential bytes in our bit map.
Such a matrix has the same size as a character on the screen. The colors for
our first matrix, at address 8129-8199, is defined in the first byte of the
video RAM--address 1024. These two colors apply to all 64 points in this
matrix. Correspondingly, the colors for the second matrix, from address
8200 to 8207, are stored in address 1025. The question remains, how are
these colors defined?

Let's take another look at our example program that filled the range
from 1024 to 2023 with the value 16. What does 16 look like in binary?

47

Abacus Software C-128 Internals

16 = $10 = %00010000

If we separate the upper and lower nibbles (unit of four bits) from each
other, we get two values between 0 and 15--sufficient to define the available
colors. In this example we get the values 1 and 0. If we look at the color
table, we see that we have defined the colors white and black. In the hi-res
mode you must define the colors so that sufficient contrast is retained. Often
two adjacent points must be set in order to be able to see the color at all.
This varies from monitor to monitor, however. The contrast between white
and black is the best possible (perhaps black on white would be even
better), while red and blue result in utter chaos. The color defined in the
upper nibble of the color RAM is displayed for a set bit. In our example this
means that the background is black (0) and the graphic is shown in white
(1). The following rule applies for setting the color RAM:

POKE <color RAM>,<foreground>*16 + <background>

Naturally, you can define more than two colors across the entire screen:
there are 256 possible combinations within a matrix and black and white is
only one of them. Programming in hi-res mode is best learned by trial and
error.

2.5.2 The multi-color mode

In addition to the hi-res mode, there is another option for displaying
graphics on the screen: the multi-color mode. We are familiar with the term
multi-color from sprites. In multi-color we have four colors per matrix,
though as with sprites, the resolution suffers. In multi-color mode it is
"only" 160x200--exactly half. A byte now defines four points instead of
eight. To turn on the multi-color mode we must set bit 5 of register 17 (just
as for the hi-res mode). In addition, the fourth bit in register 22 must be set.
This is done by the instruction:

POKE 53248+22,PEEK(53248+22) OR 16

The addresses for the bit map and color RAM are programmed in the
same manner as for the hi-res mode. The following contents should be
found in address 8192 (the first byte of the bit map):

PEEK(8192)= %00011011 = $1B = 27

48

Abacus Software C-128 Internals-

This byte defines the first four points of the first line. Since two bits are
taken together, we get the bit pairs 00, 01, 10, and 11--all four
combinations are possible.

Bits Color information comes from

00 Background color register 0 ,
01 Upper four bits of the vidleo RAM
10 Lower four bits of video RAM

11 Color RAM

Here only the bit combination 00 is the same for the entire screen. Bit
combinations 01 and 10 work the same way as described for the hi-res
mode. The color RAM begins at address $D800 and makes one color
available. Programming in multi-color mode is very attractive since it offers
a wider selection of colors. Naturally our address calculation must change
since only four points are defined by each byte. The formula for the X
offset changes:

OX=8*INT(X/4)
MA=27(6-2*%(X AND 3))
POKE AV, PEEK(AV) OR MA*<bit pattern>

You can see that the formula for the bit determination has also changed.
You must remember that a bit pair must be logically ORed with the existing
contents and the power of two may only go in steps of two. The <bit
pattern> is shifted left by the multiplication. Since the multi-color mode is
most often used in games, you should be familiar with the programming
tricks used in this mode.

2.5.3 The multi-color mode (text)

(register 22 bit 4=1)

Another relatively unused multi-color mode is the multi-color text
mode. In this mode characters on the screen can have more than one color.
For example, you can define a zero made up of a white circle with a blue
slash through it. If the multi-color mode is enabled, the VIC checks to see if
bit 3 of the color register is set. This means that the color of the character is
greater than 7 (8-15). If this is the case, the character is displayed in
multi-color mode. The character no longer has an 8x8 matrix, but just a 4x8
matrix with the following bit combinations:

49

Abacus Software C-128 Internals

Bits Color register Defined at address

00 Background register 0 $D021 (53281)

01 Background register 1 $D022 (53282)

10 Background register 2 $D023 (53283)

11 Color register Color RAM $D800-$D800+1000

If the bit combination is 11, the color is taken from the lower three bits
of the color register. If bit three is not set in the color register (color 0-7), a
normal single-color 8x8 matrix is displayed. This mode is only useful if
you define your own character set. This mode is used in some games
because it is easier to program than the hi-res mode. Switch to this mode

once: Since these characters are not intended for multi-color mode, you get a
colored spectacle:

POKE 53248+22,PEEK(53248+22) OR 16
The following command is used to turn this mode off again:

POKE 53248+22,PEEK(53248+22) AND 239
2.5.4 Extended-cblor mode

(register 17 bit 6=1)

Even all this wasn't enough for the designers of the VIC. They created
yet another mode: the extended-color mode. This mode is very similar to the
normal text mode. A character can consist of only two colors, but the
background color is not necessarily the same. One can choose between three
background colors (for the 0-bits), while the 1-bits get their color from the
color register. The background color is determined by the two
most-significant bits in the video RAM:

Bits Background color register #
00 0
01 1
10 2
11 3

Since two bits have been taken away from the video RAM, only six bits
remain to define the character to be displayed. This has the result that only
64 characters can be represented--these are the lowest 64 characters. There
are two sides to everything...

50

Abacus Software C-128 Internals

2.6 Smooth Scrolling

You may have seen this word in some computer literature and
wondered what it means.

Smooth scrolling is beautiful as it sounds: by means of this capability
you can move the screen horizontal or vertically by one pixel. Scrolling is
the shifting of the screen. This can be used in games to create moving
backgrounds so that one gets smooth scrolling. This movement can take
place in any one of four directions (up, down, left, or right). Moving in one
direction causes one row of pixels to be covered up while a new row
appears at the other end. The screen can be placed in eight different
positions with this scrolling, sufficient to allow a character to appear on the
screen slowly. To make use of smooth scrolling, the screen must be made
smaller. The VIC has two bits available to do this, in which one can select
the display mode of 38/40 characters per line and 24/25 lines. The border
then increases correspondingly.

If we want to move the screen vertically, we must give up a line, while
if we want to move it horizontally, we lose two characters per line. To
switch to the 38-column mode, bit 3 of register 22 must be cleared:

POKE 53248+22,PEEK(53248+22) AND 247

After you have entered this line, the screen shrinks in size. To switch
back to the "normal" mode, we must set bit 3 again:

POKE 53248+22,PEEK (53248+22) OR 8

The same thing applies to the 24-line mode. Here bit 3 of register 17
must be cleared if we want 24 lines:

POKE 53248+17,PEEK(53248+17) AND 247
POKE 53248+17,PEEK(53248+17) OR 8

In register 22, bits 0-2 indicate what offset the left edge of the screen
has. By varying these three bits one can achieve soft scrolling in the
horizontal direction. If you want to scroll vertically, the offset in register 17
must be changed accordingly.

But we don't want to keep you in suspense any longer. Here is a demo
program to clarify what effects can be achieved with smooth scrolling:

51

Abacus Software C-128 Internals

10 PRINT CHR$(147) : REM CLR SCREEN
20 POKE 52348+17,PEEK(53248+17) AND 247
30 FOR I=1 TO 24
40 : PRINT " HELLO !!": REM 12 SPACES
50 NEXT I: PRINT " HELLO !!";
: REM NO SCROLLING AND 12 SPACES
60 POKE 53248+17,PEEK(53248+17) AND 248 OR 7
: REM SET FIRST POSITION
70 FOR I=6 TO O STEP-1
80 POKE 53248+17,PEEK(53248+17) AND 248 OR I
90 FOR Il=1 TO 60: NEXT Il: REM DELAY LOOP
100 NEXT: REM END OF LOOP
110 GOTO 60: REM AGAIN

Naturally this smooth scrolling works in the graphic mode too. It is in
the graphic mode that the most refined effects can be created. For example,
you can have a space ship moving soundlessly through a never-ending
universe. After all eight rows of points have been scrolled, you must fill a
graphic column or row with new values.

You can see that the VIC-II chip offers a great deal. Not everything is

covered by the BASIC 7.0 commands. This chapter covers all of the
features of the VIC-II so that you won't miss out on anything.

52

Abacus Software C-128 Internals

Chapter 3: Input and Output Control

3.1 General Information about the CIA 6526

CIA stands for Central Intelligence Agency, though that really doesn't
concern us here. For us, CIA stands for Complex Interface Adapter, and
that should be more interesting. The Commodore 128 uses the CIA 6526. A
brief run-down of its main features:

* 16 individually programmable input/output lines

* 8 or 16-bit handshake for input and output

* 2 independent, cascadable 16-bit interval timers

* 24-hour (AM/PM) clock with programmable alarm time
* 8-bit shift register for the serial I/O ‘

3.1.1 Pin Configuration

1 GND
2-9 I/O PA (port A); 8-bit directional
10-17 T/OPB (port B); 8-bit directional
Bits 6&7 can be programmed to signal the time-out of
both timers
18 -PC (port control); output only;
signals the availability of data on port B or both ports
19 TOD (Time Of Day); input only, 50/60 Hz;
triggers the real-time clock
20 +3V; operating voltage
21 -IRQ (interrupt request); output only;
0 if a set bit in the ICR matches the occurrence of the
given event
22 R/W (read/write); input only;
O=input from data bus
1=output to data bus
23 -CS (chip select); input only;
O=data bus valid, 1=data bus high-impedance
(tri-state)
24 -FLAG:; input only; meaning same as -PC
25 02 (system clock 2); input only
all data bus actions occur only on 02=1

55

Abacus Software C-128 Internals

26-33
34
35-38

39
40

DB7-DBO (data bus); bidirectional;
interface to processor

-RES (reset); input only;

O=reset CIA

RS3-RSO0 (register select); input only;
serves to select a 16-bit register;
valid only if -CS=0

SP (serial port); bidirectional;
input/output of the shift register

CNT (count); bidirectional;
input/output of the shift register clock or trigger input
for the interval counter.

3.2 Register Description of the CIA

REGO

REG1

REG 2

REG3

PRA (port register A)
Access: read/write

Bits 0-7: This register corresponds to the condition of pins
PAO-PA7.

PRB (port register B)

Access: read/write

Bits 0-7: This register corresponds to the condition of
PBO-PB7.

DDRA (data direction register A)

Access: read/write

Bits 0-7: These bits determine the direction of data on the
corresponding data bits of port A.

O=input, 1=output

DDRB (data direction register B)

Access: read/write

Bits 0-7: These bits determine the direction of data on the
corresponding data bits of port B.

O=input, 1=output

56

Abacus Software C-128 Internals

REG 4

REGS

REG 6

REG 7

REG 8

REG 9

REG 10

TA LO (Timer A, low byte)

Access: read

Bits 0-7: This register returns the current condition of the
low-order byte of time A.

Access: write

Bits 0-7: This register is loaded with the low-order byte of
the value from which timer is supposed to count down to
zero.

TA HI (Timer A, high byte)

Access: Read

Bits 0-7: This register returns the current condition of the
high-order byte of time A.

Access: Write

Bits 0-7: This register is loaded with the high-order byte of
the value which timer is supposed to count down to zero.

TB LO (Timer B, low byte)
Same as register 4.

TB HI (Timer B, high byte)
Same as register 5.

TOD 10ths (Clock tenths of a second)
Access: Read

Bits 0-3: Tenths of a second in BCD format
Bits 4-7: Always 0

Access: Write and CRB bit 7=0

Bits 0-3: Tenths of a second in BCD format
Bits 4-7: Must be 0!

TOD SEC (Clock seconds)

Access: Read

Bits 0-3: Seconds (one's digit) in BCD format
Bits 4-6: Tens of seconds in BCD

Bit 7: always zero

TOD MIN (Clock minutes)

Access: Read

Bits 0-3: Minutes (one's digit) in BCD format
Bits 4-6: Tens of minutes in BCD

Bit 7: always zero

Write access as per REG 8.

57

Abacus Software C-128 Internals

REG 11

REG 12

REG 13

REG 14

TOD HR (Clock hours)

Access: Read

Bits 0-3: Hours (one's digit) in BCD format
Bits 4: Tens of hours

Bits 5-6: Always zero

Bit 7: 0=AM, 1=PM

Write access as per REG 8

SDR (Serial data register)

Access: Read/write

Bits 0-7: The data are shifted out to or shifted in from pin SP
from/to this register.

ICR (Interrupt control register)

Access: Read (INT DATA)

Bit 0: 1=Timer A timeout

Bit 1: 1=Timer B timeout

Bit 2: 1=Alarm time equals clock time

Bit 3: 1=SDR full/empty (depending on operating mode)

Bit 4: 1=Signal on FLAG pin

Bits 5-6: Always zero

Bit 7: At least one bit in INT MASK matches a bit in INT

DATA

Note: Reading this register erases all of the bits!

Access: Write (INT MASK)

Meaning of bits as above, except bit7:

Bit7: I=Every 1-bit sets the corresponding mask bit. The
other remain unchanged.
O=Every 1-bit clears the corresponding mask bit. The
other remain unchanged.

CRA (Control Register A)

Access: Read/write

Bit0: 1=Timer A start, O=stop

Bit 1: 1=Signal timer A timeout on pin B6

Bit2: 1=Every timeout on timer A inverts PB6
0=Every timeout on PB6 creates a high signal on PB6
for the length of the system clock

Bit3: 1=Timer A counts down to zero and stops
O=Timer A counts down to zero and repeats
continuously

58

Abacus Software C-128 Internals

Bit4: 1=Absolute loading of start value in timer A. This bit
functions as a strobe. It must be set for each
absolute load.

Bit5: This bit determines the source of the timer trigger.
1=timer counts rising CNT edges, O=timer counts
system clock pulses.

Bit6: 1=SP is output, 0=SP is input

Bit7: 1=Real-time clock trigger is 50Hz
0O=Real-time clock trigger is 60Hz

REG 15 CRB (Control register B)
Access: Read/write
Bits 0-4: These bits have the same meaning as in REG 14,
except they apply to timer B and PB7.
Bits 5-6: These determine the source of the trigger for timer
B. 00=timer counts system clocks, O1=timer counts rising
CNT edges, 10=timer counts timeouts of timer A, 11=timer
counts timeouts of timer A when CNT=1.

3.3 I/0O Ports

Ports A and B each consist of an 8-bit data register (PRA or PRB) and
an 8-bit data direction register (DDRA or DDRB). When a bit is set in the
DDR, the corresponding bit in the PR functions as an output. If a bit in the
DDR=0, the corresponding bit in the PR is defined as an input.

During a read access, the PR returns the current condition of the
corresponding pins (PAO-7, PBO-7); it does this for both input and output
pins. PB6 and PB7 can assume output functions for the two timers.

The data transfer between the CIA and the "outside" world connected to
PA/PB can be accomplished with handshaking. PC and FLAG are used for
this. PC goes low for one clock period when a read or write access occurs
on PRB. This signal can indicate the availability of data on PRB or indicate
receipt of data by PRB. FLAG is a trailing-edge triggered input which can
be connected to the PC of another CIA, for example. A trailing edge on
FLAG sets the FLAG interrupt bit.

The serial data port SDR is a synchronous 8-bit shift register. CRA bit

6 determines the input or output mode. In the input mode the data are
accepted into the shift register on a rising edge on CNT. After 8 CNT pulses

59

Abacus Software C-128 Internals

the contents of the shift register are placed in SDR and the SP bit in ICR is
set. In the output mode timer A functions as a baud rate generator. The data
are shifted out of SDR to SP at half the timeout frequency of timer A. The
theoretical limit to the baud rate is 1/4 of the system clock.

The transfer begins after data are written to the SDR, assuming timer A
is running and is in the continuous mode (CRA bit 0=1 and bit 3=0). The
clock derived from timer A appears on CNT. The data from SDR are loaded
into the shift register and are shifted out on every trailing edge on CNT.
After 8 CNT pulses, the SP signal is created. If the SDR is loaded with new
data before this event, these are automatically loaded into the shift register
and shifted out. No interrupt is generated in this case.

' The data in SDR are shifted out high-order bit first. Data going into the
register must following the same format.

3.4 The Timers

Both timers have a 16-bit timer (read-only) and a 16-bit temporary
storage (write-only). If a timer is read, its current contents are returned.
When writing, the data are first written to the temporary storage.

Both timers can be used independently of each other or in connection.
The various operating modes allow long time delays, variable pulse lengths,
and pulse chains. By using the CNT input, the timer can measure external
pulses or frequencies.

Each timer has a control register (CRA and CRB) assigned to it, which
allows the following functions:

4

Start/Stop (Bit 0)
This bit allows the timer to be started or stopped at any time.

PB ON/OFF (Bit 1)
This bit directs the timeout to PB (PB6 for timer A, PB7 for timer B).
This function has precedence over the data direction set in DDRB.

Toggle/Pulse (Bit 2)

This bit determines the method in which the timeout signals will appear
on PB. Either the condition of PB is inverted at every timeout, or a
positive pulse is created for the duration of the clock.

60

Abacus Software C-128 Internals

One-shot/Continuous (Bit 3)
In the one-shot mode the timer counts from the temporary storage value
down to zero, sets the IRC bit, reloads the timer with the temporary
storage value and stops. In the continuous mode, this procedure does
not stop.

Force-load (Bit 4)

This bit allows the timer to be loaded at any time, independent of
whether it is running or not.

Input mode (Bit 5 CRA, Bits 5-6 CRB)
These bits select the clock which determines the rate at which the timers
will count down. Timer A can be clocked either by the system clock or
by a clock supplied on CNT. Timer B can be further clocked by the
timeout pulses from timer A, either absolutely or dependent on CNT=1.

3.5 The Real-time Clock

There is a 24-hour real-time clock (TOD) in the CIA with a resolution of
1/10 second. In consists of four registers: Hours, minutes, seconds, and
1/10ths of second. In the hour's register, the highest bit (bit 7) indicates
whether it is AM or PM. All registers are given in BCD format so that the
clock can be used without a lot of processor effort, even in machine
language.

The clock is a 50/60 Hz signal at the pin TOD, which can be
programmed in CRA bit 7. In addition, there is an alarm register that can be
used to generate an interrupt at any desired time. The alarm register
occupies the same address as the TOD register, so the access is controlled

by CRB bit 7. |

Note that the alarm register is write only! Any read access returns the
TOD register regardless of the state of CRB bit 7.

In order to be able to properly set and read the alarm time, the following
order must be preserved:

If the hours register is written, the clock automatically stops--it starts to

run when the tenth of second register is loaded. The starting of the clock can
be controlled exactly in this manner.

61

Abacus Software C-128 Internals

Since a carry can occur in a register already read when reading the
clock, the registers are stored in temporary storage. This temporary storage
is freed again when the tenths of a second are read.

3.5.1 Real-time in BASIC

Most of you probably know about the "clock” available from BASIC,
TI$ and TI. Unfortunately the long-time accuracy of this clock leaves much
to be desired; it is off about 1/2 hour per day.

If you need a more exact time indication, you can use the real-time clock
built into the CIA. Thie CIA clock uses the line frequency, which has
excellent long-term accuracy.

Here are two BASIC programs, one for setting the clock time, and one
for reading it. Since it doesn't make a whole lot of sense to read the tenths,
the register is always set to zero.

10 C=56328: REM BASE ADDRESS OF THE CLOCK IN CIAl

20 REM C=56584 FOR THE CLOCK IN CIA2 .

30 POKE C+7,PEEK(C+7) AND 127: REM SET CLOCK TIME

40 POKE C+6,PEEK(C+6) AND 128: REM LINE FREQ=60HZ

50 INPUT "PLEASE ENTER THE TIME IN THE FORMAT
HHMMSS: ";AS

60 H=VAL (LEFTS$ (AS$,2))

70 M=VAL (MIDS (AS$,3,2))

80 S=VAL (MIDS (AS$,5))

90 IF H>23 THEN 40 : REM ERROR

100 IF H>11 THEN H=H+68 : REM SET PM FLAG IF
NECESSARY

110 POKE C+3,16*INT(H/10)+H-INT(H/10) *10

120 IF M>59 THEN 40 : REM ERROR

130 POKE C+2,16*INT(M/10)+M-INT (M/10) *10

140 IF S>59 THEN 40 : REM ERROR

150 POKE C+1,16*INT(S/59)+S-INT(S/59)*10

160 POKE C,0 : REM TENTHS -- START CLOCK

The values are converted to BCD format in lines 110,130, and 150.
You can use the following program to read the clock:

62

Abacus Software C-128 Internals

10 C=56328 : REM BASE ADDRESS OF THE CLOCK IN CIAl
20 PRINT CHRS$(147) : REM C=56584 FOR CLOCK IN CIA2
30 H=PEEK (C+3) :M=PEEK (C+2) : S=PEEK (C+1) : T=PEEK (C)
40 FL=1

50 IF H>32 THEN H=H AND 127: FL=0: REM FLAG FOR PM
60 H=INT(H/16) *10+H-INT(H/16)*16:0ON FL GOTO 80

70 IF H=12 THEN 90: ELSE H=H+12

80 IF H=12 THEN H=0

90 M=INT(M/16) *10+M-INT (M/16) *16

100 S=INT(S/16)*10+S-INT(S/16)*16

110 T$=MIDS$ (STRS (T),2)

120 H$=RIGHT$("0”+MID$(STR$(H),2),2)

130 M$=RIGHT$("0"+MID$(STR$(M),2),2)

140 S$=RIGHTS$ ("O"+MIDS$ (STRS$(S),2),2)

150 PRINT "<Home>";

160 PRINT HS;":";M$;":";S$;":";TS

170 GOTO 30 : REM LOOP

If you press the STOP/RESTORE key combination, the clock must be
reset because the operating system sets all of the registers back to the
starting values. Unfortunately, the bit responsible for the clock (50/60Hz) is
also affected by this.

3.6 The CIAs in the Commodore 128

If you want to make use of the CIAs in the Commodore 128, you must
remember that the CIAs have predetermined tasks to perform. Its first
priority is to handle the interrupts, which the operating system requires for a
number of routines. If possible, refrain from changing the ICR register.

