
COMMODORE

THE AUTHORITATIVE

INSIDERS' GUIDE

Commodore 128
Personal Computer

esc tab alt cap

Ink

«— 1

Ctrl

run

stop

2

Q

shft

lork

3

W

A

shift

4

E

S

Z

5

R

D

X

help
line

feed

40/

80

no

scrll

6

T

F

C

7

Y

G

V

8

U

H

B

9

I

J

N

0

0

K

M

+

P

L

,

T

-

@

i —> fl f3 f5 n

£

*

/

clr

t

=

shift

del

estore

Return

n
<=

=>

7