CIA 1: Base address $DC00 (56320)

REGO
Bits 0-7: In normal operation the row selection of the
keyboard matrix is found here. Some bits are also connected
to controller port 1 on the outside of the computer. This is
used to connect joysticks or paddles.
Bits 0-4: Joystick 0, order: up, down, (left right, and fire
button).
Bits 6-7: Select paddle set A/B. Only one of the two bits may
be 1.

63

Abacus Software C-128 Internals

REG1

REG 13

_ (PRB)

Bits 0-7: In normal operation the column selection of the
keyboard matrix is found here, if a key was pressed.

Bits 0-4: The same function as REG 0, but for control port 2
(joystick 1).

(ICR)

Bit 4: Input data on cassette port.

Timer A and CRA are required for the disk operation, timer B & CRB for
the cassette operation.

CIA 2: Base address $DD00 (56576)

REGO

REG1

REG 13

(FRA) . : :
Bits 0-1: VA 14-15 (highest-order address bits of the video

RAM), .

Bit 2: TXD (only in connection with an RS-232 cartridge,
else free), ‘ '

Bit 3: ATN (serial bus output)

Bit 4: CLOCK (serial bus output)

Bit 5: DATA (serial bus output)

Bit 6: CLOCK (serial bus input)

‘Bit 7: DATA (serial bus input)

(PRB)

Bits 0-7: User port/RS-232. These bits have following
meaning when an RS-232 cartridge is inserted:

Bit 0: RXD (Receive Data)

Bit 1: RTS (Request To Send)

Bit 2: DTR (Data Terminal Ready)

Bit 3: RI (Ring Indicator)

Bit 4: DCD (Data Carrier Detect)

Bit 6: CTS (Clear To Send)

Bit 7: DSR (Data Set Ready)

(CR)
Bit 4: RXD (only for RS-232 operation, else free).

Timer A & CRA are required for the RS-232 baud rate, timer B & CRB for
the RS-232 bit checking.

Abacus Software C-128 Internals

3.7 The Joystick

In addition to the BASIC 7.0 commands for reading the joystick you
can use the following BASIC program for interpreting the data:

10 J1=56320 : REM JOYSTICK PORT 1

20 J2=56321 : REM JOYSTICK PORT 2

30 J=PEEK(Jl) : REM READ FROM PORT

40 IF (J AND 1)=0 THEN PRINT "UP ";

50 IF (J AND 2)=0 THEN PRINT "DOWN ";

60 IF (J AND 4)=0 THEN PRINT "LEFT ";

70 IF (J AND 8)=0 THEN PRINT "RIGHT ";
80 IF (J AND 16)=0 THEN PRINT "FIRE";

90 PRINT: GOTO 30

The program reads from joystick port 1; if you want to read from port
2, you need only replace J1with J2 in line 30.

If you want control in two directions at once, such as up and right, this
can also be read--in our example both directions are displayed on the screen.
This increases the number of directions from 4 to 8.

3.8 The Commodore 128 Serial Bus

Peripheral devices are connected to the computer via the serial bus.
. These can be such things as a printer or disk drives. You can think of a bus
as working like this: Data is transported from the computer over the bus to
specific stops (peripheral) and they return via the same path. The serial bus
built into the Commodore 64 and 128 is a trimmed-down version of the bus
included in the "larger" Commodore computers. The "big" bus has 24 lines
while the "smaller" bus has only 6. This reduction may have been made for
reasons of cost or space, but this bus has definitely contributed to the
success of the Commodore computers (Many even think that it is
Commodore's secret recipe).

65

Abacus Software C-128 Internals

Here is the pinout of the bus:

1

SRQ; Service request. If a device has completed a task and now
needs new data, or has some to send, or requires some kind of
action, it can signal the controller by means of this line (like in the
hospital where you can ring for a nurse). This initiates an identify
cycle (by means of EOI or ATN), in order to determine which device
is involved. This function is not used on the Commodore.

GND; ground connection

ATN; (In) ATtentioN. Whenever the controller wants to send a
command, it activates this line. It must still be determined for which
device the command is intended (all of the devices should "listen").
This is done when the device address is transmitted so that the other
devices can get off the bus.

CLK; (In/Out) CLocK. Since the data travel through the bus bit by bit
in serial and not in parallel, the TALKER sends a CLK pulse along
with each bit, which indicates the validity of the data line.

DATA (In/Out) is the sole data line, over which a data byte is shifted
with the lowest-order byte first.

RESET; sends a reset to the connected devices.

All of the additional lines found on the larger’ bus, like EOI, NDAC,

etc., are simulated or replaced by the two lines CLK and DATA. The time
between the signal jumps of the two lines gives information about the
signal.

66

Abacus Software C-128 Internals

3.8.1 Fast and siow modes

You may think it a waste to leave one line unused on the already puny
bus. But unfortunately, that's the way it is--at least in the "normal" mode.

If there is a "normal" mode, you know there must be some other
"abnormal” mode. This is true! As you know, the 1541 can hardly be
described as a fast disk drive (quite the opposite). This is because each byte
must be picked to pieces and then sent over the bus bit by bit. This
deplorable state of affairs must be corrected--what good is a super machine
like the Commodore 128 when it has such a handicap? Commodore
developed the 1571 disk drive which loads up to eight times (!) faster than
the 1541 (you can find out more in the book 1571 Internals by Abacus
Software). Other things have been added in the CP/M mode as well. The
speed advantage is possible only in the 128 mode, not in the 64 mode. The
1541 can be operated as usual in the 128 mode.

You may have already given some thought as to how this speed
increase was accomplished; with the help of the unused SRQ signal. In the
fast serial mode this line is used as second CLK line, as a fast, bidirectional
CLOCK line.

On power-up, the 1571 is always in the slow mode, which is why you
can connect it to a C-64. The user can then specify the "fast" mode, which
will remain in effect until it is turned off. The existing kernal routines in the
C-128 have been changed in order to recognize the fast and slow modes.
There is a special flag in the kernal to indicate if the current peripheral device
is fast or slow.

In order to declare the 1571 as a fast device, the user must send an HRF
signal (Host Request Fast). This is done by sending eight CLOCK pulses
over the SRQ line. The 6526 on the control board of the 1571 disk drive
recognizes this signal and generates an interrupt. A flag is then set in the
drive which indicates the fast mode. If the disk drive is the LISTENER and
receives data, it sends a DRF signal (Device Request Fast). By means of
this signal the computer recognizes that the disk drive can send and receive
data in the fast mode. A 1541 can't send this signal, of course. The
fast-mode flag in the computer can be reset by the following occurrences:

UNLISTEN, UNTALK, bus error, and <RUN/STOP><RESTORE>

67

Abacus Software C-128 Internals

3.8.2 The device addresses

It's possible to connect a variety of devices to the serial bus, such as
two disk drives and a printer. This makes it necessary to be able to
distinguish between the different devices so that the data know where they
have to "get off the bus." You can imagine a device address as a house
number. The values 0-30 are possible as device addresses.

Device address
0-3 Internal device (keyboard, screen, user port, cassette
port)
4-7 Normally CBM printer
8-11 Normally CBM disk drives
12-30 Not used

The device address contains additional information besides the actual
device number: the action which is to be performed. The possible actions
are the following:

32 The device is addressed as a LISTENER, which means that it is to

receive data.
This action is called for by the BASIC command PRINT# or
DSAVE, for instance.

64 The device is supposed to be the TALKER,; it is supposed to send
data.
This is used, for example, by the BASIC commands INPUT# or
DLOAD.

48 The operating mode LISTEN is ended (UNLISTEN). The lower
half-byte (device) is always 15.

80 The operating mode TALK is ended (UNTALK). The lower half-byte
is always 15.

For example, if you want to address a printer with the device address 4
for printing, the whole device address is 32+4=36 ($24).

68

Abacus Software C-128 Internals

3.8.3 The secondary address

The secondary address does not select a device on the serial bus--it is
used to select a mode in the device addressed. For example, a specific
printing mode can be selected on most printers by specifying a secondary
address. On the CBM printers, secondary address O selects the
upper/graphics mode, secondary address 7 selects the upper/lowercase
n(li%ie. With a disk drive one can choose a data channel with the secondary
address.

The secondary address is also composed of the actual secondary
address and the connection in which the secondary address occurs.

96 PRINT, INPUT, or GET
224 CLOSE
240 OPEN

This next table will also prove useful. It shows the bit patterns for the
individual device and secondary addresses.

Command Abbreviation Binary value

Host Request Fast HRF $1111 1111
Device Request Fast DRF $0000 0000
Talk address (TA) / $010x xXxxXX
Listen address LA) $001x XxXXX
UNTALK (UNTLK) $0101 1111
UNLISTEN (UNLSN) $0011 1111
SA OPEN (SA(O)) $1111 yyyy
SA CLOSE (SA(C)) $1110 yyyy
SA normal (SA) $011z zzzz

The normal secondary address (zzzz) may have a value between 0 and
31. The channel address (yyyy) may have a value between O and 15. As an
example, the secondary addresses and their meaning for the 1541 disk
drives:

00 - PRG type (read data channel)

01 - PRG type (write data channel)
02-14 - Channels for all file types

15 - Command channel

69

Abacus Software C-128 Internals

3.8.4 The system variable ST

When peripheral devices are connected, errors can naturally occur. The
system variable ST gives information about whether the last action on the
serial bus was successful or not. If it was not successful, the error can be
analyzed by means of the error code passed in the status variable ST. ST
can have the following values:

1 Can occur after OPEN or PRINT. After transmission of a byte, no
acknowledgement was received via NDAC within 64milliseconds
(ms), and it will probably not come.

2 Can occur during INPUT or GET. If a device is addresses as a
- TALKER and does not send a byte within 64ms, ST contains this
value.

64 The data byte last transmitted was sent in connection with an EOI
(End Of Information), which means the end of the file (EOF) for the
disk drive.

-128 An addressing attempt produced no reaction on the drive. In this case
a BASIC program will display the error message DEVICE NOT
PRESENT; in machine language you can react in whatever manner is
appropriate.

A combination of these values can also occur. Here it is advisable not to
read the absolute value in a BASIC program, but just the appropriate bit:

1000 IF (ST AND 64) THEN PRINT "<EOF>"

To read the status word ST in machine language, it is necessary to get it
from the zero page. Fortunately, it is at the same address in both the 64 and
128 modes: $90 (144 decimal). Reading the value in machine language
would look like this:

LDA $90 ;Get status variable

AND #$40 ;bit 6 set?
BNE EQOF ;EOF reached

70

CHAPTER 4 |

Abacus Software C-128 Internals

Chapter 4: The Sound Chip SID

4.1 The Sound Controller
4.1.1 General information about the SID

Music is an interesting computer applications area. You are fortunate
that such a powerful synthesizer (the SID chip) is contained inside the
C-128. It is the same component contained in the Commodore 64. Almost
every game uses some of the SID's soundmaking capabilities, but none
really push the chip to its limits. Often the best-known melodies can be
heard coming from the computer in all possible and impossible tone colors.
The computer can also talk, thanks to the SID, without additional hardware.
All it needs is the right program.

SID stands for Sound Interface Device. While many synthesizers have
only one voice (monophonic), the SID has three completely independent,
freely programmable voices (polyphonic). Competing computers have also
adopted this element and installed polyphonic synthesizers.

Here are the important features of the SID 6581:

* 3 independent, freely programmable voices

* 4 mixable wave types for each voice

* 3 mixable filters (highpass, lowpass, bandpass)

* Envelope generator (ADSR control) for each voice
* 2 cascadable ring modulators

* alternation option for external signal sources

* Two 8-bit A/D converters

73

Abacus Software

C-128 Internals

The Block Diagram of the SID

AUDIO OUT
REGS
4— 21
CAP1 —’I HIGH | Low [BAND 2 FILTER CUTOFF FREQ.
CAP2 FILTER — 23 RESONANCE CONTROL
r 7 24| FILTER MODE
Z S REGS | ENVELOPE
512119 | AD
AMPLITUDE
MODULATOR Zk_ 6/13/29 | SR REG
28
REGS
WAVEFORM & 2/9/16
RING MODULATOR 1 31017 PULSE WAVEFORM
411118 | WIDTH & WAVEFORM
e
< REGS
0/7/14
TORS | 2 |& FREQUENCY
| OSCILLATOR 815
3 —
A1 IN AD »| REG
CNV 25
AD REG
CNV Pl 26
A2IN

74

Abacus Software C-128 Internals

4.1.2 Pinout of the 28-pin device:

1-2 CAP1A, CAP1B; connection for capacitor for programmable
filter. Recommended capacitance: 2200pF.
3-4 CAP2A, CAP2B; like 1-2

5 -RES (reset); =0 brings the SID back to start-up state

6 02 (system clock); all data bus actions occur only while 02=1

7 R/W (read/write); O=write access, 1=read access

8 -CS (chip select); O=data bus valid, 1=data bus high-Z
(tri-state)

9-13 A0-A4 (address bits 0-4); serve to select one of the 29 registers

14 GND (ground); Note: The SID should have its own ground
connection for power in order to reduce interference with or
from other system components.

15-22 DO0-D7; data lines to and from the processor system

23 A2IN (analog input 2); operation described in Section 4.1.4

24 A1IN (analog input 1); as 23, except for A/D converter 1

25 VCC; supply voltage +5V

26 EXT IN (external input); input for external audio signals to be
alienated through the SID.

27 AUDIO OUT; summed output of all signals created in the SID

28 VDD; supply voltage +12V

As we already mentioned, the SID 6581 has three independently
programmable voices.

No doubt some of our readers have already programmed sounds or
sound sequences in BASIC 7.0. However, complex sound and music
cannot be produced using the BASIC 7.0 commands. Also, the easy-to-use
commands are not available in the 64 mode; this is no reason to give up
since you can get a lot out of the SID with POKE commands; in principle

the BASIC 7.0 interpreter does the same thing when it executes your
commands.

Those of you who have programmed some sounds in BASIC are
familiar with or aware of terms like "envelope" and "amplitude modulation.”

We will explain these terms for everyone because they are very important
when working with the SID.

Each voice consists of an oscillator, an envelope generator, an
amplitude modulator, and waveform generator. With a clock frequency of
1MHz, the oscillator creates a fundamental frequency in the range 0-8200Hz

75

Abacus Software C-128 Internals

with a resolution of 16 bits. Four different waveforms are possible:
sawtooth, square (with variable duty cycle), triangle, and the "white noise"
familiar to every hi-fi freak. The waveform is an important criterion for the
tone picture of the created sound, since every waveform has its own set of
harmonics. A triangle wave is very soft, like a wood flute. The sawtooth
waveform sounds more metallic, like a trumpet. A clarinet resembles a
square wave; it sounds very hollow. This leaves the white noise, which
doesn't really resemble any instrument, but can be used to simulate drums.
Special noise effects can be best created by superimposing another
waveform on the noise. Noise is achieved through the superimposition of
many random frequencies.

The amplitude modulator affects the volume while the tone is being
generated. This modulator is controlled by the envelope generator, which
you can program directly. We will see how the envelope generator is
programmed later.

In addition, the outputs of the all the devices can be sent to a
programmable filter where you can further influence the tone color. Another
possibility for SID fans: Voices 1 and 2 can be ring-modulated by voice 3.
That means that it consists of the fundamental voice together with the sum
and difference with voice 3. With voice 3 you can read out the current value
of the envelope generator during the course of a sound and then change the
filter based on this data, for instance.

4.1.3 Register description of the SID

The base address of the SID 6581 is $D400 (54272).

REGO Lower byte of oscillator frequency for voice 1.
REG1 Upper byte of oscillator frequency for voice 1.
REG 2 Pulse width LSB for voice 1.
REG3 Pulse width MSB for voice 1.

Registers 2 and 3 determine the on/off duty cycle of the
square output on voice 1. Only bits 0-3 of register 3 are
used.

76

Abacus Software C-128 Internals

REG 4

REGS5

Control register for voice 1 ,

Bit 0: KEY; Control bit for the course of the envelope
generator. When changed from 0 to 1, the volume of voice 1
increases from zero to the maximum value (REG 24) within
the "attack” time specified in REG 5 and then within the
"decay" time specified in REG 5 falls to the "sustain" level
programmed in REG 6, at which it remains until the control
bit is changed to zero again. Then the volume falls to zero
within the "release” time specified in REG 6.

Bit 1: SYNC; 1=oscillator 1 is synchronized with oscillator
3. This bit also has effect when voice three is supposed to be
silent.

Bit 2: RING; 1=the triangle waveform output of oscillator 1
is replaced by a frequency mix (sum and difference of the
frequencies of voices 1 and 3). This effect also occurs when
voice three is silent.

Bit 3: TEST; When another waveform is selected along with
the noise generator in the same oscillator, it can occur that the
noise generator is disabled. It can be re-enabled with this bit.

Bit 4: TRI; 1=triangle wave form selected.

Bit 5: SAW; 1=sawtooth waveform selected.

Bit 6; PUL; l=square waveform selected. The on/off
rela(t}io:;nship of this waveform is controlled in REG 2 and
REG 3.

Bit 7: NSE; 1=noise generator selected.

Note for bits 4-7: It is possible in practice to select multiple
waveforms at the same time. In addition to what was said for
bit 3, it should be noted that result is not exaclty the sum of
all of the forms but more of a logical AND of the
components.

"ATTAC/DECAY

Bits 0-3: These bits determine the time it takes until the
volume falls from the maximum value to the sustain level.
The selectable range is from 6ms to 24 seconds.

Bits 4-7: Here the time is takes for the volume to reach the
maximum value after the KEY bit is set is defined. The
selectable range is from 2ms to 8 seconds.

71

Abacus Software C-128 Internals

REG 6

REG 7-13

REG 14-20

REG 21

REG 22

REG 23

SUSTAIN/RELEASE

Bits 0-3: These bits determine the time within which the
volume will fall from the sustain level after the KEY bit is
cleared (end of the tone). The selectable range is 6ms to 24
seconds.

Bits 4-7: These bits specify the sustain level, the volume
which will be maintained after the maximum value is reached
and before it falls back.

These registers control voice 2 in the same manner as do
register 0-6, with the following exceptions:

SYNC synchronizes oscillator 2 with oscillator 3.

RING replaces the triangle output of oscillator three with the
frequency mix of oscillators 2 and 3.

These registers control voice 3 in the same manner as do
registers 0-6 for voice 1, with the following exceptions:
SYNC synchronizes oscillator 3 with oscillator 2.

RING replaces the triangle wave from oscillator 3 with the
frequency mix from oscillators 2 and 3.

Filter frequency, low-order byte
Only bits 0-2 are used.

Filter frequency, high-order byte

The 11-bit number in registers 21 and 22 determines the
frequency.

In the Commdore 128 this frequency is determined as
follows: :
F=(30+W*5.8) Hz, whereby W is the 11-bit number.

Filter resonance and switch

Bit 0: 1=voice 1 is directed to the filter

Bit 1: 1=voice 2 is directed to the filter

Bit 2: 1=voice 3 is directed to the filter

Bit 3: 1=the external source is directed to the filter

Bits 4-7: These bits determine the resonance frequency of the
filter. These are used to enhance specific sections of the
frequency spectrum. The effect is especially noticeable on the
sawtooth waveform.

78

Abacus Software C-128 Internals

REG 24

This register has the following purposes:

Bits 0-3: Total volume

Bit 4: Switches the lowpass filter on

Bit 5: Switches the bandpass filter on

Bit 6: Switches the highpass filter on

The high and lowpass filters have a slope of 12 dB/octave.
The bandpass filter has a slope of 6 dB/octave.

More than one filter can be enable at a time. If, for example,
the high and lowpass filters are enabled, a notch filter results.
In order to hear the effects of the filter, at least one filter must
be enabled and at least one voice must be directed to the
filter. .

In general, the filter is used to filter out specific ranges of the
frequency spectrum.

Filtering allows much finer and more ingenious manipulation
of the tone picture than simply selecting the waveform
permits.

Different instruments can be simulated perfectly by changing
the filter frequency during the tone.

Bit 7: 1=voice 3 silent. This should be used whenever voice
3 is used to control the other voices.

All of the register described so far can only be written to. A read access
returns no useful information. Only read accesses may be made to the

following registers:

REG 25 A/D Converter 1

REG 26 A/D Converter 2

REG 27 Noise generator for voice 3

REG 28

This register returns a random number which corresponds to
the current state of the noise generator 3. The generator must

12)2 en?l))led, but voice 3 can be made inaudible (bit 7 in REG

Envelope generator for voice 3

This register returns the current condition of the relative
volume of voice 3. This can be used to vary the frequency or
filter parameters during the tone creation, for example. An
example of this can be found in section 4.2.2.

79

Abacus Software C-128 Internals

Now that we have seen the table of registers, we want to clarify their
use by means of short examples. We will place the emphasis on the

tone-producing registers in section 4.1.5. Now we will examine the A/D
converters.

4.1.4 The analog/digital converter

The words analog and digital are widely known. For example, clocks
and watches with hands are called analog, while ones which display the
time using numerals are called digital. These terms are derived from the way
in which the time is displayed.

An A/D converter is a device for converting an analog signal, such as a
voltage, to a digital value. The problem is that one must convert an analog
value with theoretically an infinite number of levels to a finite digital value
with predetermined levels. In this conversion there is a maximum error of
+/- the smallest digital step.

As you can gather from the registers, the SID 6581 contains two A/D
converters. These are designed with an internal reference voltage of about
2.5 volts.

The measuring procedure consists of charging an external capacitance
and then placing a value in register 25 or 26 corresponding to the time
required for a new charge of the capacitor to reach the reference voltage.
This process is carried out repeatedly.

4.1.4.1 The operation of the A/D converter

A requirement of this type of A/D converter is that only resistance
values can be measured, such as the position of a potentiometer, a
light-sensitive resistance, or a temperature sensor.

If voltages are to be measured, they must first be conver.ted to the
appropriate form, possibly with the help of a unijunction transistor. The
measurement is made simply by connecting +5V to one end of the resistance
and the other end to ‘the analog input of the SID (available on the control
port, the designations are POTX and POTY). The values read from register
25 and 26 are measures of the resistances.

80

Abacus Software C-128 Internals

In order to use the entire scale of 8 bits, the resistance must range from
200 ohms (no smaller) to 200 Kohms. The programming aspects of the A/D
converter are handled in the next section.

4.1.4.2 Using paddles

Paddles are nothing more than potentiometers in handheld form and are
therefore well suited for the A/D converters. The generic Atari type paddles
can be connected to the Commodore 128. These are connected to control
port 1 or 2 where you connect a joystick.

Since some bits in CIA 1 and 2 are responsible for reading the keyboard
as well as the paddles, writing a program to read the paddles is not all that
simple. The best thing to do is to turn the keyboard off to inhibit
nonsensical values, but only during the exact time of access of the paddles,
since otherwise the keyboard will not be read.

We want to show you a short machine language program that makes it
possible to read the paddles with ease. The best thing to do is to include it in
your BASIC programs in the form of a BASIC loader. The program
occupies the area from $OCO00to $0C41. This area was chosen because it is
free in C-128 mode. You can of course move it if you want to use it in
C-64 mode, remembering to change the address $0C03 and $0C16
accordingly.

0C00 SEI + INHIBIT KEYBOARD

0C01 1LDA #$80 ;PARAMETERS FOR PADDLE SET A
0C03 JSR $0C2E ;GET A/D VALUES Al AND A2
0C06 STX $0201 +AND STORE

0C0S9 STY $0202

0COC L1LDA $DCOO /GET KEYS A FROM CIAl

OCOF AND #$0C +FILTER OUT REQUIRED BITS
0Cl11l STA $0200 /AND STORE
0C14 1LDA #$40 ;PARAMETERS FOR PADDLE SET B

0Cl6 JSR $0C2E ;GET A/D VALUES Bl AND B2
0C1l9 STX $0203 ;AND STORE

0C1lC STY $0204

OC1lF LDA $DCO1 ;GET KEYS B FROM CIA2
0C22 AND #3$0C ;FILTER OUT REQUIRED BITS
0C24 STA $0205 ;AND STORE

81

Abacus Software

C-128 Internals

0c27
0C29
ocac
0C2D
0C2E
0C31
0C33
0C36
0C38
0C39
0C3B
OC3E
0C41

LDA
STA
CLI
RTS
STA
ORA
STA
LDX
DEX
BNE
LDX
LDY
RTS

#SFF
$DC92

$DCOO
#SCO
$DCO2
#500

SCFF6
$D419
$D41A

;ALL BITS OUTPUT IN CIA 1
; TO REENABLE KEYBOARD READ

;RETURN TO BASIC PROGRAM
;SELECT PADDLE SET

;AND SET CORRESPONDING BITS
; TO OUTPUT

;DELAY LOOP

;TO QUIET THE

;A/D INPUT

;GET A/D 1

;GET A/D 2

;BACK TO MAIN PROGRAM

Here is the BASIC loader with an example program. Connect the
paddles, start the program, and see what it does.

1 P

10 DATA
20 DATA
30 DATA
40 DATA
50 DATA

OKE

212,96
60 FOR M = 3072 TO 3072 + 65
70 READ A: POKE M,A: NEXT : REM LOAD MACHINE

LANGUAGE

80 AX = 515

90 AY = 516

100 BA = 517

110 BX = 513

120 BY = 514

130 BB = 512

135 PRINT"<CLR>"
140 SYS 3072

150

160

54528,

32: REM SET CONFIGURATION 128 ONLY
120,169,128,32,46,12,142,1,2,140,2,2,173
0,220,41,12,141,0,2,169,64,32,46,12,142
3,2,140,4,2,173,1,220,41,12,141,5,2,169
255,141,2,220,88,96,141,0,220,9,192,141,2
220,162,0,202,208,253,174,25,212,172,26,

: REM PADDLE 1 CONTROL PORT 1
: REM PADDLE 2 CONTROL PORT 1
: REM BUTTON PADDLE 1
: REM PADDLE 2 CONTROL PORT 2
REM PADDLE 2 CONTROL PORT 2
: REM BUTTON PADDLE 2

: REM START M/L

PRINT"<HOME>" PEEK (AX)" "PEEK(AY)" "PEEK(BA)
PRINT" <CRS DOWN TWO>" PEEK(BX)" "PEEK(BY)"

"PEEK (BB)
170 GOTO 140

82

Abacus Software C-128 Internals

4.1.5 Programlﬁing the SID

We have already talked about terms like envelope and ADSR control;
we will now look at how we can program the SID directly in machine
language.

The tone color is determined by the selection of the waveform, filters
can further be used to change the tone picture. The envelope determines the
course of the tone, the volume, the length of the rise, etc. The following
figure should clarify the individual stages that a sound goes through:

15

VOLUME LEVEL

0 fATI'ACK DECAY SUSTANN RELEASE
GATE BITON GATE BIT OFF

We can recognize from the figure that sound is divided into four basic
stages: attack, decay to sustain level, sustain, and release to zero. The
duration of individual stages can be set for each voice independently. The
attack of the tone starts when the KEY bit is set (bit 0, register 4 for voice

1). All values, including frequency, attack, decay, sustain, and release,
must be defined before the KEY bit is set! :

The tone rises from zero to the maximum volume (REG 14) within the
time frame defined in attack (REG 3, bits 4-7). After the maximum value is
attained, the volume drops to the sustain volume (REG 6, bits 4-7) within
the decay (REG 5, bits 0-3) time. This volume is maintained until the KEY

83

Abacus Software

C-128 Internals

bit is cleared. Once this happens, the volume falls back to zero within the
release time (REG 6, bits 0-3). The register numbers given in parentheses

refer to voice 1. For voice 2 you must add 7, and add 14 for voice 3.

The duration of the attack can be defined in a time frame from 2ms to 8
seconds. The values for decay and release lie in the range 6ms to 24

seconds. These time frames are divided into 16 steps, which you see in this

table:

@OO\IO\UIAD)NHOé
&

Attack Decay/Release

2ms 6 ms
8 ms 24 ms
16 ms 48 ms
24 ms 72 ms
38 ms 114 ms
56 ms 168 ms
68 ms 204 ms
80 ms 240 ms
100 ms 300 ms
250 ms 750 ms
500 ms 15s
800 ms 24s
1s 3s
3s 9s
S5s 15s
8s 24 s

The following program is designed to familiarize you with the
waveforms and sound range of the SID 6581:

10
20
30
40
50
60
70
80

90

S1
S2
S3
FL
FH
RS
PL
POKE

54272
54279
54286
54293

54295
= 54296
S1+4, 0

: REM
: REM
: REM
: REM
54295 :
: REM

REM

REM

VOICE 1

VOICE 2

VOICE 3

FILTER LO-BYTE

FILTER HIGH BYTE
RESONANCE AND COUNTER
VOLUME

POKE S2+4,0: POKE S3+4,0: REM

CONTROL REGISTERS AT O
POKE S1+2,0: POKE S2+2,0: POKE S3+2, 0: REM

PULSE AT O

84

Abacus Software C-128 Internals

100 POKE S1+5,0: POKE S1+6,240: REM ATTACK/DECAY

VOICE 1
120 POKE RS,0: POKE PL,15: REM RESONANCE/ VOLUME
=15

130 PRINT "TRIANGLE..."

140 T = 16: GOSUB 400

150 PRINT "SAWTOOTH..."

160 T = 32 : GOSUB 300

170 PRINT "SQUARE..."

180 T = 64: GOSUB 300

190 PRINT "NOISE..."

200 T = 128: GOSUB 300

210 PRINT END"

220 END ‘

300 POKE S1,0: POKE S1+1,0: REM FREQUENCY

310 POKE S1+4, T+1: REM TONE, WAVE DEFINATION
320 FOR I = 0 TO 255 : RFOR J = 0 TO 255 STEP 50
330 POKE S1,J:POKE S1+1,I

340 NEXT J,1 '

350 POKE S1+4,T; REM TONE

360 RETURN

Lines 10 to 80 should be included in every program using sound. After
you have typed the program and started it, you will hear the frequency
spectrum and the various waveforms of the SID. We want to give you an
example of what happens when you change the envelope. For the sake of
simplicity, take lines 10 to 80 from our example and add the following lines:

100 A=9: D=9: S=8: R=9: H=400

110 POKE S1+15,16*A+D: POKE S1+16,16*S+R

120 POKE RS,0: POKE PL,15

130 POKE S1,37: POKE S1+1,17: REM FREQUENCY
140 POKE S1+4,33 : REM SOUND ON AND SAWTOOTH
150 FOR I=0 TO H: NEXT

160 POKE S1+4,32: REM RELEASE TONE

You have no doubt noticed the significance of the individual variables:
=attack, D=decay, S=sustain, and R=release. The variable H is the
duration of the sustain. Change the variables to get a feeling for the various
sounds that different values can produce. Note that no variable, with the
exception of H, may contain a value greater than 15. If you want to use the
envelope, do not load register 4 with zero after the delay loop which defines
the duration of the tone; this causes the tone to die. Do it like we did in the

85

Abacus Software C-128 Internals

example: When turning the tone on, load register 4 with the waveform+1.
To turn the tone off, just load register 4 with the value for the waveform

again.

The best way to learn how anything works is to try it out. We would
like to present a few more examples for you to experiment with. Feel free to
change the tone parameters to see what sort of effects you can get. The next
example program uses all three voices of the SID. Again, add lines 10-80 to

this example.
100 A=0: D=1: S=13: R=10: H=100
110 POKE S1+15,16*A+D: POKE S1+6, 16*S+R
120 POKE S2+15,16*A+D: POKE S2+6, 16*S+R
130 POKE S3+15,16*A+D: POKE S3+6,16*S+R
140 POKE RS,0: POKE PL,15
150 POKE S1,37: POKE S1+1,17
160 POKE S2,154: POKE S2+1,21
170 POKE S3,177: POKE S3+1,25
180 POKE S1+4,33: POKE S2+4,33: POKE S3+4,33
190 FOR I=0 TO H: NEXT
200 POKE S1+4,32: POKE S2+4,32: POKE S3+4,32

With the notes in DATA lines, you can use such a routine to play some
music. At the end of this section is a program to play a song.

The next example will demonstrate how the frequency of a tone can be
changed in relationship to the envelope. Here we use voice 3 since it is the
only one from which we can read the envelope.

100
110
120
130
140
150
160

A=9: D=9: S=9: H=30 _

POKE RS,0: POKE P,15

POKE S3+5,16*A+D: POKE S3+6,16*S+R

POKE S3+4,33

FOR I=0 TO H: POKE S3+1,PEEK(54300): NEXT
POKE S3+4,32

FOR I=0 TO R*4: POKE S3+1,PEEK(54300) : NEXT

We want to give you an example of a special effect created with "white
noise". We'll let the Federation Starship Enterprise roar through our living

room:

86

Abacus Software C-128 Internals

100 A=15: D=0: S=8: R=13: H=800

110 POKE RS,0: POKE PL,15

120 POKE S1,0: POKE S1+1,30

130 POKE S2,0: POKE S2+1,1

140 POKE S3,0: POKE S3+1,100

150 POKE S1+5,16*A+D: POKE S1+6,16*S+R
160 POKE S1+4,129: POKE S3+4,23

170 FOR I=0 TO H: NEXT

180 POKE S1+4,128: POKE S3+4,16

To convert a note for the SID, you must insert th frequency of the note
into the following formula:

F=Freq/0.06097

Since this value consists of a high and low value, we must process the
calculated value further:

F1=F AND 15: Fh=INT(F/256)
4.2 The Filters

The SID offers three filters which you can use individually or in
combination. The harmonic content of a sound wave (which is what a tone
is) is controlled by means of filters. The highpass filter dampens
frequencies below a defined cutoff frequency. The tones then sound
somewhat metallic. The opposite of a highpass filter is the lowpass filter.
Frequencies above a defined cutoff point are damped by this filter. There is
also a bandpass filter which allows only a narrow band of frequencies
through. If the highpass and lowpass filters are combined, only the cutoff

frequency is damped, all other frequencies are undisturbed. This is called a
notch filter.

In addition to filter type and filter frequency, you can also set the filter
resonance. In order to understand the significance of this parameter, you
should imagine the filter as a fourth oscillator in the sound chip. Filters, like
oscillators, can be set to a specific frequency.

87

Abacus Software C-128 Internals

The resonance value that determines the filter itself works like an
oscillator. If the resonance is set to zero, the filter simply cuts frequencies
off (as already discussed). If the resonance value is increased step by step,
the filter begins to oscillate more and more at the filter frequency.

The maximum value of the filter resonance is 15--the sound of the
oscillator directed through the filter is then radically changed and influenced
by the filter frequency. It is easy to see that a whole spectrum of new
sounds can be obtained using the filters.

ol The following register table shows which SID registers influence the
ters: :

Register ---- Contents ----
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0
21 - freq2 freql freqO

22 freql0 freq9 freq8 freq7 freq6 freqS5 freq4 freq3
23 res3 res2 resl resO filtext filt3 filt2 filtl
24 30FF highp bandp lowp vol3 vol2 voll volO

4.3 Synchronization and Ring Modulation

The filters allow use to change the signals produced by the individual
oscillators. There is another way to change the oscillator signal in the SID:
the synchronization and ring modulation.

While the only the signal of a single oscillator can be affected by the
filter, synchonization and ring modulation give us the ability to change the
signal of one or two oscillators in relation to their signals. An oscillator is a
tone source, but its signal is determined by the signal of another oscillator.

For ring modulation, the digital number values of the oscillations of a
given oscillator and the oscillator to be affected are multiplied together
within the SID and output through the affected oscillator. When the
frequencies of the two oscillators is close, a very complex waveform results

containing many non-harmonic overtones, so that it often sounds metallic or
bell-like.

88

Abacus Software C-128 Internals

Here is the program we promised that will play a song:

0 REM *** SONG * % %

4 FOR I= 54272 TO 54296: POKE I,O0:NEXT
10 FIRST=54272

11 VL =FIRST+24
12 AN =FIRST+5
13 OUT =FIRST+6
14 H1 =FIRST

15 H2 =FIRST+1

16 VC1 =FIRST+4

20 POKE VL, 15

21 POKEAN, 23

22 POKE OUT, 123

30 READ NTE,DUR

40 IF NTE=0 THEN END

50 F2=NTE /256:F1=NTE AND 255

60 POKE H2,F2:POKE H1,Fl

70 POKE VC1,33:FOR I = 0 TO DUR*100:NEXT

80 POKE VC1,32:FOR I = 0 TO DUR*100:NEXT

90 GOTO 30

100 REM *** NOTES ***

130 DATA 6430,1,6430,1,6430,3,7217,2,5407,2

140 DATA 6430,1,6430,2,8583,3,9634,2,9634,1,
10814,2

150 DATA 10814,3,9634,2,9634,2,8583,1,8583,5,
10814,1

160 DATA 11457,3,10820,2,10814,2,9636,4,10814,1,
9634,1

170 DATA 9634,1,8583,11,10814,1,9634,2,8534,5,
10814,1

180 DATA 12860,2,14435,5,12860,1,12860,2,10814,3
9634, 2

190 DATA 9634,1,9634,2,10814,9,10814,2,11457,3
10820, 2 _

200 DATA 10814,2,9634,4,10814,1,9634,1,9634,1,
8585, 15

210 DATA 0,0

This concludes out chapter on the SID. We hope that you have found
enough information and suggestions to start working with this chip. This
applies particularly to those of you who can and want to program in
machine language. Have fun!

89

CHAPTER 5

Abacus Software C-128 Internals

Chapter 5: The 8563 VDC Chip

5.1 General Information

As mentioned in Chapter 2, you can connect two monitors to your
Commodore 128. The 40-column monitor is contrilled by the VIC chip. The
80 column RGB monitor, is driven by the 8563 VDC. The 80-column
screen is well suited for professional applications that are impossible or
more difficult with a 40-column screen. RGB stands for Red Green Blue,
which means that the colors red, green, and blue can be displayed on the
screen in various combinations. The color white, for example, is achieved
with an equal mix of all three colors; the color yellow can be made with a
combination of red and green. But don't worry--you don't have to figure
out which colors you have to mix to obtain the one you want. We will come
back to the color codes for the 15 possible colors.

An important bonus of the VDC chip is that it doesn't use up any of the
main memory for storing its screen contents. It has 16K of its own memory
which it uses for vidleo RAM and attribute RAM. Even the character
generator is copied into this 16K.

On the international models of the C-128, pressing the <ASCII/DIN>
key copies a foreign language character set into memory. You will notice
that it takes a little while before the cursor is ready again.This is because all
4096 bytes of the charater generator are copied from ROM into the video
controller RAM. Stop and think for a minute: Why 4096 bytes? There are
two character sets. 2048 bytes are all that are required to define 256
characters! You are right of course, but both character sets selected with the
Commodore key on the 40-column screen are stored in the VDC memory.
These two character sets can be displayed simultaneously on the 80-column
screen. A bit in the attribute RAM determintes which character set is to be
used. Since the character set is in the VDC RAM, it is easy to change the
appearance of individual characters by simply changing the contents of the
RAM.

But all of these advantages that this separate video RAM offers us has
another side to it. Addressing this RAM is quite complicated--it has to be
done indirectly via two registers on the VDC chip. We will talk about this
more later.

93

Abacus Software

Those who think it would be boring to take a closer look at this chip are
deceiving themselves. This chip offers an enormous number of possibilities;
to describe them all would far exceed the scope of this book. Hackers are
advised to take a closer look at this chip, since it seems that you always find
something new that can be done with it. We will limit ourselves to the most
important, most interesting possibilities. The expectations that one has for
an 80-column controller are far exceeded: this video controller can display

hi-resolution graphics with a resolution of 640x200 points!

5.2 The Pinout:

\OOO\H'JI-ISU)N»—
(=,

CCLK; Character Clock

-DCLK; Dot Clock

HSYNC; Horizontal Synchronization
CS; System time

Not connected

-CS; Chip Select

-RS; Resister Select (Address Line A0O)
-R/W; Read-Write Selection

D7-D6; Data Lines D7-D6

GND;

D5-D0: Data Line D5-DO0

DISPEN; Display Enable (not wired)
VSYNC; Vertical Synchronization-
DR/-W; Display-RAM READ/WRITE
-RES; Reset Line (output) - meaning unknown
-RES; Reset Line (input)

TST; meaning unkown

LPEN; Light Pen

DAO-DA&; address Display-RAM
DDO0-DD&; Data Lines Display-RAM
VCC; operating voltage +5V

I; Intensity

B; Blue

G; Green

R; Red

-RAS; Low-Address Select

-CAS; Column Address Select

94

C-128 Internals

Abacus Software C-128 Internals

5.3 The VDC Registers

The 8563 VDC chip has a total of 37 registers available, which have the

following meanings: (The values in parentheses indicate the default values
that are loaded into the registers after a warm start.)

REGO

REG 1

REG 2

REG 3

REG 4

REGS

REG 6

HORIZONTAL TOTAL; (126) This register specifies the
total number of characters per line, including the beam
return. This register should be loaded with an 8-bit value
corresponding to the technical data of the monitor.

HORIZONTAL DISPLAYED; (80) In this register the
number of actual characters per line is programmed. All 8-bit
values smaller than REG 0 are possible. The standard value
is 80.

HORIZONTAL SYNC POSITION; (102) In this the left
border is sychronized. All 8-bit values smaller than REG 0
are possible. If the register value is reduced, the left border
moves right; if the contents are increased, the left border
moves left.

SYNC WIDTH; (73) Bits 0-3 determine the horizontal sync
pulse width in characters. The value zero cannot be
programmed. Bits 4-7 determine the vertical sync pulse
width multiples of a raster period. If zero is programmed, it
means 16.

VERTICAL TOTAL,; (39) This register contains the number
of total lines including the vertical beam return. This register
should be programmed according to the technical data of the
monitor used. ‘

VERTICAL TOTAL ADJUST; (224) Bits 0-4 serve as a fine
adjustment for REG 4. Bits 5-7 are always set. The default
value 224 means that bits 0-4 are cleared.

VERTICAL DISPLAYED; (25) Contains the number of

representable characters. Any value smaller than REG 4 is
possible.

95

Abacus Software C-128 Internals

REG 7

REG 8

REG9

REG 10
REG 11
REG 12

REG 13

REG 14

REG 15

VERTICAL SYNC POSITION; (32) This register defines
the upper border of the screen. If the contents of this register
are increased, the screen moves up. Correspondingly, the
screen moves down when the value is decreased.

INTERLACE MODE,; (252) Bits 0-1 determine the interlace
mode. Normally these bits are cleared. 00 and 10=
non-interlace mode, Ol=interlace-sync mode (the screen
appears to flicker), 11=interlace-sync and video mode. Try
this once!

CHARACTER TOTAL VERTICAL; (231) Bits 0-4
determine the number of raster lines per character (vertical)
minus one. Bits 5-7 are always set. The default value 231
stands for 7, or 7+1=8 raster lines per character.

CURSOR MODE/START RASTER; (160) Bits 5-6 set the
cursor mode: 00=non-blinking, Ol=cursor not displayed,
10=blink fast, 11=normal blink.

CURSOR END SCAN LINE; (231) Only bits 0-4 are
relevant; the others are always set. This register contains the
line at which the cursor will stop. For a block cursor for
example, the cursor starts at line O and stops at line 7. For an
underline cursor: start and end at 7.

DISPLAY START ADDRESS HI; (0) The high byte of the
start of the video RAM is stored in this register. Normally the
video RAM lies at address $0000 in the special VDC
memory.

DISPLAY START ADDRESS LO; (0) The low-bye of the
video RAM corresponding to REG 12 is defined here.

CURSOR POSITION HI; The high byte of the cursor is
defined in this register. The cursor address must be specified
because the VDC will let it blink on its own.

CURSOR POSITION LO; The low byte of the cursor
address corresponding to REG 14 is defined here.

96

Abacus Software C-128 Internals |

REG 16

REG 17

REG 18

REG 19

REG 20

REG 21

REG 22

REG 23

REG 24

LIGHT PEN VERTICAL; This and the following register
can only be read. The two high-order bytes in register 16 are
always zero. This register returns the vertical address of the
light pen. The value must be corrected by the software
because the raster beam will have moved by the time the
raster line is determined.

LIGHT PEN HORIZONTAL,; Corresponding to register 16,
this register contains the horizontal address of the light pen.

UPDATE ADDRESS HI; The high byte of the address to be
manipulated is given in this register. It doesn't make any
difference if the address is in video RAM, attribute RAM, or
somewhere else.

UPDATE ADDRESS LO; The low byte of the address to be
manipulated is given here in connection with register 18.

ATTRIBUTE ADDRESS HI; (4) The high-order byte of the
start address of the attribute memory is placed in this register.
The attribute RAM defines the color and status of each
character on the screen.

ATTRIBUTE ADDRESS LO; (0) In connection with register

20, this register sets the low-order byte of the start address.

én the normal mode the attribute RAM starts at address
0400.

CHARACTER TOTAL & DISPLAYED; (120) Bits 4-7
determine the total number of displayed horizontal lines (7).
Bits 0-3 set the displayed number of lines (8). This defines
the width of a character.

CHARACTER DSP(V); (232) Number of vertical lines
displayed (8); this defines the height of a character.

VERTICAL SMOOTH SCROLL,; (32)

Bit 7: COPY bit; when this bit is set, the range at the
block-start address is copied to the update address when the
word count register is written. If this bit is cleared, the
update address is filled with the data register (REG 31)

Bit 6: RVS bit; If this bit is set, the entire screen display is
reversed. A set point is cleared and a cleared point is set.

97

Abacus Software C-128 Internals

REG 25

REG 26

REG 27

REG 28

Bit 5: CBRATE; meaning is not yet known.
Bits 0-4: Here the vertical edge of the screen can be moved
(smooth scrolling).

HORIZONTAL SMOOTH SCROLLING; (64)
Bit 7: TEXT; if this bit is cleared, the text mode is enabled.
The information for the characters is taken from the
CHARROM. If this bit is set, single-point graphics are
enabled.

Bit 6: ATR; This bit indicates whether the color information
for a character should come from the attribute RAM (set bit)
or if all points should appear in monochrome (color is in
REG 26).

Bit 5: SEMI; semi-graphic operating mode;

1: the existing horizontal space between two characters is
filled with the color of the character last displayed.

0: like (1), but the space is filled with the background color.
Bit 4: DBL; If this bit is set, the characters appear in double
width.

0: Pixel size=1 dot clock

1: Pixel size=2 dot clocks

bits 0-3: Here the horizontal edge can be moved in raster
lines (smooth scrolling).

FORGND/BACKGND; (240)

Bits 0-3 determines the background color.

Bits 4-7 determine the foreground color for graphic or
monchrome mode.

ADDRESS INCREMENT ROW; (0)

This register defines the number of bytes are to be added to
the video RAM for each column. Normally this is zero. If
you redefine the character width, for instance, (and thereby
the the number of characters/line), this value must be
reprogrammed. ‘

CHARACTER BASE ADDRESS; (47)

Bits 5-7 determine the base of the character generator,
address bits 13 to 15; the character generator can only be
moved in 8K steps.

Bit 4: RAM; This bit defines the RAM type:

1: 4164; 0: 4416

98

Abacus Software C-128 Internals

REG 29

REG 30

REG 31

REG 32

REG 33

REG 34

REG 35

REG 36

UNDERLINE SCAN LINE; (231)

Bits 0-4 indicate the line in which to underline. The default
value is 8. This register can be used to change underlining to
overlining.

WORD COUNT;

In this register you write the number of characters which are
to be written to the update address, or if the COPY bit is set,
the number of bytes to be copied.

DATA;

This register contains the data to be written to a memory
location. If a memory location is read, the contents will
appear in this register.

BLOCK START ADDRESS HI;
This register (and the followmg) defines the start address of
the block to be copied.

BLOCK START ADDRESS LO;
Corresponding to register 32, this register defines the
low-order byte.

DISPLAY ENABLE BEGIN; (125)
Number of characters from the start of the displayed line to
the postive edge on the display enable pin.

DISPLAY ENABLE END; (64)
Like REG 34, but until the negative edge.

DRAM REFRESH RATE; (245)

Bits 0-3 specify the rate at which the VDC memory must be
refreshed (refresh cycles per screen line).

99

Abacus Software C-128 Internals

5.4 General Information About the VDC Registers

To look at each register individually is not very informative. At best,
you can recognize what the individual registers do when you simply write
values to them and see what happens. Not all of the registers are useful to
the programmer, as is the case with the VIC or SID chip. The VDC contains
a number of registers that are present simply for screen display and
synchronization. You should never change these registers.

The base address of the 80-column video controller is $D600. A little
tip: At least in our prototype, the VDC could also be manipulated in the 64
mode; this means that 80-column mode is possible in the 64 mode as well!
In addition to the ability to program in the 2MHz mode, this presents
another small gap in the compatibility of the 64 mode.

You cannot address the various registers of the VDC as simply as with
the VIC or SID. Using the VIC or SID, you simply add the register number
to the base address. In the VDC, register manipulation is relative, meaning
that you have to tell the controller which register you want to read or write
and then perform this operation. This is certainly a complicated method, but
you get used to it quickly. If, for example, you want to change a byte in the
video RAM, you must address this memory location relatively via the
registers, since they are not directly addressable.

Now we'll describe the technique. The VDC can be accessed at address
$D600 and $D601.

If you want to read a register, for instance, you must write the register
address in $D600. The VDC then returns the current contents of the register
in address $D601.

If you want to write to a register, write the register number in address
$D600 and the new register value in address $D601.

Address $D600

(Write) —— - R5 R4 R3 R2 Rl RO
(Read) Status LPVBLANK ---- ==== ==o= =me= —eem
Address $D601

(Read/write) D7 D6 D5 D4 D3 D2 D1 DO

100

Abacus Software C-128 Internals

If you write to address $D600, the register is selected. Bits O to 5 are
used for this. You can also read from $D600; this will return a status report
of the VDC. Bit 7, the status bit, indicates if the VDC is finished with its
last action or not. If this bit is set, the video controller is not yet done, and
you must wait until it gives the green light or data will disappear. It is
necessary to test this bit only in machine language since BASIC is far too
slow for this to be a problem. If, for example, we want to write to the
DATA regiser in the VDC in machine language, it would look like this:

LDA #S$S1F ;DATA REGISTER
STA $D600 ;SELECT
WAIT BIT $D600 ;TEST STATUS BIT
BMI WAIT ;NOT SET, THEN NOT DONE
LDA #$21 ;ASCII CODE FOR "!"
STA $D601 ;AND WRITE
RTS ; RETURN

In this routine, we have placed the value $1F into the VDC select
register. We loop at WAIT until the VDC tells us that it has accepted our
value. Then we can write into the register at $D601. Another delay routine
should be included after writing to address $D601, though this depends on
the program.

Bit 6 of address $D600 is reserved for the light pen and does not
interest us at the moment. Bit 5 tells us if the cathode beam is on its return
course (bit is set) or not. This can be used for synchronizing various
activities to the beam. The rest of the bits are not used.

To summarize, writing to address $D600 selects the VDC register.
Writing to address $D601transfers the data.

You can use the following machine language code to read the value of
the DATA register:

LDA #S$1F ;DATA REGISTER

STA $D600 +ADDRESS REGISTER
WAIT BIT $D600 ; STATUS BIT STILL SET?

BPL WAIT ;NOT DONE '

LDA $D601 ;GET CURRENT CONTENTS

We can also manipulate the VDC from BASIC. But because of

BASIC's slowness, there may be some problems, so you shouldn't be
annoyed if things don't work right away.

101

Abacus Software C-128 Internals

Read and writing the DATA register in BASIC would look like this:

10 A=DEC("D600"): D=A+l: REM BASE ADDRESS VDC
20 POKE A,31: PRINT PEEK(D): REM GET REG CONTENTS
30 POKE A,31: POKE D,33: WRITE TO REGISTER

But now you may want to know how to work with screen addresses.
We know that the video RAM starts at address $0000 and consists of 2000
characters. To manipulate an address in RAM, you must first define
whether you want to read or write in the update register.

Let's show you with a short BASIC program:

10 A=DEC("D600"): D=A+1

20 POKE A,18: POKE D,0: REM UPDATE ADDRESS HI BYTE
30 POKE A,19: POKE D,0: REM UPDATE ADDRESS LO BYTE
40 POKE A,31: POKE D,1: REM A 1 FOR "A"

50 POKE A,30: POKE D,1: REM SET CHAR COUNTER

It demonstrates several key points. The order in which you POKE is
important. First the update address is selected. Next the character to
be displayed is sent. Finally the number of times the character is to be

displayed is sent. If you haven't sent the update address, you won't get
your desired results.

Unfortunately this routine probably won't work! Not in the FAST
mode nor the SLOW mode. You can see this more clearly by adding the
following lines to the program:

5 PRINT CHR$(19);"™ ": REM TWO SPACES
60 GETKEY AS$: RUN

Each time you press a key, the first two positions on the screen are
erased. After this, the video controller is "requested” to display an "A" in
the first screen position. So we can check to see if an "A" is really displayed
at the correct position.

When we start the program, we see that the result does not correspond
to our expectations. The A moves from left to right. It is not always placed

at the right location. Sometimes an "@" even appears on the screen instead
of the A.

102

Abacus Software C-128 Internals

Unfortunately we can't achieve any better results here. In BASIC, it
appears to be impossible. We have tried various methods, all without
success. BASIC is simply too slow. What we can't accomplish in BASIC,
we should at least be able to do in machine language. So let's look at a short
machine language program which does the same thing as our BASIC
program.

Below is the assembly language listing of this routine, which is
designed to display an "A" on the screen. Press the reset button on your
computer to make sure all the VDC registers are reset before entering this
program.

00DO0O0 8E 00 D6 STX $D600
00DO03 2C 00 D6 BIT $D600

00D06 10 FB BPL $0DO03
0o0D08 8D 01 D6 STA $D601
00DOB 60 RTS

00DOC A2 12 LDX #$12

OODOE A9 00 LDA #$00

00D10 20 00 24 JSR $0D0OO
00D13 E8 INX

00D14 20 00 24 JSR $0D0O
00D17 A2 1F LDX #$1F

00D19 A9 01 LDA #$01

O0D1B 20 00 24 JSR $0D0O
OOD1E CA DEX

OOD1F 4C 00 24 JMP $0D0O

This little machine language routine can be entered with the built-in
monitor and tested with the following BASIC program:

10 PRINT CHRS$(147);
20 SYS DEC("ODOC"): GETKEYS: RUN

Start the program with RUN. The result will probably surprise you.
The position is right, but now we have two "A's" instead of one. The VDC
displays word count+1 many characters, though it does this very carefully
and at the correct address. If we had wanted to display two "A's", we
would be all set, but we wanted just one. Loading the word count register
with zero causes 256 characters to be printed.

The solution is quite simple: If you want to display just one character,
do not write to the word count register after selecting the update address and

103

Abacus Software C-128 Internals

the DATA register. Just load the update address with a new value or read
from this register--then it works.

To try this out we need to change our machine language program at
address $00D1E:

OOD1E A2 12 LDX #S$12
00D20 4C 00 24 JMP S$0DOO

You see that it doesn't matter what value you write to the update
register. The sample program is located in the output buffer for the RS-232
($0D00-$0DFF). Now we'll change the machine language routine so we
can write any character to any position, even in BASIC.

10 REM
20 REM BASIC LOADER FOR 80-COLUMN POKE ROUTINE
30 REM

40 :
50 FOR I=0 TO 36

60 : READ X

70 : POKE DEC("DOO")+I,X

80 : S=S+X

90 NEXT

100 IF S<>2850 THEN PRINT "*** ERROR IN DATA **x*".
END

110 :

120 DATA 142,0,214,44,0,214,16,251,141,1,214,96,
162,18,169,0

130 DATA 32,0,13,232,169,0,32,0,13,162,31,169,1,
32,0,13

140 DATA 162,18,76,0,13

150 :

160 REM *** TRY IT OUT ***

170

180 PRINT CHRS$ (147);
190 SYS DEC("DOC"): GETKEY A$: GOTO 180

Now we have the program we wanted, even if it can't be done in "pure”
BASIC. Maybe there is some algorithm which works in BASIC and permits
manipulations to be made on the 80-column screen.

As already mentioned, this routine can display any character at any
location on the screen. To make it do this, you have to write the high byte of

104

Abacus Software C-128 Internals

the address to address $ODOF, the low byte to address $0D15, and the
character to address $0D1C. Try it once with the following sample program:

10 REM
20 REM EXAMPLE PROGRAM FOR POKE ROUTINE
30 REM
40
50 LO=DEC("D15"): HI=DEC("DOF"): PO=DEC("D1C")
60 FOR I=0 TO 1999
70 : POKE LO, I AND 255 : REM POKE LOW BYTE
80 : POKE HI, 1/256 : REM POKE HIGH BYTE
90 : POKE PO, I AND 255 : REM FOR EXAMPLE
100 : SYS DEC("DOC")
110 NEXT
120 GETKEY AS$

But we don't want to display just one character. Sometimes it would be
practical if we could display 80 characters at once (with the help of the word
count register), for example, to erase a line or something similar. But the
VDC might display one character too many. Imagine a word processing
program that had this problem: it would be quite aggravating.

This error must have been compensated for in the operating system,
though. The solution is (what, again?) rather simple and works very well.

You know the starting address of the area to be filled with characters.
Let's say that you want to display n characters. So you can calculate the
address in video RAM where they will be written. Simply let the video
controller fill n-1 characters.

Next we can read the update address (which the VDC
automatically increments) to determine if it has displayed the correct number
of characters. If so then we are done. Otherwise we must display one more
character. This method is always faster than writing each character by itself.
You can use an operating system routine that outputs a character based on
the update address and DATA register as many times as the value in the
accumulator specifies. This routine is found at the address $C53E. Place
the calculated address in $OA3C/$0A3D. We'll add the routine to the one
already existing:

105

Abacus Software C-128 Internals

00D25 A2 12 LDX #$12
00D27 A9 00 LDA #$00
00D29 20 00 OD JSR $0DOO
00D2C 8D 3D OA STA $0A3D
OOD2F E8 INX
00D30 A9 00 LDA #3500
00D32 20 00 OD JSR $0DO0OO
00D35 8D 3C 0A STA $OA3C

00D38 A9 00 LDA #3500
ooD3A A2 1F LDX #S$1F
00D3C 20 00 OD JSR $0DO0O
OOD3F A9 00 LDA #$00
00D41 18 CLC
00D42 48 PHA

00D43 6D 3C 0A ADC $0A3C
00D46 8D 3C 0A STA $0A3C

00D49 90 03 BCC SOD4E
00D4B EE 3D 0OA INC $O0A3D
OOD4E 68 PLA

OOD4F 4C 3E C5 JMP S$SC53EA
You can add the following DATA lines to the BASIC loader:

150 DATA 162,18,169,0,32,0,13,141,61,10,232,169,0,
32,0,13

160 DATA 141,60,10,169,0,162,31,32,0,13,169,0,24,
72,109, 60

170 DATA 10,144,3,238,61,10,104,76,62,197

Lines 50 and 100 must also be changed:

50 FOR I=0 TO 81
100 IF S<>5859 THEN PRINT "*** ERROR IN DATA ***":
END

Store the high byte of the starting address at address $0D28, the low
byte at address $0D31. You must POKE the fill character into address
$0D39 and the number at address $0D40. Example:

POKE DEC("0D28"),0 : POKE DEC("0D31"),0: REM ADDR
POKE DEC("0D39"),33: REM FILL CHARACTER

POKE DEC("0D40"),79: REM FILL QUANTITY-1

SYS DEC("0D25") : REM CALL THE ROUTINE

106

Abacus Software C-128 Internals

Once you enter these lines, the first line will be filled with exclamation
points.

As already mentioned, you can change the attribute RAM in the same
way as we changed the screen contents. For example, if you want to display
the first line in flashing white, you must fill the attribute RAM with
$1F=31. To do this we enter the following lines:

POKE DEC("0D28"),8 : POKE DEC("0D31"),0:
REM ATTRIBUTE RAM
POKE DEC("0D39"),31: REM FILL CHARACTER
POKE DEC("0D40"),80: REM FILL QUANTITY
SYS DEC("0D25") : REM CALL THE ROUTINE

5.4.1 The character set

The character set in the VDC can be easily changed. Sixteen bytes of
RAM must be defined per character. Eight bytes are copied from the
CHARROM, and eight additional zero-bytes are appended for reasons
internal to the VDC. The character set starts at address $2000 for the VDC.
To read a character out or to change it, you can find it with this address:

2*4096 + <code>*16

The VDC, unlike the VIC, can display the two character sets, obtained
with <SHIFT><Commodore> in 40 column mode, on the screen at the
same time since these are both found in the VDC RAM. The reverse
characters are also defined, though these aren't really necessary since a bit
in the attribute RAM controls whether a character is displayed normal or in

reverse. Both of these features can be utilized if you want define additional
characters.

The memory layout of the VDC RAM looks like this:
$0000-307CF:Video RAM

$0800-$0FCF:Attribute RAM
$2000-$3FFF: CHARRAM (character generator)

107

Abacus Software C-128 Internals

5.4.2 The character attribute

The attribute of a character is composed of several criteria: The first is
the RGB signal, whether red, green, or blue are active (all bits here are set
for white, for instance), then the intensity signal (which determines the two
levels of brightness of the character). Then there is a bit which determines
if a character should flash on and off, a bit to underline a character, a bit for
reverse, and a bit for the alternate character set. You can see that the reverse
characters really need not be defined at all, since a corresponding bit is
provided in the attribute RAM. But to make things simpler, the reverse
character set was simply copied along with the rest of the characters.

But now we come back to the actual attribute RAM: The eight bits of an
attribute byte are arranged as follows:

ALT RVS UL FLASH R G B I
7 6 5 4 3 2 1 0

ALT stands for ALTernate. If the second character set is selected (the
one obtained with <SHIFT><Commodore> on the keyboard), the ALT bit
in the attribute RAM is set.

RVS stands for ReVerSe and means that the character will be displayed
in reverse. Unfortunately, no direct use is made of this bit. Professional
software programmers can make better use of the reverse characters.

UL stands for UnderLine. If this bit is set, the corresponding character
is underlined in the raster line defined in register 29; normally this is line 7.

FLASH is self-explanatory. If this bit is set, the character defi.ne.:d b_y
the given attribute byte will flash on and off. Color and any underlining is
retained.

R stands for Red, G for Green, and B for Blue. '}‘he .color signa_ll
consists of the set and cleared bits. There is also an intensity signal I that is
used to set the brightness; a set bit means bright.

108

Abacus Software C-128 Internals

Here is a table of the 15 possible color and intensity combinations:

Color
Black

Dark grey
Blue

Light blue
Green
"Light green
Cyan

Light Cyan
Red

Light red
Purple
Light Purple
Brown
Yellow
Light grey
White

RPRRPRPRPRPRERRPOOOOCOOCOOOOM
RRPRRPPRPOOOORRPRPPOOOOR
BPROORROORKHROORROOW
RPOROROOOROROROROH

5.5 Using the VDC Registers

As already mentioned, the 37 VDC registers account for a very flexible
80-column controller. We want to take a closer look at and demonstrate their
use with some examples. One of the more useful is the ability to display 30
lines on the screen instead of 25 a second is the ability to use the
high-resolution graphics with a resolution of 640x200 points. We will
concentrate on these two examples.

But first we present a program which is very useful for exploring the
world of the VDC registers. When testing, you may often find that your
screen displays nothing but garbage. This means you have confused the
controller so much that it can no longer display a meaningful picture. The
best thing to do is to press the <RUN/STOP><RESTORE> keys.

On international models of the C-128 that include a foreign character
set, the character generator may be overwritten. The best thing to do then is

to press the <ASCII/DIN> key to copy the character generator back to the
normal mode.

109

Abacus Software C-128 Internals

This program shows you the current register contents on the screen and
then lets you write to any of the registers. After you have entered the values,
you can observe the results directly on the screen (if in fact there are
results). The current register contents are then displayed again.

10 REM *** TESTING THE VDC REGISTERS **x
20 :

30 A=DEC("D600") : D=A+1

40 PRINT CHRS$(147)"CURRENT REGISTER CONTENTS -"
50 FOR I=0 TO 37

60 POKE A,I: C=PEEK(D)

70 PRINT "#";I;RIGHTS (HEXS$(C),2),

80 NEXT I
90 PRINT: PRINT
100 INPUT "REGISTER, VALUE --- ";RE,VA

110 POKE A,RE: POKE D,VA: GOTO 40
5.5.1 Smooth scrolling

As with the VIC chip, you can move the screen vertically or
horizontally in raster line increments on the VDC. VDC register 24 (bits
0-4) and 25 (bits 0-3) are used for this purpose. Contrary to the way
smooth scrolling is done on the VIC, you don't lose any columns or lines
on the VDC. The VDC is not well-suited for games--it has very good
resolution, but its complicated addressing is far too slow--but you can use
smooth scrolling to create many useful effects. Here is a short
demonstration program which shows the operation of smooth scrolling on
the 80-column screen.

10 REM *** DEMO PROGRAM FOR SMOOTH SCROLLING ***

20 A=DEC("D600"): D=DEC("D601")

30 VE=24: HO=25

40 PRINT CHR$ (147)CHRS$ (27);"M"; : REM SCREEN CLR
AND SCROLL OFF

50 A$="Hello C-128 fans!"

60 FOR I=0 TO 24

70 PRINT AS

80 NEXT

90 :

100 FOR I0=0 TO 6

110 POKE A,VE: V=PEEK(D) AND 240 OR IO

110

Abacus Software C-128 Internals

120 POKE A,VE: POKE D,V

130 FOR Il=1 TO 20: NEXT

140 POKE A,HO: H=PEEK(D) AND 240 OR IO
150 POKE A,HO: POKE D,H

160 FOR Il=1 TO 20: NEXT

170 NEXT

180 GOTO 100

If this goes too fast for you or not fast enough, change the delay loops
in lines 130 and 160 correspondingly.

If bit 3 is cleared, 25 lines are displayed and the following (or
preceding) RAM is scrolled on the screen. If you set bit 3, only 22 lines are
displayed and you can scroll the last three lines of the screen by means of
smooth scrolling.

5.5.2 Block copying

If the controller is so hard to access, why is screen scrolling so fast?
The solution is simple: The VDC is intelligent enough to move entire blocks
in its memory. If this had to be done via the relative addressing, it would
take a considerably longer time.

If you want the VDC to move an area of memory, you must tell it this
via the COPY bit (bit 7 in REG 24). If this bit is set, the VDC copies instead
of filling. The starting address of the block to be copied is defined in
registers 32 and 33; the destination address of the copying procedure must
be defined in the update register (REG 18 and 19); the copy process begins
when you write to the word count register. This also specifies the number
of characters to be copied.

NOTE: The word count register specifies the exact number of characters
to be copied. For example, if you want to copy the first text line on the
screen to the line below and preserve the attributes, you must first copy the
text line and then the attributes. We will do an upward-scroll in our example

progralrln--in BASIC it goes quite slowly, but in machine language it is fast
enough.

111

Abacus Software C-128 Internals

10
20
30
40
50
.60
70

80

90
100
110

120

130
140
150
160

REM *** DEMO PROGRAM FOR BLOCK COPYING **x
A=DEC ("D600") : D=DEC("D601")
POKE A,24: C=PEEK(D) :REM *** CONTENTS OF REG 24
POKE A,24: POKE D,C OR 128:REM *** SET COPY BIT
FOR Z=24 TO 0 STEP -1
AQ=2*80: AZ=AQ+80: REM *** SQURCE AND DEST
POKE A,18: POKE D,AZ/256: POKE A,19: POKE D,
AZ AND 255
POKE A,32: POKE D,AQ/256: POKE A,33: POKE D,
AQ AND 255 '
POKE A,30: POKE D,79: REM *** COPY TEXT
AQ=2048+AQ: AZ=2048+AZ:REM *** ATTRIBUTE ADDR
POKE A,18: POKE D,AZ/256: POKE A,19: POKE D,
AZ AND 255
POKE A,32: POKE D,AQ/256: POKE A,33: POKE D,
AQ AND 255
POKE A,30: POKE D,79: REM *** COPY ATTRIBUTE
NEXT
PRINT CHR$(19);CHR$(27)"D"; :REM CLEAR 1ST LINE
POKE A,24: POKE D,C: REM *** CLEAR COPY BIT

This routine does nothing more than the ESC sequence
CHR$(27);"W", but it shows the operation of block copying.

5.5.3 Foreground and background color

You can define the background color of the 80-column screen in
register 26 (bits 0-3). The foreground color has effect in the graphic mode
and--provided the ATR bit in register 25 is not set--also in the text mode.

The definition of the register:

POKE DEC("D600"),26
POKE DEC("D601"),<foreground>*16 + <background>

112

Abacus Software C-128 Internals

5.5.4 The cursor mode

You can also determine the appearance of the cursor yourself. You can
turn it off completely, make it blink fast or slow, and define it as a block or
underline cursor. You can make these definitions using ESC sequences, but
there are situations where this is not possible--such as in machine language.
The cursor mode is set in register 10. Further, register 10 indicates in which
raster line the block cursor is to begin. With the starting and ending line of
the block cursor you can turn the cursor into a broad stripe in the middle,
etc. (The underline cursor is defined in the same manner). Here are the four
possible bit combinations of the cursor mode:

00 - non-blinking cursor

01 - cursor off

10 - slow cursor (cursor flashes at 1/16 SRF)
11 - fast cursor (cursor flashes at 1/32 SRF)

SRF = Screen Refresh Frequency

As already mentioned, the VDC takes over all functions of displaying
the character under the cursor and does not burden the CPU with it.

For a block cursor, the start line is line O; the end line, defined in
register 11, is line 7. In order to define a underline cursor, one need only
change the start line to 7.

To demonstrate the effects, simply try out the following:

10 REM *** DEMO FOR CURSOR ***

20 A=DEC("D600"): D=DEC("D601")

30 FOR X =1 to 7: REM LINE 1 TO 7

40 :POKE A,10: POKE D,X: REM *** NON-BLINKING-START
50 POKE A,11l: POKE D,7: REM END LINE=7

60 FOR I = 1 TO 100 : NEXT I

70 NEXT X

The cursor address is defined in registers 14 and 15; the cursor is then

displayed at this location where it blinks if so instructed and negates the
character found underneath it. These two registers have no other function.

113

Abacus Software C-128 Internals

5.5.5 The character length and width

The matrix of the characters found in VDC RAM is 8x8 points; this
means that the characters displayed on the screen are 8 points wide and 8
lines tall. This can be changed. The height and width of the characters can
be set in registers 22 and 23. The following BASIC program demonstrates
this:

10 REM *** DEMO PROGRAM FOR CHARACTER MATRIX **x*
20 :

30 A=DEC("D600"): D=A+1

40 FOR I0=0 TO 8: POKE A,22: POKE D, 112410

50 FOR I1l=0 TO 8: POKE A,23: POKE D, Il

60 FOR I2=1 TO 30: NEXT I2,Il1

70 FOR I2=1 TO 30: NEXT I2

80 NEXT IO

90 GOTO 40

You must always add 112 to register 22 because the upper nibble must
always be $7.

5.5.6 More than 25 lines on the screen

Yes, you read it right! It is possible to display 25 lines with a total of
2000 characters on the screen, but you can even display 28 lines with 2240
characters and more. This is no trick of the imagination; every programmer
who wants to write a word processor or database for the C-128, for
example, will be pleased at this capability.

The technique we will present can manage 25 lines in BASIC. This
means that the other 3 lines remain when scrolling and clearing the screen
and are therefore well-suited for status lines. These three lines (including

attribute) can be changed with an appropriate machine language program.
But first to the theory:

In register 6 of the video controller, you can specify how many lines are
to appear on the screen. The default value here is 25. Let's change this value
to 10: ’

114

Abacus Software C-128 Internals

10 A=DEC("D600"): D=A+1
20 POKE A, 6: POKE D, 10

You see that the controller now displays only 10 lines on the screen and
the remaining lines are simply "swallowed up.” Just as we can make the
screen smaller, we also have the ability to increase the number of lines. We
do this by simply correcting line 20:

20 POKE A,6: POKE D, 28

And now we have 28 lines on the screen. You also see some lines that
will usually flash in various colors. We can now (provided the monitor is
good enough) see all 28 lines on the screen--even if the last three lines don't
contain any useful information.

A small note: On a very well-adjusted IBM color monitor we have been
able to display up to 30 lines. It wouldn't make any sense to use this
though, since most monitors would not be able to display it. We have been
able to display 2 or 3 additional lines on every monitor. So we can say in
general that at least two additional lines are possible, which you can then
use for status lines, etc.

We already know that the video RAM lies at address $0000 and the
attribute RAM at address $0800. We must change this since we have
displayed 2240 characters; the end of the video RAM then lies at address
$0960 and part of the attribute RAM is overwritten (and vice versa). There
is enough space between the attribute RAM and the character generator.
Address $0A00 is then available for the start address of the attribute RAM.

But when we want to write to the 80-column screen with BASIC, we
have a small problem: The interpreter gets the base address of the attribute
RAM from address $OA2F in the zero page. This isn't so bad--we just
inform the BASIC interpreter of the new base address. This is correct--but
if we take a closer look at the kernal, we see that the base address is not
added but logically ORed. Bits 0 and 1 are affected by this; these two bits
may not be relevant; that is, they may not be set. This is why it is advisable
to define address $1000 as the start address of the video RAM. We do this
with the two instructions: _

POKE DEC ("OA2F"),16
POKE DEC("D600"),20: POKE DEC("D601"),16

115

Abacus Software C-128 Internals

When this is done, everything works as it should. We'll use these ideas
in our next program:

10 REM *** DEMO PROGRAM FOR 28-LINE SCREEN *¥*

20 :

30 A=DEC("D600"): D=DEC("D601")

40 POKE A,20: POKE D,16:REM *** VDC RECEIVES NEW
BASE ADDRESS

50 POKE DEC("OA2F"),16: REM *** KERNAL RECEIVES NEW
BASE ADDRESS

60 POKE A,6: POKE D,28: REM *** 28 LINES

80 PRINT CHRS$(147)

When you start this program, 28 lines appear on the screen--though the
last three lines still have no meaningful content. Unfortunately, we cannot
write to these lines with the PRINT statement. The operating system is not
prepared for such things. It becomes clear that we must POKE characters
(strings) into memory. This is done by a small machine language routine so
that the characters to be printed can be put into a string.

This machine language routine is passed the address of the string to be
printed. The address of a variable can be obtained with the POINTER((var)
command. Before this, the low and high bytes of the screen address at
which the string is to be printed are stored in memory locations $FA (250)
and $FB (251). The current attribute is used as the color or attribute which
you may change. You cannot integrate any control characters in the strings.
These are accepted, but result in a gap in the screen. It is possible to allow
for execution of control sequences, but we have not included this feature for
space reasons. The routine is intended to output strings in our new window
without requiring a lot of effort on the part of the programmer. The

following commands are necessary in order to display a string on the first
line of our new window:

T$="This is a test string!"
POKE 250, (2000 AND 255)

POKE 251, (2000/256)
A=POINTER(TS)

SYS DEC("D27"),A AND 255,A/256

First the string variable is defined which contains the string to be
printed. Then we POKE the start address in $FA and $FB, low byte first.
We then indicate the address at which the string T$ is stored in bank 1. This
address is then, divided into low and high bytes, passed to the output

116

Abacus Software

C-128 Internals

routine at address $0D27. The routine then gets each character and outputs
it. That's it. Here is the machine language program:

00D0O
00D03
00DO06
00DO08
00DOB
oobocC
OODOE
00D10
00D13
00D14
00D16
00D1°
00D1B
00D1D
00D20
00D22
00D24
00D27
00D29
00D2B
00D2D
0OD2F
00D31
00D34
00D36
00D38
00D3A
00D3C
OOD3F
00D40
00D41
00D43
00D45
00D48
00D4A
00D4B
00D4D
00OD4F
00D51
00D53

8E
2C
10
8D
60
A2
A9
20
E8
A9
20
A2
A9
20
A2
A9
4C
85
86
AOQ
A2
A9
20
85
AQ
A2
A9
20
48
C8
A2
A9
20
85
68
85
A5
DO
Cé
Cé

00
00
FB
01

12
00
00

00
00
1F
00
00
12
00
00
FC
FD
00
01
FC
74
FE
01
01
FC
74

01
FC
74
FD

FC
FC
02
FD
FC

D6
D6

D6

0D

0D

0D

0D

FF

FF

FF

STX
BIT
BPL
STA
RTS
ILDX
LDA
JSR
INX
LDA
JSR
LDX
LDA
JSR
LDX
LDA
JMP
STA
STX
LDY
LDX
LDA
JSR
STA
LDY
LDX

LDA.

JSR
PHA
INY
LDX
LDA
JSR
STA
PLA
STA
LDA
BNE
DEC
DEC

$D600
$D600
$0DO03
$D601

#512
#3500
$0D00

#$00
$0D00
#S1F
#3500
$0DO0O0
#3512
#$00
$0DO0O0
SFC
$SFD
#500
#$01
#SFC
SFF74
SFE
#3501
#3501
#SFC
SFF74

#$01
#SFC
SFF74
$FD

S$FC
SFC
$0D53
SFD
SFC

;ACC. OF THE REGISTER

; TEST STATUS

;NO YET READY

;STORE THE VALUES

;END THE ROUTINE
;UPDATE REGISTER HI
;LOAD THE HI VALUE

;SET THE HI ADDRESS
;UPDATE ADDRESS LO
;LOAD THE LO-BYTE

;AND THE ACCUMULATOR
;DATA REGISTER OF VDC
;LOAD THE POKE VALUE
;SET THE VALUES

;DUMMY VALUE

;UPDATE ADDRESS

;SET THE VALUES

;MARK LO-BYTE OF STRING
;MARK HI-BYTE OF STRING
;OFFSET - STRING LENGTH
;BANK 1 FOR VARIABLES
;SFC WITH THE ADDRESS
;AND FAR FETCH

;MARK LENGTH

;OFFSET LOW-BYTE ADDRESS
;BANK 1 FOR VARIABLES
;SFC WITH THE ADDRESS
;FAR FETCH :
;LO-BYTE OF STACK
;POINTER OF HI-BYTE
;ADDRESS

;FOR VARIABLE

;FAR FETCH

;MARK THE HI-BYTE

;GET LO-BYTE

" ;STORE THE LO-BYTE

+GET LO-BYTE

+WHEN NOT NULL;DECREMENT
:THE LO-BYTE, ELSE DEC
+ALSO THE HI-BYTE

117

Abacus Software C-128 Internals

00D55 A5 FA LDA SFA ;ALSO THE SOURCE ADDRESS
00D57 DO 02 BNE $0D5B ;DECREMENT THE LO-BYTE
00D59 C6 FB DEC S$FB ;AND DEC

OOD5B C6 FA DEC S$FA ;ALSO HI-BYTE

00DS5D A5 FA LDA SFA ;GET LO-BYTE

OODS5F 85 EO STA SEO ;LO-BYTE LINE ADDRESS
00D61 A5 FB LDA SFB ;GET HI-BYTE

00D63 85 E1 STA S$E1 ;HI-BYTE LINE ADDRESS
00D65 A2 01 LDX #$01 ;BANK 1 FOR VARIABLES
00D67 A4 FE LDY SFE ;POSITION IN STRING

00D69 A9 FC LDA #SFC ;ADDRESS IN ZERO PAGE
OOD6B 20 74 FF JSR $FF74 ;FAR FETCH

OOD6E A4 FE LDY SFE ;GET POSITION IN STRING
00D70 84 EC STY SEC ;ALSO CURSOR COLUMN
00D72 20 0OC CO JSR $CO0C ;AND CHARACTER OUTPUT
00D75 C6 FE DEC SFE ;DEC THE POINTER

00D77 DO E4 BNE $0D5D ;IF NOT END OF STRING
00D79 60 RTS ;END ROUTINE

At first glance the routine may appear rather long, but it really isn't.
Remember that this routine and a few short BASIC lines give you three
additional lines to use. Furthermore, there is another short routine at the
start of this one that writes a character to a location in the VDC memory.
The BASIC loader for this routine is found after the example program. Here
is the example program, which allows displays 28 lines using both of the
new routines.

10 REM *** DEMO PROGRAM FOR 28 LINE SCREEN ***

20 :

30 A=DEC("D600"): D=DEC("D601")

40 POKE A,20: POKE D,16: REM *** VDC GETS NEW BASE

50 POKE DEC("OA2F"),16: REM *** KERNAL GETS NEW
BASE ADDRESS

60 POKE A,7: POKE D,28: REM *** 28 LINES

70 POKE A,6: POKE D,33: REM *** NEW SYNC

80 :

90 PRINT CHR$ (147);

100 TS+" ": REM 20 SPACES

110 FOR X=0 TO 79 STEP 20: FOR Y=0 TO 2

120 GOSUB 1000: NEXT: NEXT

130 INPUT "Enter your name: ";T$

140 FOR Y=0 TO 2: X=2*Y: GOSUB 1000: NEXT

150 END

118

Abacus Software C-128 Internals

1000 REM *** QUTPUT T$ AT X,Y COORDINATE; Y=0 MEANS
1ST LINE **x*

1010 AZ=2000+Y*80+X: REM DESTINATION ADDRESS

1020 POKE 250,AZ AND 255: REM LOW BYTE

1030 POKE 251,AZ/256: REM HIGH BYTE

1040 T%$=POINTER(TS$): REM ADDRESS OF THE STRING

1050 SYS DEC("D27"),T% AND 255,T%/256: REM PASS

1060 RETURN

1070

This program first enables the three additional three lines (lines 30-70).
Then the window is cleared and the name you entered is printed on each
line.

If you don't want to enter the machine language program with the
assembler, you can use the following BASIC loader and then save the
machine language program on disk as a BINary file.

10 REM BASIC LOADER FOR PRINT STRING
20 :

30 FOR I= DEC("DOO") TO DEC("D79")

40 READ AS

50 POKE I, DEC(AS)

60 S=S+DEC (AS)

70 NEXT

80 IF S<>16613 THEN PRINT"ERROR IN DATA STATEMENTS"
90 INPUT "SAVE PROGRAM ON DISKETTE Y/N";AS

100 IF AS<>"Y" THEN END

110 INPUT "FILE NAME";F$

120 BSAVE""+ F$ +"",B1,P3328 TO P3449 :END

130 :

200 DATA 8E,00,D6,2C,00,D6,10,FB,8D,01,D6,60,A2,12,A9,00
210 DATA 20,00,0D,E8,A9,00,20,00,0D,A2,1F,A9,00,20,00,0D
220 DATA A2,12,A9,00,4c,00,0D,85,FC,86,FD,A0,00,A2,01,A9
230 DATA Fc,20,74,FF,85,FE,A0,01,A2,01,A9,FC,20,74,FF, 48
240 DATA c8,A2,01,A9,FC,20,74,FF,85,FD, 68,85,FC,A5,FC,D0
250 DATA 02,C6,FD,CG,FC,A5, FA,DO, 02,C6,FB,C6,FA,A5,FA, 85
260 DATA EO,AS5,FB,85,E1,A2,01,A4,FE,A9,FC,20,74,FF,A4,FE
270 DATA 84,EC,20,0C,C0,C6,FE,DO,E4, 60

119

Abacus Software C-128 Internals

5.5.7 Hi-res graphics

We probably got you excited when we mentioned that a graphics
display is also possible on the 80-column screen. The resolution of these
graphics is 640x200 points, exactly twice as great as the hi-res mode of the
VIC chip. There is no multi-color mode. The brillance of the graphics is
quite impressive (if the monitor can display it properly). Here you don't
have to set two points next to each other in order to see one point, as on the
VIC. There is "only" one color available, but this is completely sufficient
for most graphics (such as mathematical curves).

This graphic mode is not supported by the BASIC 7.0 graphics
commands. We again offer you a small machine language package that can
perform the following elementary functions:

* turn graphic mode on and off
* clear the graphic page
* set and clear points

We could have integrated more features into the machine language
routine package, but we don't want to turn the C-128 Internals into a
collection of programs!

The how of the VDC graphic mode is also interesting. The bit-map
mode is enabled by setting bit 7 of register 25. There are then 16Kbytes of
the VDC memory available for graphics on the screen. If you clear the
graphics, the character generator is also cleared.

On the international models of the C-128 if you exit with
<RUN/STOP> <RESTORE>, you must also press <ASCII/DIN> or you
will see nothing on the screen because the character set has been erased. The
character set can also be copied under program control when switching from
the graphic mode to the text mode. You can also press <ASCII/DIN> while
the graphic mode is enabled--you will be surprised.

The graphic mode is enabled by setting bit 7. The attribute RAM
becomes nonfunctional as it is required for graphic display, we must also
clear the ATR bit in register 25. We can combine these two actions by
loading register 25 with 128. This is all that is necessary to enable the
graphic mode. We can leave the attribute and video RAM addresses alone
since they play no role. :

120

Abacus Software C-128 Internals

The graphic memory is defined at address $0000. The logic for setting
and clearing points is similar to that described for the VIC chip; here setting
and clearing are accomplished through logical OR and AND. One byte also
defined eight points (pixels) for the VDC. The first point, which has the
coordinates 0/0, is located in the upper left-hand corner, and thereby at
address $0000. The rest of the procedure is simpler than for the VIC chip.

The graphics are defined line by line. The memory layout is clarified in the
following figure:

$0000 $0001 $0002 $0003 S027F (639 decimal)
$0280 $0281 $0282 $0283 $S04FF (1279 decimal)

On the VDC the memory is not divided into matrices of eight, so that
addressing a point is much easier. The following formula is needed to
address a given point (X/Y):

AD = INT(X/8) + Y*802

The point in this byte is addressed in the same manner as with the VIC,
by the following formula:

2M7-(X AND 7))

Since this addressing is so simple, the machine language program is
correspondingly shorter. First the assembly language listing, followed by
the BASIC loader:

00C00 4C CD 0C JMP $0CCD ;SWITCH ON THE GRAPHICS
00C03 4C DO 0OC JMP S$OCDO ;TURN OFF GRAPHICS
00C06 4C D3 0C JMP $0CD3 ;BACK TO TEXT MODE
00C09 4C EO 0C JMP $0CEQO ;SET A POINT

00COC 4C DD 0OC JMP $0CDD ;ERASE A POINT
0O0COF 8E 00 D6 STX $D600 ;STORE IN REGISTER
00C12 2C 00 D6 BIT $D600 ;TEST STATUS

00C15 10 FB BPL $0Cl2 ;NOT FINISHED YET
00C17 8D 01 D6 STA $D601 ;STORE VALUE

00Cc1A 60 RTS ;RETURN TO PROGRAM
00C1B 8E 00 D6 STX $D600 ;LOAD REGISTER
O0C1lE 2C 00 D6 BIT $D600 ;TEST STATUS

00C21 10 FB BPL $OClE ;NOT FINISHED YET
00C23 AD 01 D6 LDA $D601 ;GET REGISTER VALUE

121

Abacus Software

C-128 Internals

00C26
00c27
00C29
00C2B
00CZ2E
00C30
00C32
00C33
00C36
00C38
00C3A
00C3D
00C3F
00C42
00C43
00C45
00C46
00c47
00C49
00C4B
00C4D
00C4r
00C51
00C53
00C55
00C57
00C59
00C5B
00C5D
00CSF
00C61
00C63
00C65
00C67
00C69
00Ce6B
00C6D
00C6F
00C71
00C73
00C74
00C76
00C78

60
A2
A9
20
AOQ
A2
98
20
A2
A9
20
A2
20
88
10
60
08
AS
85
46
66
46
66
46
66
A9
85
AS
06
26
06
26
65
85
90
E6
A2
06
26
ca
DO
AS
65

19
80
OF
40
12

OF
1F
00
OF
1E
OF

EB

FA
FE
FB
FA
FB
FA
FB
FA
00
FD
FC
FC
FD
FC
FD
FC
FC
02
FD
04
FC
FD

F9
FA
FC

ocC

ocC

0ocC

ocC

RTS
LDX
LDA
JSR
LDY
LDX
TYA
JSR
LDX
LDA
JSR
LDX
JSR
DEY
BPL
RTS
PHP
LDA
STA
LSR
ROR
LSR
ROR
LSR
ROR
LDA
STA
LDA
ASL
ROL
ASL
ROL
ADC

STA.

BCC
INC
LDX
ASL
ROL
DEX
BNE
LDA
ADC

#$19
#$80
$0COF
#$40
$#$12

$OCOF
#S1F
#$00
$SOCOF
#S$1E
$SOCOF

$0C30

SFA
SFE
$SFB
SFA
SFB
SFA
$SFB
SFA
#5500
$SFD
S$FC
SFC
S$FD
SFC
SFD
SFC
SFC
$0C6D
SFD
#3504
S$FC
SFD

SOC6F
SFA
SFC

;RETURN TO PROGRAM
;REGISTER 25 CHOSEN
;BIT 7 SET

;REGISTER 25 SET

;340 FOR OFF

:REGISTER 18 UPDATE HI
;HI BYTE TO ACCU.

;SET UPDATE HI
;REGISTER 31 DATA REG.

[

;DATA REGISTER WRITTEN
; WORDCOUNT REGISTER
;WITH NO FILL
;DECREMENT THE NUMBER

; FOLLOW BLOCK OFF
;RETURN TO OFF ROUTINE
;RETURN CARRY # SET/OFF
; LO-BYTE X-COORD.

; TEMP. STORAGE

;HI-BYTE WITH X OVER TWO
;COPY CARRY LOW-BYTE
:iS.0.

:S.0.

;PUT TOGETHER INT (X/8)

’

;HI-BYTE OF ADDRESS ON
; NULL SET

;Y-COORD. IN ACC.

;Y TIMES 2

;COPY CARRY

; TIMES TWO OPTION

;AMT * 4, PLUS 1*Y
;OPTION Y*5

:LO-BYTE

;NO CARRY

; CARRY INTO HI-BYTE

;IS WORD WITH 4 TIMES
;WITH 2 MULTIPLER THIS
;OPTION ONE * 16

;AND 16*5 FOR 80 OPTION
;WITH 80 MULTIPLER

;INT (X/8)

;ADD TO Y*80

122

Abacus Software

C-128 Internals

00C7A
oocic
00C7E
00C80
00c82
00C84
00c87
00cs8s8
0ocsA
00C8D
00C8F
00Cc92
00C93
00C95
00C97
00C98
00C99
oocoa
00coc
00C9F
0o0cal
0oca4
00CAa5
ooca?
00ocad
00CcacC
00CAD
OOCAF
00CB2
00CB4
00CBS
00CBS8
00CBA
00CBD
00CC5
00CCD
00CDO
00CD3
00CD5
00CD7
00CpA
00CDD
OOCDE

85
90
E6
A2
A5
20
E8
A5
20
A2
20
48
A5
29
AA
68
28
BO
3D
90
1D
48
A2
A5
20
E8
A5
20
A2
68
20
A2
4C
80
F
20
4C
A2
A9
20
4c
18
90

FC
02
FD
12
FD
OF

FC
OF
1F
1B

FE
07

05
C5
03
BD

12
FD
OF

FC
OoF
1F

OF
12
1B
40
BF
27
2E
19
40
OF
ocC

01

ocC

ocC

ocC

ocC

ocC

0ocC

oc

oc

ocC
20
DF
0oc
ocC

oc
CE

STA
BCC
INC
LDX
LDA
JSR
INX
LDA
JSR
LDX
JSR
PHA
LDA
AND
TAX
PLA
PLP
BCS
AND
BCC
ORA
PHA
LDX
LDA
JSR
INX
LDA
JSR
LDX
PLA
JSR
LDX
JMP

SFC
$0C80
SFD
#$12
S$FD
SOCOF

SFC
$OCOF
#S1F
$0C1B

SFE
#3$07

$OCA1l

;AND STORE

;NO CARRY

;REM CARRY

;REGISTER 18 UPDATE HI
;HI-BYTE OF ADDRESS

; SET

;UPDATE LO

;LO-BYTE OF ADDRESS
;SET THE LO-BYTE
;DATA REGISTER

;GET THE STORED VALUE
; STACK

;GET X-COORD. (LO)

;X AND 7

;POINTER NOT X

;GET VALUE BACK

;GET CARRY BACK

;SET POINT

S0CC5,X;CLEAR POINT

$SO0CA4

; UNCONDITIONAL JUMP

SO0CBD, X;SET POINT

#$12
SFD
$OCOF

SFC
$OCOF
#S1F

$SOCOF
#$12
$0C1B

;i STACK

;UPDATE HI

;HI-BYTE OF LINE ADDRESS
;SET THE VALUE
;UPDATE LO

;LO-BYTE OF ADDRESS
;SET THE LO-BYTE
;DATA REGISTER
+RECOVER STACK

; SET NEW VALUE
;UPDATE ADDRESS HI
+AND POINT SET

10 08 04 02 01; TABLE SETTING PTS
EF F7 FB FD FE; TABLE CLEAR POINTS

JSR
JMP
LDX
LDA
JSR
JMP
CLC
BCC

$0C27
SOC2E
#$19
#3540
$SOCOF
SCEOC

$SO0CE1l

+SET THE GRAPHIC MODE

; TURN OFF GRAPHICS
;REGISTER 25 SELECT
'ATR-BIT SET,TXT-BIT OFF
;SET THE TEXT MODE

;COPY CHAR ROM

;CLR CARRY FOR POINT OFF
+UNCONDITIONAL JUMP

123

Abacus Software C-128 Internals

OO0CEO 38 SEC ;SET CARRY FOR POINT SET
OOCEl1 85 FA STA $FA ; STORE X-LOW

OOCE3 86 FB STX SFB i STORE X-HI

OOCE5 84 FC STY SFC i STORE Y-COORD.

OOCE7 4C 46 OC JMP $0C46 ;POINT SET/CLEAR

As you see, there are five entry points available. The graphic page is
automatically cleared when the graphic mode is enabled. If you only want to

enable the graphic page, you can do this with the following BASIC
commands:

POKE DEC("D600"),25: POKE DEC("D601"),128

The following subroutines are reached with the five entry point
addresses:

$0CO0 Enable and clear graphic page
$0C03 Clear the graphics

$0C06 Back to text mode

$0C09 Seta point

$0COC Clear point

The coordinates for setting or clearing a point can be passed directly
with the SYS command. The syntax looks like this:

SYS <ENTRY POINT>,<X LOW>,<X HIGH>,<Y>
For example, the command
SYS DEC("'0C09"),0,185,191

is necessary to set the point with the coordinate (185,191). The general call
looks like this:

SYS DEC("0C09"),X AND 255,X/256,Y

By the way, it pays to append the % sign to the variable names
whenever possible because then the variable is treated as an integer
variable--leading to great increases in speed. Unfortunately, this doesn't
work for loop variables. The constants 255 and 256 should be defined as
integer variables--this also increases the speed because the values do not
have to be recalculated by the interpreter each time. We have made use of
this in our example program.

124

Abacus Software C-128 Internals

Here is the BASIC loader for the graphics package:

20 :

30 FOR I= DEC("0COQ") TO DEC("OCE9")

40 : READ XS$:X=DEC (XS)

50 : POKE I,X

60 : S=S+X

70 NEXT

80 IF S<> 25905 THEN PRINT"****x* ERROR IN DATA
STATEMENTS **Xx*x*"n

90 INPUT"SAVE PROGRAM TO DISKETTE";AS

100 IF AS<>"Y" THEN END

110 PRINT:INPUT "FILE NAME";F$

120 BSAVE""+F$+"",B0,P3072 TO P3306

130 END

140

1000 DATA 4c,cD,0cC,4c,DoO,0cC,4c,D3,0C,4C,E0,0C, 4C,DD,0C, 8E

1010 DATA 00,D6,2C,00,D6,10,FB,8D,01,D6,60,8E,00,D6,2C,00

1020 DATA D6,10,FB,AD,01,D6,60,A2,19,A9,80,20,0F,0C,A0,40

1030 DATA aA2,12,98,20,0F,0C,A2,1F,A9,00,20,0F,0C,A2,1E,20

1040 DATA oOF,0C,88,10,EB,60,08,A5,FA,85,FE, 46,FB,66,FA, 46

1050 DATA FB,66,FA,46,FB,66,FA,A9,00,85,FD,A5,FC,06,FC,26

1060 DATA FD,06,FC,26,FD,65,FC,85,FC,90,02,E6,FD,A2,04,06

1070 DATA Fc,26,FD,CA,DO,F9,A5,FA,65,FC,85,FC,90,02,E6,FD

1080 DATA A2,12,A5,FD,20,0F,0C,E8,A5,FC,20,0F,0C,A2,1F,20

1090 DATA 1B,0C,48,A5,FE,29,07,AA,68,28,B0,05,3D,C5,0C, 90

1100 DATA 03,1D,BD,0C, 48,A2,12,A5,FD,20,0F,0C,E8,A5,FC,20

1110 DATA oF,0C,A2,1F,68,20,0F,0C,A2,12,4C,1B,0C,80,40,20

1120 DATA 10,08,04,02,01,7F,BF,DF,EF,F7,FB,FD,FE,20,27,0C

1130 DATA 4c,2E,0C,A2,19,A9,40,20,0F,0C,4cC,0C,CE,18,90,01

1140 DATA 38,85,FA,86,FB,84,FC,4C,46,0C

10 REM *** BASIC LOADER FOR 80 COLUMN GRAPHICS***

This routine is located in the RS-232 input buffer and can therefore be
called from any bank configuration. This memory area was chosen because
it is seldom used. If you do need it, you must move the routine to a new
area and make the appropriate changes to the program.

In conclusion, we do not want to leave you with the graphics package
alone, we we wrote a short example program in BASIC which draws a
damped oscillation on the 80-column screen. We find that the execution
speed is quite satisfactory. You can also learn more about the operation of

125

Abacus Software C-128 Internals

the graphic routines from the example program. Naturally you can change
the function in line 30 to see what "your" function looks like.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210

220

REM ** EXAMPLE PROGRAM FOR GRAPHICS PACKAGE **

DEFFNR (X)=40*SIN (X) *EXP (-0.5*X) +100
FAST: TRAP 1000: REM IN CASE OF ERROR IN FNR (X)
F%=256: FF%=255: SE=DEC("C09"): RE=DEC ("COC")
SYS DEC("COO0"): REM GRAPHICS ON
Y$=100: REM DRAW X-COORDINATE
FOR X=0 TO 639 STEP 3: REM DOTTED LINE
SYS SE,X AND FF%, X/F%, Y%
NEXT
X%=320: REM DRAW Y-COORDINATE
FOR Y=0 TO 199 STEP 2 : REM DOTTED LINE
SYS SE,X% AND FF%, X%/F%, Y
NEXT
C=-32
FOR X=0 TO 639
FU%=FNR(C) : IF FU%<0 OR FU%>199 THEN 190
: SYS SE,X AND FF%, X/F%, FU%
C=C+.1
NEXT
GETKEY A$: REM *** DONE, WAIT FOR KEY, BACK TO
TEXT
SYS DEC("C06"): PRINT CHRS(147): SLOW

1000 PRINT ERRS$ (ER);EL

There are an unlimited number of applications for graphics. We will let
your imagination run free here. We wish you much success with the use of
the 80 column graphics routines.

126

CHAPTER 6

Abacus Software C-128 Internals

Chapter 6: The Memory Management Unit

6.1 Introduction to the MMU

The Memory Management Unit (MMU) was designed to handle the
complex addressing tasks in the C-128. As you may know, the 8502 and
the Z-80 can address only 64K. You know from BASIC that the two RAM
banks can only be addressed separately. Each 64K of RAM overlays the
ROM and the I/O components. For example, there are two different RAMs
at address $D600, the I/O provided by the 80-column controller and the
ROMs. If a cartridges is inserted into the expansion slot, the MMU must
differentiate this too.

The MMU is also used in the 64 mode and is completely compatible
with the C-64. In addition it can handle the tasks that come up in the C-128
and CP/M modes. It also performs the computer mode selection and selects
between the 8502 and the Z-80. Here is a list of its features:

* Manages the translated address bus (TA8-TA15)

* Selects the computer mode (C-64, C-128, CP/M)

* Selects the processor (Z-80, 8502)

* Prepares and manages the CAS selection lines for bank-switching
the RAM.

The MMU has a total of 11 registers that are found starting at address
$D500. Since the I/O range is not always enabled, the memory
configuration register and load registers A-D are copied into the memory
range $FF00 to $FF05. This way there are four set configurations found in
the preconfiguration registers A-D. They can be selected simply by loading
a load register into the configuration register, without having to enable the
I/O range. This is a very useful feature and saves both time and
programming effort. But more about this later.

129

Abacus Seftware C-128 Internals

Here is a graphic representation of the available registers:

$FF04 LCRD Load Configuration Register D

$FF03 LCRC Load Configuration Register C

$FFo02 LCRB Load Configuration Register B

$FFO1 LCRA Load Configuration Register A

$FF00 CR CONFIGURATION REGISTER
(Copy at $D501)

$D50B VR Version Register

$D50A P1H Page 1 Pointer -High

$D509 P1L Page 1 Pointer-Low

$D508 POH Page 0 Pointer-High

$D507 POL Page 0 Pointer-Low

$D506 RCR RAM Configuration Register

$D505 MCR Mode Configuration Register

$D504 PCRD Preconfiguration Register D

$D503 PCRC Preconfiguration Register C

$D502 PCRB Preconfiguration Register B

$D501 PCRA Preconfiguration Register A

$D500 CR CONFIGURATION REGISTER
(Copy at $FF00)

130

Abacus Software C-128 Internals

6.2 The Configuration Register

As already mentioned, there is a copy of some of the MMU registers at
address $FFO0 (independent of the enabled RAM bank). This is not quite
correct. In reality there is a copy of one register at address $FFOO; this is
the configuration register CR. If you read memory location $FF00, you get
the current contents of the configuration register. If you write to address
$FF00, the contents of the configuration register at $D500 in the MMU
change at the same time. The registers $FFO1 to $FF04 are just "half"
copies of the MMU registers. Half because when reading them they return
the current contents of the corresponding MMU preconfiguration register,
but when writing to these registers, the contents not of the corresponding
MMU registers, but the configuration register is changed.

This is not a disadvantage--quite the opposite. If you write to an LCRx
register, the CR will be loaded with the corresponding PCR. An example:
We write to LCRA at address $FF01. The contents of this register doesn't
change, but the contents of the CR does. The PCRA ($D501) is copied to
the CR. This is a very practical feature: We can change the CR register
without having to bother with the I/O range. We can select between four
configurations stored in the MMU. This means the programmer need only
say, "Select configuration #1," and the MMU switches this configuration
on. In machine language this selection looks simply like this:

STA SFF01 ;Acc. contents irrelevant--enable
configuration 1

At the start of a program one can pre-program the most-used configurations
into the four PCRs. But "manual” reconfiguration isn't much harder. Load
the accumulator with the bit pattern necessary and store this at address
$FF00. Example for bank 15:

LDA #00 ;corresponds to BANK 15 command
STA SFF00 ;select configuration

All eight bits of the configuration register are relevant:

Bits 7,6 Select RAM bank. The bit combinations 00 and 01 are
possible in the 128K version. But since memory expansion,
up to 256K is allowed, the possibilities 10 and 11 exist for
this expansion. If these RAM banks are not present, 10
means the same as 00 and 11 the same as 01.

131

Abacus Software C-128 Internals

Bits 5,4 Select what will be accessed when the memory range $C000
to $FFFF is addressed:
00 - System ROM (kernal)
01 - Internal function ROM
10 - External function ROM
11 - RAM (bank, see bits 6 and 7)

Bits 2,3 Select what will be accessed when the memory range $8000
to $BFFF is addressed:
00 - System ROM (BASIC)
01 - Internal function ROM
10 - External function ROM
11 - RAM (bank, see bits 6 and 7)

Bit 1 Select what will be accessed when the memory range $4000
to $7FFF is addressed:
0 - System ROM (BASIC)
1 - RAM (bank, see bits 6 and 7)

Bit0 Select what will be accessed when the memory range $D000
to $DFFF is addressed:
0 - System I/O
1 - RAM/ROM, dependent on bits 4 and 5

It should be noted that when ROM is enabled in the range $C000 to
$FFFF (bits 4 and 5) there is always a gap in the range $D000 to $DFFF. If
the system I/O is enabled, the system I/O components occupy this range. If
bit 0 is set, the character generator is found here.

6.2.1 The preconfiguration registers

The preconfiguration registers are found at addresses $D501 to $D504
and copies of them are found at addresses $FF01 to $FF04. They have no
significance in the C-64 mode. Preconfiguration registers are registers in the
MMU which can be pre-programmed with specific memory configurations.
These pre-programmed configurations can be transported to the
configuration register by means of the "Load Configuration Register".The
use of these registers was described in section 6.2. The bits are encoded in
the same manner as for the configuration register. The encoding is also
found in section 6.2.

132

Abacus Software C-128 Internals

6.3 The Mode Configuration Register

The mode configuration register is found at address $D505. It sets the
current computer mode, that is, which CPU is operational (8502 or Z-80)
and whether the 64 or 128 mode is active.

Bit7 Indicates if the 40/80 column key was pressed at reset. 0=80
column, 1=40 column mode.

Bit 6 This bit indicates whether the 64 or 128 mode is active;
0=128 mode. After power-up or RESET the 128 mode is
always active.

Bits 4,5 These two bi-directional bits indicates whether or not the
cartridge lines GAME or EXROMIN are being used. If so,
the 64 mode must be enabled and control passed to the
cartridge. In the 128 mode these lines are not used.

Bit3 FSDIR control bit. This bit is used as the output bit for the
fast serial data bus buffer as well as the input bit for the disk
enable signal.

Bits 1,2 These bits have no significance.

Bit0 This bit selects the processor; 1=Z-80, 0=8502.

If bit O of this register is written to, the contents are temporarily
buffered until the current clock cycle is done. Otherwise, complications
could occur when the processors are switched.

By looking at bit 0 we can determine whether the Z-80 or the 8502 is
operational. When writing to this register, the bit is stored until the clock
pulse falls. If the bit is set, the Z-80 is active and the range $D000 to
$DFFF is mirrored in the range $0000 to $OFFF. The BIOS ROM is also
physically located at the range $0000 to $OFFF. The BIOS ROM can't be
read (via software) when the 8502 is enabled.

For example, if the Z-80 is enabled, the 8502 is stopped and the Z-80
continues where it left off. This simply means that the PC (Program
Counter) continues with the course of the program. The same is true when
the 8502 is switched on: it picks up its work where it left off and this takes
place immediately after the instruction to switch on the Z-80.

133

Abacus Software C-128 Internals

In the 64 mode the Z-80 enable line (defined by bit 0) is always zero so
that the Z-80 mode cannot be enabled in the C-64 mode. Furthermore, there

are no copies of the MMU registers in the addresses at $FF00 in the 64
mode.

6.4 The RAM Configuration Register

The RAM configuration register is found at address $D506 of the
MMU. It is used to define the common RAM areas. But why define
common RAM areas?

Quite simple: The interpreter, for example, stores all of the required
system variables and pointers in the zero page (although there really isn't a
zero page anymore). If the interpreter now switches to bank 1, for instance,
in order to read or write variables, these system pointers would no longer be
available since they are found in bank 0. It would be a lot of bother to have
to make changes in both memory banks every time a zero-page location was
changed.

To avoid this, the Commodore engineers thought it would be very
practical to be able to define a certain memory range so that it looked the
same in all RAM banks. In reality, the zero page is stored in only one RAM
bank, bank 0. If you then address this memory range in RAM bank 1 (or
another bank), the MMU recognizes this and addresses the corresponding
area in bank 0.

These common memory ranges are called common areas. The MMU
offers the programmer the option of defining whether or not he wants a
common area, and if so, how large it should be and where it should be
located. But first the register layout before we take a closer look at the
individual bits:

Bits 6,7 These two bits store the RAM bank for the VIC chip, where
the text or a graphic page will be stored. Normally the video
RAM is found in bank 0.
00=RAM bank 0, 01=RAM bank 1, 10=RAM bank 2(0),
11=RAM bank 3(1)

Bits 4,5 These two bits are still unused in the present version. They
are intended for expansion to 1Mbyte of RAM. Then
selecting these would address a 256K block.

134

Abacus Software C-128 Internals

Bits 2,3 Bits 2 and 3 indicate if and where a common area is defined.
00=no common area, independent of bits 0 and 1
Ol=lower area is common
10=upper area is common
11=both upper and lower areas are common

Bits 0,1 Here is defined how many Kbytes will be used as a common
area. These two bits are valid only when bits 2 and 3 are not
equal to 00.
00=1 Kbyte common area
01=4 Kbyte common area
10=8 Kbyte common area
11=16 Kbyte common area

When a common area is defined, the minimum area possible is 1K. But
is also possible to declare no area as common. To do this, set bits 2 and 3 to
zero. If only one of bits 0 and 1 are set, bits 4 and 5 will have effect.
Normally, only the lower area with 1Kbyte is defined as a common area. In
the 64 mode, this register has no effect.

If a 1Kbyte area is defined as a common area, the range $0000 to
$03FF is identical in both RAM banks if the lower area is enabled. If both
the upper and lower areas are enabled as the common area, the ranges
$0000 to $03FF and $FCO0 to $FFFF are identical in both RAM banks.
You can define up to 32K as a common area by defining both areas and
16K as the common area.

Bits 6 and 7 determine from which RAM bank the VIC chip should get
its information regarding the video RAM. This offers us fantastic
capabilities. It is very easy to manage two 40-column screens without
having to move the address of the video RAM, which is more complicated
than switching the RAM bank. In RAM bank 0 you can define screen
number 1 at address $0400 and screen 2 at the same address in bank 1. You
can then switch between the two by setting or clearing bit 6.

LDA #00 ;system I/0

STA S$FF00 ;enable

LDA $D506 ;o0ld RCR value

ORA #$40 ;screen in RAM bank 1
STA $D506 ;enable

135

Abacus Software C-128 Internals

6.5 The Page Pointer

There are two page pointers: one page pointer for the zero page, and a
page pointer for page 1, in which the stack normally lies.

$D507/$D508: Page pointer O
$D509/$D50A: Page pointer 1

The low-order byte of these pointers represents the address bits 8 to 15.
The high-order byte determines the RAM bank which will be used,
representing address bits 16 to 19. Bits 7-4 are not used in the high-order
byte.

If the high-order byte of a page pointer is written, it is stored
temporarily until the low-order byte of the pointer is also written.

If the zero page or page 1 is moved to another address, the MMU adds
the base address automatically to access the zero page or for stack actions.

Higher bytes ($D508/$DS0A)

Bits 7-4 unused

Bits 3-0 Address bits 16 to 19 for translated address (TA) ,
In the present version, only bit 0 is of interest; the remaining bits
1-3 are ignored.

Lower byte ($D507/$D509)

Bits 0-7 These bits represent the high-order byte of the page pointer, that
is, address bits 8-15. For the zero-page pointer this byte is
usually O; for the page-1 pointer it is 1.

The advantages are clear. You can have a separate stack for each
subroutine as well as a separate system-variable area if you don't call the

kernal routines. Moving the zero page has two advantages: Programs will
be shorter and faster.

Assembly language programmers are often searching for free memory
locations in the zeropage. As an example, the LDA ($xx),Y instructions
function only with zero-page addresses. Using the page pointers you can
move zero page to a free memory area.

136

Abacus Software C-128 Internals

The ability to move page 1 is also practical. This makes it possible to
give each subroutine its own stack. This is a very useful feature. You need
only save the stack pointer and then have a new stack available for the
subroutine. This results in more space on the stack, and the stack need not
be completely reconstructed when the routine is exited. You need only to
restore the page 1 pointer to the normal value ($01) and reset the stack
pointer SP. This is a particularly useful feature for PASCAL compilers.

Moving the stack might look something like this:

LDA #$00 ;system I/O

STA SFF00 ;enable

LDA #SFO ;stack at address $SF000
STA $D507 ;in RAM bank O

TSX ;and save SP

STX S$FD ;in zero-page SFD
IDX #SFF ;initialize

TXS ;new stack

Since the stack has been redefined, the stack must be reconstructed the
at the end of the routine, otherwise it is no longer possible to exit from the
subroutine with RTS. This reconstruction looks like this:

LDX $FD ;get old stack pointer

TXS ;and reset SP

LDA #$01 ;stack again at address $0100
STA $D507 ;default value

RTS ;return now possible

_ Hereis a rather unconventional way to clear the screen. It is used often
in professional programs because it is very fast. It is used in graphics
programs for filling surfaces, for example.

The whole thing is done by "misusing" the stack pointer for addressing.
A PHA instruction writes the contents of the accumulator to the current stack
address and the stack address is automatically decremented--all of this in a
one-byte command. This is much faster since it's all done in hardware. In
the "normal" assembler notation this looks like this:

STA ($xx),Y
DEY

137

Abacus Software

C-128 Internals

The addressing mode is more complicated for the CPU, so it needs
more time. The same action requires three bytes, and it is slower since the
code must be fetched, interpreted, and executed.

Our new screen-clear routine saves the stack pointer, places it at the
screen start $0400, and then pushes the accumulator onto the new stack
1024 times. After each 256 bytes the high-order byte must naturally be
incremented. The interrupts should also be disabled during the routine in
order to prevent stack overflow.

LDA #$00

STA S$FFO0O0

SEI

LDA #$04

STA $D509

TSX

STX S$FD

LDX #SFF

TXS

LDY #$03

LDX #$00

LDA #$20
NEXT PHA

DEX

BNE NEXT

INC $D509

DEY

BNE NEXT

LDX S$FD

TXS

LDA #$01

STA $D509

CLI

RTS

;BANK 15

;DISABLE INTERRUPTS

;NEW START ADDRESS OF THE SP
;IS $0400 IN RAM BANK 0

i STACK POINTER TO X

+AND SAVE CURRENT POINTER
;SP TO START OF STACK

;256 BYTES TIMES 4
;256-BYTE COUNTER

;FILL CHARACTER

; SAVE CHARACTER

; DECREMENT LOOP

;NEXT CHARACTER

; INCREMENT SP HIGH BYTE
;ALL FOUR BLOCKS FILLED?
;NO, NOT YET

;GET OLD SP

;AND STORE AGAIN

;HIGH BYTE OF ORIGINAL STACK
;AND SET

; REENABLE INTERRUPTS

;END OF THE CLEAR ROUTINE

This routine isn't much longer than a "traditional” screen-clear routine
and it is much faster. It also demonstrates the capabilities that are possible
by changing the page-pointer base addresses.

138

Abacus Software C-128 Internals

6.6 The Version Register

Bits 7-4 Bank version; These bits give information as to the total available
memory space. As already mentioned, the computer has the
possibility to expanded to 1Mbyte. The standard contents of this
register for the 128 are $20. The "2" stands for two 64K blocks.
A 1M version would contain sixteen 64K blocks. Bits 7-4 of this
register would then contain a 0.

Bits 3-0 WI\AMUU version; These bits indicate the version number of the

The system version register is quite uninteresting for actual memory
management. The low-order nibble contains a specification of the MMU
version. In the high-order nibble the existing memory construction can be
read. Here programs can determine how much memory they can access and
set themselves accordingly. Future programs will undoubtedly do this.

139

CHAPTER 7

Abacus Software C-128 Internals

Chapter 7: Assembly Language Programming

7.1 Introduction to Assembly Language Programming

We hardly need to explain to an Internals reader what assembly or
machine language is. This chapter is designed to show you how to use the
operating system routines in your own programs. Why keep reinventing the
wheel? There is a whole set of useful routines available which can be very
easily accessed. This makes your programs shorter and easier to read.

We want to make the work easier for you and explain the kernal
routines by means of short examples. Naturally, we cannot go into all of the
kernal routines; there are simply too many.

7.2 The CPU - The 8502

The heart of a computer is the CPU and in the C-128 it's the 8502, in
addition to the Z-80. It is fully software-compatible to the 6510 and its
predecessor, the 6502. In contrast to the 6510, the 8502 can be driven at
2MHz--making it twice as fast.

The pinout:
1 OIN System clock input; selectable 1 or 2MHz (approximately)
2 RDY Ready; O=processor stops on the next clock cycle until
RDY=1. This can be used to operate slow memory, for
example.
3 -IRQ Interrupt request; O=processor gets the next commands

address from $FFFE and continues from there. This occurs
only when interrupts are enabled.

4 -NMI Non-maskable interrupt; O=processor gets the next
command address from $FFFA and continues from there. This
interrupt cannot be disabled.

5 AEC Address enable control; O=processor brings data,
address, and control bus to the high-Z state (tri-state). The bus
can then be driven by other devices, such as a second
processor.

6 VCC Operating voltage +5V.

143

Abacus Software C-128 Internals

7-20 A0-A13; Address bus.

21 GND

22-23 Al4-A15; Address bus

24-29 P5-P0; I/O pins

30-37 D7-D0; data bus

38 R/-W; O=write access, 1=read access
All access occur only when 02=1.

39 020UT; System clock output for supplying other components

40 RES Reset; O=processor goes into the rest state. When the
signal goes from O to 1, the processor gets an address from
$FFFC executes the program at that address.

7.3 The Kernal Routines

First we like to dedicate ourselves to the routines that are found in part
in the extended zero page. These include the very important routines which
allow you to read from, write to, or peform a comparison with any memory
location in any bank.

7.3.1 FETCH, STASH, and CMPARE

These three routines are used to read, write, and compare memory
locations in any bank, regardless of the memory configuration. The
configuration is unchanged after calling one of these routines.

When calling the routines, you must pass the configuration index in the
X register. The operating system has 16 configurations of the 128 possible
stored in a table at $F7F0.

Find the desired memory configuration from the table on the next page
and load it into the X register.

144

Abacus Software C-128 Internals

X-Register Memory Configuration

only RAM O

only RAM 1

only RAM 2 (RAM O0)

only RAM 3 (RAM 1)

Int. ROM, RAM O, I/0

Int. ROM, RAM 1, I/O

Int. ROM, RAM 2, I/0

Int. ROM, RAM 3, I/0

Ext. ROM, RAM O, I/0

Ext. ROM, RAM 1, I/0

Ext. ROM, RAM 2, I/O

Ext. ROM, RAM 3, I/0
Kernal, Int (Lo), RAM 0, I/O
Kernal, Ext (Lo), RAM 1, I/0
Kernal, BASIC, RAM 0, CHARROM
Kernal, BASIC, RAM 0, I/O

b WNhEFEO

RRRRRRPROOJOOBRWNREO

7.3.1.1 FETCH
Part of the FETCH routine is found at address $02A2 in RAM. To read
from a memory location, the following parameters are passed to this routine:
Acc :pointer to zero-page address
X-reg : configuration index (see above)
Y-reg : offset for the address
Before calling FETCH, place the two byte address of the memory
location to be read into a zero-page location. Then pass the address of the
zero-page location into the Accumulator.

The following example program reads from address $1000 in bank 1:

LDA #$00 ;LOW BYTE OF $1000

145

Abacus Software

C-128 Internals

LDA
STA
LDA
STA
LDA
LDY
LDX
JSR

#$00
SFC
#$10
$SFD
#SFC
#$00
#3501
SFF74

+LOW BYTE OF $1000

+ IN ZERO PAGE

+HIGH BYTE OF $1000

; IN ZERO PAGE
+ADDRESS IN ZERO PAGE
;OFFSET IS ZERO
+SELECT RAM BANK 1
;FETCH--RETURN IN ACC.

After the call the accumulator returns the contents of the memory
address. The X-register contains the current configuration and the Y-register

remains unchanged.

7.3.1.2 STASH

The STASH routine is essentially the opposite of the FETCH routine.
Since you must pass in the accumulator the value to be stored, the
accumulator can no longer be used to pass the address of the zero-page
pointer. This is why you have to do "by hand" what the FETCH routine did
for you automatically.

Writing to the memory address $1000 in bank RAM looks like this:

LDA
STA
LDA
STA
LDA
STA
LDA
LDX
LDY
JSR

#$00
SFC
#$10
SFD
#SFC
$02B9
#SFF
#$01
#$00
SFF77

;LOW BYTE OF $1000

; IN ZERO PAGE

;HIGH BYTE OF $1000

;IN ZERO PAGE

; ZERO PAGE ADDRESS OF THE POINTER
;WRITE TO STASH ROUTINE

;VALUE TO BE WRITTEN

;RAM BANK 1

;OFFSET FOR ADDRESS

;CALL STASH

After calling the STASH routine, the accumulator and the Y-register are
unchanged; the X-register contains the current configuration.

The MMU register can be written in the same manner, without having
to change the configuration. The same applies to the I/O components.

146

Abacus Software C-128 Internals

7.3.1.3 CMPARE

The CMPARE routine compares the contents of a memory location with
the contents of the accumulator. To do this, you have to write the address of
'the memory location to be compared into the CMPARE routine before
calling it. Comparing the memory location $1000 in bank 1 with the value
$22 would look like this:

LDA #$00 ;LOW BYTE OF $1000

STA SFC ;IN ZERO PAGE

LDA #$10 ;HIGH BYTE OF $1000

STA S$FD ;IN ZERO PAGE

LDA #$FC ;ADDRESS OF THE PTR IN THE ZERO PAGE
STA $02C8 ;WRITE TO CMPARE ROUTINE

LDA #$22 ;VALUE TO BE COMPARED TO

LDX #$01 ;RAM BANK 1

LDY #$00 ;OFFSET

JSR SFF7A ;COMPARE ($1000) IN RAM 1 TO $22

After the routine has been called, the flags (zero, minus, and carry) are
set according to the comparison. The accumulator and the Y-register remain
unchanged, the X-register contains the current memory configuration.

7.3.2 GETCONF

This routine does nothing more than get the configuration byte from the
table at $FF70 corresponding to the configuration index in the X-register.
This value is simply returned; it is not set. Since the kernal ROM must be
enabled in order to jump to this routine, it's recommended that you read the
configuration byte from the table; it goes faster.

ILDX #$OF ;SELECT CONFIGURATION 15
JSR SFF6B ; GETCONF
STA SFF00 ;SET CONFIGURATION
would be the same as:
ILDX #$SOF ;SELECT CONFIGURATION 15

LDA $F7F0,X ;GET CONFIGURATION BYTE
STA $FF00 ;SET CONFIGURATION

147

Abacus Software C-128 Internals

The length of the routine is the same--it can be shortened by doing it
directly (without the X-register):

LDA SF7F0 + $OF
7.3.3 JSRFAR and JMPFAR

If, for example, you have blocked out part of the ROM and want to
jump to a kernal routine, you can do this via the JSRFAR routine. Here the
CPU registers are not used for passing parameters but the zero-page
addresses $02 to $09.

$02 Configuration index

$03, $04 New PC - jump address
$05 New processor status

$06 Accumulator

$07 X-register

$08 Y-register

$09 SP - stack pointer

The corresponding values are found at $05 as the output parameters.
Let us assume that we have configuration 1 enabled--that is, only RAM 1.
We want to determine the contents of address $0400 in RAM bank O (the
left-hand corner of the 40-character screen). We must use the FETCH
routine for this. For example:

LDA #$7F ;ENABLE RAM 1 AND KERNAL

STA S$FFO00 ;INTO CONFIGURATION REGISTER

LDA #$SOF ;CONFIGURATION IDEX KERNAL & RAM 0
STA $02 ;PASS

LDA #SFF ;HIGH BYTE OF S$FF74

STA $03 ;PASS

LDA #$74 ;LOW BYTE OF THE DESTINATION ADDRESS
STA $04 ;PASS SFF74

LDA #$00 ;LOW BYTE OF $0400

STA SFC ; SAVE

LDA #$04 ;HIGH BYTE OF $0400

SAT S$FD ;PASS

LDA #SFC ;ZERO-PAGE ADDRESS OF THE POINTER
STA $06 ;AND PASS

LDA #300 ;ADDRESS RAM BANK O

148

Abacus Software C-128 Internals

LDA #$00 ;VALUE FOR Y-REGISTER FOR FETCH

STA $08 ;SAVE OFFSET

JSR SFF6E ;CALL JSRFAR

LDA $06 ;HERE IS THE VALUE FROM $0400 IN
RAM O

A lot of parameters to pass, right? First it's very important to ensure
that the kernal range $C000 to $FFFF is enabled. No RAM may be
addressed here or the JSRFAR routine will hang up (even if you call the
JSRFAR routine directly at $02CD--it simply branches back to the kernal).
So you should always check this before calling JSRFAR, which we do in
our example routine first. RAM bank 1 is enabled by the byte $7F and all
memory areas except for $C000 to $FFFF are switched to RAM. Then the
new configuration register is defined.

The second important point: The program counter PC is defined with
the high byte at address $03 and the low byte at address $04; note that this
is not the usual machine language convention.

All specifications that are not absolutely necessary can be omitted.
Usually all that is required is to define the memory configuration in $02 and
then the new program counter in $03/$04. All the others are options which
may be useful at various times.

The routine JSRFAR writes the corresponding values at addresses $05
to $09 when it returns. In our example, use is also made of parameter
passing in the accumulator.

We now want to show you another short example. Imagine that you
have program code in RAM bank 0 as well as RAM bank 1. This first
routine is the "subroutine" in bank 1 which in our example does nothing
more than add the accumulator and X-register. The carry is indicated in the

carry flag. Enter the routine in the monitor with A 12000. You then select
RAM bank 1.

12000 LDA $06 +ACC PARAMETER

12002 CLC ;CLEAR CARRY FOR ADDITION
12003 ADC $07 +ADD TO X REGISTER

12005 RTS +END OF THE ROUTINE

The routine gets the contents of the accumulator from address $06 and
then adds it to the X-register. The contents of the accumulator are returned
in address $06. In this example it is important that the processor status

149

Abacus Software C-128 Internals

in address $06. In this example it is important that the processor status
register, containing the flags, is passed to address $05. In the main program
the carry flag can be tested with BCC or BCS. But here is the routine in
RAM bank 0, which calls the routine in RAM bank 1 by means of the
JSRFAR routine:

02000 LDA #$3F ;RAM 0 AND KERNAL
02002 STA S$FF00 ;SET AS CONFIGURATION
02005 LDA #$0D ;RAM 1 AND KERNAL
02007 STA $02 ;NEW CONFIGURATION
02009 LDA #$20 ;ACC IS $20

0200B STA $06 ;PASS

-0200D LDA #S$FF ;ADD SFF

0200F STA $07 ;PASS

02011 LDA #$20 ;HIGH BYTE OF $2000
02013 STA $03 ;PASS AS PC

02015 LDA #3$S00 ;LOW BYTE OF $2000
02017 STA $04 ;PASS AS PC

02019 JSR S$FF74 ;CALL JSRFAR

0201C LDA $05 ;GET FLAGS

0201E PHA ;ON STACK

0201F PLP ;AND IN FLAG REGISTER
02020 LDA $06 ;LOW BYTE OF ADDITION
02022 STA S$FD ;STORE AS LOW BYTE
02024 LDA #$00 ;HIGH BYTE

02026 STA S$FE ; STORE

02028 BCC $202C ;NO CARRY, THEN JUMP
0202A INC S$F= ; COMPENSATE FOR CARRY
0202C BRK ; TO MONITOR

When you enter and start this routine, you will find the result of the
addition $FF+$20 = $11F at address $FD/$FE. This routine shows how to
get the flags which are passed in memory location $05 actually into the
status register: Load the accumulator with the contents of $05, push it onto
the stack, and then pull it into the status register.

The JMPFAR routine works the same way as JSRFAR. Here however
there is no return via RTS, but that is also why this routine is called
JMPFAR. Naturally, no output parameters can be checked since there is no
return.

150

Abacus Software C-128 Internals

7.4 The Important Kernal Routines
7.4.1 Kernal routines with vectors at $FF4D

First we want to look at the kernal routines defined via jump vectors at
address $FF4D. These include the most important routines, from input and
output of characters to the RS-232 routines.

The routines are introduced in the order of their definition at $FF4D.
Whenever possible, the input/output parameters are given, as well as a short
description. Where appropriate, a short example routine accompanies the
description. The entry addresses are given in both decimal (in parentheses)
and hexadecimal.

When vectors are present, you should always use them to access the
routine--it's why they are there. Should the operating system ever be
changed or extended, the location of these vectors will not be changed so
your program will not crash or go crazy.

C64 MODE

Purpose: Enable the 64 mode
Address: $FF4D (65357)

Description: A jump to this routine causes the computer to switch from the
128 mode to the 64 mode. The clock frequency is reduced to 1MHz and the

MMU locks all of the necessary registers so that they cannot be manipulated
in the 64 mode. There is no return!

Input parameters: None
Output parameters: -none, since no return-

151

Abacus Software C-128 Internals

DMA-CALL

Purpose: Initialize external RAM components
Address: $FF50 (65360)

Description: In order to have direct memory access (DMA) to external
RAM, it must be first initialized with this routine. The new configuration is
passed in the X-register.

Input parameter: .X

Output parameters:

BOOTCALL

Purpose: Boot the disk
Address: $FF53 (65363)

Description: When this routine is called, the computer attempts to boot from
the disk inserted in the drive--the same as when the computer is turned on.
If the routine cannot find a boot file, it returns control. The device address is
passed in the X-register so you can boot from device 8 or 9.

Input parameter: .X
Output parameters:
PHOENIX

Purpose: Cold start
Address: $FF56 (65366)

Description: Cold start the 128 mode. If a memory card is found in the

expansion cartridge, control is passed to this card. Otherwise an attempt is
made to boot the disk. Tabs, key definitions, etc. are all reset.

152

Abacus Software C-128 Internals

LKUPLA

Purpose: Search in the table for logical file number
Address $FF59 (65369)

Description: The routine searches in the table for the device and secondary
addresses of the logical file number given in the accumulator. The status
variable ST is set according to the results of the routine. If the logical file
number is found, the carry is cleared and the following parameters are
transmitted: A:LFN, X:device address, Y:secondary address. If the routine
does not succeed, the carry is set. Only logical file numbers opened with
OPEN can be found.

Input parameter: .A contains the LFN to find
Output parameters: Status ST at $90, .A, .X, .Y, carry
Zero-page address $B8 to $BA

Example:
;Search for LFN
LDA #$01 ;SEARCH FOR LFN 1
JSR SFF59
BCS ERROR ;NOT OPENED--OUTPUT ERROR
TAX ;LFN TO X
JSR $FF59 ;CKOUT - SET FILE AS OUTPUT FILE

LKUPSA

Purpose: Search for a secondary address
Address: $FF5C (65372)

Description: This routine looks in the table of opened channels for the
secondary address passed in the Y-register. As for the LKUPLA routine,
the carry flag is set if the search failed. The carry is cleared if the search
succeeded and the accumulator contains the LFN, the X-register contains
the device address, and the Y-register the secondary address.

Input parameters: .Y contains the SA to search for

Output parameters: Status ST at $90, .A, .X, .Y, carry
Zero-page addresses $B8 to $BA

153

Abacus Software C-128 Internals

Example:
;Search for LFN of disk command channel
ILDY #$0OF ;SEARCH FOR LFN WITH
JSR SFF5C ; SECONDARY ADDRESS 15
BCS ERROR ;NOT FOUND, RETURN ERROR
TAX ;LFN TO X
JSR CKOUT ;OPEN AS OUTPUT DEVICE
JSR INITD ;INITIALIZE DISKETTE

SWAPPER

Purpose: Switch 40/80 columns
Address: $FF5F (65375)

Description: This routine exchanges the 40/80 column mode. The
information in the zero page for the active screen must be exchanged with
that of the passive screen. The memory range $EO to $FA is exchanged with
the area $0A40 to SOASA. No input parameters are necessary.

Example:
;Clear both screens
JSR $C142 ;CLEAR SCREEN
JSR SFFS5F ;EXCHANGE 40/80 COLUMN MODE
JSR $C142 ;CLEAR PASSIVE SCREEN TOO
JSR S$FFS5F ;BACK TO CURRENT SCREEN

DLCHR

Purpose: Copy the CHARROM
Address: $FF62 (65378)

Description: The character set is copied into the VDC RAM when the
<40/80 DISPLAY> key is pressed because the 80-column controller does
not get the character information from ROM. The graphics package, for
example, makes use of this routine because the character set in VDC RAM
is overwritten when graphics are used. The character set selected by the
<40/80 DISPLAY> key and is copied into VDC RAM by this routine.
There are neither input nor output parameters. ,

154

Abacus Software C-128 Internals

PFKEY

Purpose: Redfine a key
Address: $FF65 (65381)

Description: This routine allows you to define the function keys (F1 to F8
as well as SHIFT/RUN-STOP and HELP). The address in the zero page
which points to the KEY text is passed in the accumulator. The X-register
contains the number of the function key (1 to 10) and Y contains the length
of the string. Then you can call the routine PFKEY, which inserts this
string into the table.

Input parameters: Zero page, .A, .X, .Y

Example: (at address $2100)
;Redefine the HELP key
LDA #$00 ;LOW BYTE OF $2000
STA SFC ;STORE IN ZERO PAGE
LDA #$20 ;HIGH BYTE OF $2000
STA S$FD ;STORE IN ZERO PAGE
LDA #SFC ;POINTER
LDX #S0C ;REDEFINE HELP KEY
LDY #4 ; LENGTH OF STRING AT $2000
JSR S$FF65 ;REDFINE KEY

And at address $2000:

02000 52 55 4E OD

SETBNK

Purpose: Define memory bank for disk operation
Address: $FF68 (65384)

Description: This routine must be called before LOAD, SAVE, VERIFY,
and every OPEN command. The configuration index of the filename is
passed to it in the Y-register, as well as the configuration index of the
memory area to be processed in the accumulator. The Y-register is stored in

zero-page address $C6 and the accumulator in $C7. See also the example
for SETNAM (FFBD).

Input parameters: .A,.Y

155

Abacus Software C-128 Internals

GETCONF

Purpose: Get the configuration byte
Address: $FF6B (65387)

Description: There is a table of 16 of the memory configurations required
for normal operation. This table is found at address $F7F0. You pass the
configuration index to this routine in the X-register and you get the
configuration byte back in the accumulator. Normally this byte is then
written in the configuration register at address $FF00 of the MMU.

Input parameter: .X
Output parameter: .A

Example:
;Set RAM bank 1
LDX #$01 ;ONLY RAM BANK 1
JSR SFF6B ;GET CONFIGURATION BYTE
STA SFFOO ;AND SET

 JSRFAR

Purpose: Jump to a subroutine in any bank
Address: $FF6E (65390)

Description: The routine JSRFAR is used to jump to a subroutine in any
configuration. The parameters are passed through zero-page locations $02
to $09. After the routine returns, the old configuration is re-enabled. A
precise description including example program is found in Section 7.3.3.

Input parameters: Zero page $02 to $09
Output parameters: Zero page $05 to $09
JMPFAR

Purpose: Jump to any bank
Address $FF71 (65393)

Description: Here again the parameters are passed through zero-page
addresses $02 to $09. JMPFAR is not a subroutine call but just a jump to an

156

Abacus Software C-128 Internals

address in a bank; JMPFAR combines switching the configuration byte with
the jump. Since there is no return here, no parameters are returned. You can
find more about this routine in Section 7.3.3.

Input parameters: Zero page $02 to $09

INDFET

Purpose: Get a byte from any bank
Address: $FF74 (65396)

Description: This routine, completely contained in the zero page, allows you
to read any memory address in any configuration without having to change
the current configuration. To do this you must first define a pointer in a
zero-page address to the memory location to be read. This zero-page
address is then passed in the accumulator, while the configuration index is
passed in the X-register and the offset to the zero-page pointer in the
Y-register. You can find more information about the FETCH (=INDFET),
STASH, and CMPARE routines in Section 7.3.1.

Input parameters: .A, .X, .Y, 1 zero-page address
Output parameter: .A

Example:
;Get $1000 from RAM bank 1
IDA #$00 ;LOW BYTE OF $1000
STA SFC ;STORE IN ZERO PAGE
LDA #$10 ;HIGH BYTE OF $1000
STA $FD ;STORE IN ZERO PAGE
LDA #S$SFC ;POINTER IN ZERO PAGE
LDX #$0D ;RAM 1 AND KERNAL
LDY #$00 ;OFFSET IS ZERO
JSR $FF74 ;GET BYTE FROM $1000, RAM BANK 1

INDSTA

Purpose: Store accumulator in any bank
Address: $FF77 (65399)

Description: Similar to the INDFET routine, this routine stores the contents
of the accumulator in any memory configuration. The parameters must be

157

Abacus Software C-128 Internals

passed in the accumulator, and the X and Y registers. The character to be
stored must be passed in the accumulator. The zero-page address at which
the pointer is stored must be defined at address $02B9. You can get more
detailed information about this routine in Section 7.3.1.

Input parameters: .A, .X, .Y, zero page, $02B9

Example:
;Store SFF at $1000 in RAM bank 1
LDA #$00 ;LOW BYTE OF $1000
STA SFC ; STORE
LDA #$10 ;HIGH BYTE OF $1000
STA SFD ; STORE
LDA #$SFC ;ADDRESS IN ZERO PAGE
STA $02B9 ;PASS TO INDSTA ROUTINE
LDA #S$FF ;VALUE TO BE WRITTEN
LDX #$0D ;RAM 1 AND KERNAL
LDY #$00 ;OFFSET IS ZERO
JSR $FF77 ;CALL INDSTA

INDCMP

Purpose: Compare the accumulator with memory in any bank
Address: $FF7A (65402)

Description: This routine compares the accumulator with any memory
location in any bank. Just as with the INDSTA routine, you must pass the
address of a zero-page pointer to the INDCMP routine. This is done at
address $02C8. The byte to be compared is passed in the accumulator while
the configuration index is passed in X and the offset in the Y-register. After
calling the routine, the result of the comparison--the processor status
byte--is found at address $05. The example below shows how you can react
accordingly to the result of the comparison. More information is in Section
7.3.1.

Input parameters: .A, .X, .Y, zero page, $02C8
Output parameters: $05 (status)

Example: '
;Compare <acc> with <$1000> in bank 1
LDA #$00 ;LOW BYTE OF $1000
STA S$SFC ; STORE

158

Abacus Software C-128 Internals

LDA #$10 ;HIGH BYTE OF $1000

STA SFD ; STORE

LDA #SFC ;POINTER IN ZERO PAGE

STA $02C8 ;PASS TO INDCMP ROUTINE

LDA #SFF ;COMPARISON OPERAND

LDX #$0D ;RAM BANK 1 AND KERNAL

LDY #$00 ;OFFSET

JSR S$FF7A ;CALL INDCMP

LDA 305 ;GET STATUS (RESULT OF COMPARE)

PHA ;ON STACK AND THEN
PLP ; IN PROCESSOR STATUS REGISTER
BEQ EQUAL ;JUMP IF EQUAL
;——— NOT EQUAL ---

PRIMM

Purpose: Output text
Address: $FF7D (65405)

Description: This routine is very practical because it's simple to use. No
parameters need be passed. All characters following the call are sent to the
current output device via BSOUT. A zero-byte is used as the terminating
character. The program execution is then continued immediately following
the zero-byte. One disadvantage of this routine: The program will be
unreadable if it is disassembled.

Example:
JSR $FF7D ;OUTPUT FOLLOWING CHARACTER
.ASC "This is a string!"
.BYT $0D, $0A,$0D,$00
LDA #$00 ;THE PROGRAM CONTINUES HERE

See also the example in the ROM listing at $F908.

CINIT

Purpose: Initialize video controller and editor
Address: $FF81 (65409)

Description: The function keys are returned to the defaults, both video
controllers are initialized and the 40/80 column mode is enabled dependent

159

Abacus Software C-128 Internals

on the 40/80 column key. The keyboard buffer is cleared, all flags are reset,
and a CLRCH is performed.

IOINIT

Purpose: Initialize the input/output device
Address: $FF84 (65412)

Description: The input/output devices are initalized, meaning that the
RESET line on the serial bus is activated. Any printers connected are set to
their initial states and the disk drive clears its channels--it is like it had just
been turned on.

RAMTAS

Purpose: BASIC warm start
Address: $FF87 (65415)

Description: This routine initializes the zero page, resets the pointers for
SYSTOP and SYSBOT (the memory upper and lower boundaries), resets
the pointers for the RS-232 input/output buffers, and resets the cassette
buffer.

RESTOR

Purpose: Initialize system vectors
Address: $FF8A (65418)

Description: The system vectors at address $0314 to $0332 (inclusive) are
set to the default values. This routine should be called when you modified
many of the vectors and want to set them back. This routine calls the
following VECTOR routine with the carry cleared.

160

Abacus Software C-128 Internals

VECTOR

Purpose: Copy or reset system vectors
Address: $FF8D (65421)

Description: This routine copies the 16 vectors at $0314 to the address
defined by the X (low) and Y (high) registers, provided the carry flag is set.
If the carry flag is cleared, the vectors at $0314 are loaded with the area
given by the X and Y registers.

Input parameters: .X, .Y, carry

Example:
LDX #$00 ;LOW BYTE OF $1000
LDY #$10 ;HIGH BYTE OF $1000

CLC ;CLEAR CARRY FOR COPY ($1000)->($0314)
JSR $FF8D ;LOAD VECTORS

SETMSG

Purpose: Enable/disable DOS messages |
Address: $FF90 (65424)

Description: The routine stores the value of the accumulator in the zero-page
address $9D. If system messages should be printed, set bit 7 of the
accumulator. If $9D is positive, system messages are inhibited.

Input parameter: .A

SECND

Purpose: Send secondary address to LISTEN
Address: $FF93 (65427)

Description: The secondary address to be sent is passed in the accumulator.
The routine outputs the contents of the accumulator on the serial bus as the
secondary address.

Input parameters: .A

161

Abacus Software C-128 Internals

Example:
; SEND LISTEN
LDA #S$SFO ;SECONDARY ADDRESS 0 FOR CLOSE
JSR SFF93 ;SET SECONDARY ADDRESS

TKSA

Purpose: Send secondary address to TALK
Address: $FF96 (65430)

Description: This routine sends the secondary address given in the
accumulator on the bus preceded by a TALK signal.

Input parameter: .A

MEMTOP

Purpose: Set/get the memory top
Address: $FF99 (65433)

Description: If the carry flag is set, the maximum available memory location
is returned in the X-register (low) and Y-register (high). If the routine is
called with the carry cleared, the memory top is set with the two registers.

Input parameters: .X, .Y (for cleared carry), carry
Output parameters: .X, .Y (for set carry)

Example:
;Read the memory top
SEC ;READ THE TOP

JSR S$FF99 ;GET TOP

STX S$FC ; STORE

STY SFD ; STORE

LDX #$00 ;LOW BYTE OF $1000
1LDY #$10 ;HIGH BYTE OF $1000
CLC ;FLAG TO SET MEMTOP
JSR S$FF99 ;SET MEMORY TOP

162

Abacus Software C-128 Internals

MEMBOT

Purpose: Set/get the memory bottom
Address: $FFIC (65436)

Description: Similar to MEMTOP, the lower boundary of the available
memory is set with the two registers X (low) and Y (high) if the carry flag
is cleared. If the carry flag is set, the memory bottom is read and returned in
the two registers.

Input parameters: .X, .Y (for cleared carry), carry
Output parameters: .X, .Y (for set carry)

KEY

Purpose: Return key pressed
Address: $FFIF (65439)

Description: This routine is elementary to keyboard decoding. The keyboard
is checked for a pressed key by means of the keyboard decoding table. If a
pressed key is returned, the ASCII value is determined and placed into the
keyboard buffer at ($§034A).

SETTMO

Purpose: Set the time-out flag for IEEE
Address: $FFA2 (65442)

Description: The routine saves the value passed in the accumulator at
address $OAQE as the timeout flag for the IEEE routines. In order to permit
the timeout in the IEEE routines, bit 7 of the accumulator must be set.

Input parameters: .A

163

Abacus Software C-128 Internals

ACPTR

Purpose: Get a byte from the serial bus
Address: $FFAS (65445)

Description: The routine gets a byte from the serial bus. This character is
returned in the accumulator. The status byte ST at $90 is set according to the
action.

Output parameter: .A

CIOUT

Purpose: Output a character to the serial bus
Address: $FFAS8 (65448)

Description: This routine is counterpart of ACPTR. The character passed in
the accumulator is output on the serial bus. Here too the status byte ST at
$90 is changed according to the action.

Input parameter: .A

UNTLK

Purpose: Send UNTALK on the serial bus
Address: $FFAB (65451)

Description: This routine is called when closing or redirecting an input
channel. It silences a "talking" device.

UNLSN

Purpose: Send UNLISTEN on the serial bus
Address: $FFAE (65454)

Description: Corresponding to UNTALK, this routine shuts off a receiving
device. This is done when closing or redirecting an output channel.

164

Abacus Software C-128 Internals

LISTN

Purpose: Send LISTEN to a device
Address: $FFB1 (65457)

Description: A device on the serial bus is requested for input. The LISTEN
signal is sent over the serial bus to do this. The device address of the
appropriate device is passed in the accumulator. For example, a LISTEN is
sent to a printer before characters are sent to it over the serial bus. If you use
LISTEN, you must output the characters via the routine CIOUT (not via
BSOUT!). Use the routine UNLISTEN to close the channel. Only one
device may be active on the serial bus. To simplify all this, you can open
and close channels in the operating system. BSOUT and BASIN then take
care of sending LISTEN and UNLISTEN as well as TALK and UNTALK.

Input parameter: .A
Example:
;Send LISTEN to printer
LDA #$24 ;DEVICE ADDRESS FOR PRINTER AND

LISTEN ON
JSR SFFB1

TALK

Purpose: Send TALK to a device
Address: $FFB4 (65460)

Description: This routine sends the command TALK to a device. The device
address is to be passed in the accumulator. The TALK command requests a
device connected to the serial bus for talking, i.e. for sending information.

Input parameters: .A

165

Abacus Software C-128 Internals

READST

Purpose: Get the I/O status byte
Address $FFB7 (65463)

Description: The current system status is returned in the accumulator. If the
RS-232 is active, the status byte is returned and immediately cleared in
memory. If you need the status byte more often, save it somewhere. If a
channel other than the RS-232 channel is open, the status byte is returned in
address $90.

Output parameter: .A

SETLFS

Purpose: Set file parameters
Address: $FFBA (65466)

Description: This routine is required to open a file. The logical file number
is passed in the accumulator, the device address in the X-register, and the
secondary address in the Y-register. The routine stores these values in the
zero-page addresses from $BS to $BA.

Input parameters: .A, X, .Y

SETNAM

Purpose: Set the filename parameters
Address: $FFBD (65469)

Description: Information for the filename is stored in the zero page in this
routine. These specifications must all be made before the channel is opened.
The length of the filename is passed in the accumulator, the low byte of the
address at which the filename is stored in the X-register, and the high byte
in the Y-register. Furthermore, you must pass with the SETBNK routine
the configuration indices for the filename and the memory range to be
processed.

Input parameters: .A, .X,.Y

166

Abacus Software C-128 Internals

Example:
;Open one of the directory files on the disk
LDA #$0C ;AREA IN RAM BANK O
TAX ;FILENAME ALSO IN RAM BANK O
JSR S$FF68 ;CALL SETBNK
LDA #$01 ;LOGICAL FILENUMBER
LDX #$08 ;DEVICE ADDRESS
LDY #$00 ;SECONDARY ADDRESS FOR READING
JSR SFFBA ;SETFLS
LDA #$01 ;LENGTH OF THE FILENAME
LDX #$00 ;LOW BYTE OF THE ADDRESS AT WHICH
ILDY #$10 ;THE FILENAME IS STORED ($1000)
JSR SFFBD ;OPEN - OPEN THE CHANNEL

and at address $1000:
01000 24

OPEN

Purpose: Open afile
Address: $FFCO (65472)

Description: The file defined by the routines SETNAM, SETLFS, and
SETBNK is entered into the list of logical file numbers. Not until this is
done can the logical file number be used for the routines CKOUT and
CHKIN. A maximum of nine files can be open at one time.

CLOSE

Purpose: Close a logical file
Address: $FFC3 (65475)

Description: The logical file specified in the accumulator is closed. All
stored values like the device address, secondary address, etc. are erased
from the table. If an error is encountered, the carry flag will be set.

Input parameter: .A
Output parameter: carry

167

Abacus Software C-128 Internals

Example:
;Example for CLOSE
LDA #$01 ;CLOSE THE EXAMPLE FILE FROM SETNAM
JSR $FFC3 ;CALL CLOSE
BCS ERROR ;ERROR ENCOUNTERED

CHKIN

Purpose: Define a logical file as the input channel
Address: $FFC6 (65478)

Description: The logical file number to be used as the input channel is
passed in the X-register. The given logical file number must have already
been opened with the OPEN command. If the BASIN routine is called after
the OPEN command, the input is not done from the keyboard but from the
opened file; this can be from the disk drive. It should be noted that no
CHKIN is required when reading from the keyboard because it is the
standard input device. After a CLOSE or CLRCH, the keyboard is
automatically again the input device. The carry flag is also used as the OK
flag for this routine.

Input parameter: .X
Output parameter: carry

Example:
;Read the directory
JSR DIROP ;OPEN 1,8,0,"$" (SELF-DEFINED ROUTINE)
LDX #$01 ;LFN OF THE OPENED FILE
JSR $FFC6 ;EXECUTE CHKIN
JSR SFFCF ;BASIN--GET CHARACTER

N

CKOUT

Purpose: Define a logical file as the output file
Address: $FFC9 (65481)

Description: This routine defines a file passed in the X-register as the output
file. It must have been previously opened properly. A file opened with
OPEN 1,8,0,"$" and then defined as the output file with CKOUT would
result in an error because this file was opened for reading and not for
writing. After defining an output file, the screen is no longer the output

168

Abacus Software C-128 Internals

device -- the output file is. All characters output via BSOUT are sent to this
device. The carry flag is used to indicate an error. If it is cleared, the
operation was successful.

Input parameters: .X
Output parameters: carry

CLRCH

Purpose: Close input/output channel
Address: $FFCC (65484)

Description: This routine clears any input or output files defined with
CHKIN and/or CHKIN. An UNTALK is sent to the input device and
UNLISTEN is sent to the output device. The screen again becomes the
output device and the keyboard the input device. The files are not closed.
Neither input nor output parameters are passed.

BASIN

Purpose: Get a character from the input channel
Address: $FFCF (65487)

Description: The file opened and defined as the input file by CHKIN
(otherwise the keyboard) returns a character in the accumulator.

Output parameter: .A

BSOUT

Purpose: Output a character to the output channel
Address: $FFD2 (65490)

Description: The character passed in the accumulator is sent to the open file
defined as the output file by CKOUT. If the screen is the output file
(default), the ASCII character is converted to a printable POKE code (This
is an extensive procedure. Those interested should look at the appropriate
code in the C range of the kernal).

169

Abacus Software C-128 Internals

Input parameter: .A

Example:
;Switch the 40/80 column mode
LDA #$1B ;<ESC>
JSR BSOUT ;S$FFD2, OUTPUT CHARACTER
LDA #"X" ;<ESC>X TO EXCHANGE THE SCREEN STATUS
JSR BSOUT ;OUTPUT

(There is also a special routine to which you can jump.)

LOADSP

Purpose: Load a file into memory
Address: $FFDS (65493)

Description: Before a file can be loaded with LOADSP, the device,
secondary address, filename, etc. must be defined by the routines SETLFS,
SETNAM, and SETBNK. The address at which the file is to be loaded is
passed in the X (low) and Y (high) registers.

Input parameters: .X, .Y

Example:
;Load an overlay
JSR PREP ;SETLFS, SETBNK, SETNAM, ETC.
LDX #$00 ;LOW BYTE OF $1000
LDY #$10 ;HIGH BYTE OF $1000 (LOAD ADDRESS)
JSR S$FFD5 ;LOAD FILE AT $1000

SAVESP

Purpose: Save memory to a file
Address: $FFD8 (65496)

Description: This routine saves a memory range to a file (disk, cassette). As
with the LOADSP routine, you must first define the device address,
secondary address, RAM bank, filename, etc. with the routines SETBNK,
SETLFS, and SETNAM. The zero-page address at which the start address
of the area to be saved is stored and passed in the accumulator. The end
address of the range is passed in the X (low) and Y (high) registers.

170

Abacus Software

C-128 Internals

Input parameters:

Example:

;Save the

JSR
LDA
STA
LDA
STA
LDA
LDX
LDY
JSR

SETTIM

PREP
#$00
SFC
#3$10
SFD
#SFC
#$00
#$11
SFFD8

A, X, .Y, zero page

range $1000 to $1100

;CALL SETLFS, SETNAM, SETBNK

; LOW BYTE OF $1000

;STORE IN ZERO PAGE

JHIGH BYTE OF $1000

;STORE IN ZERO PAGE

; THE POINTER IS LOCATED IN SFC

;LOW BYTE OF THE END ADDRESS $1100
;HIGH BYTE OF THE END ADDRESS $1100
; SAVESP--SAVE THE RANGE $1000-51100

Purpose: Set the system clock TI
Address: $FFDB (65499)

Description: This routine sets the system clock TI, which is defined at
address $AO. This clock <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>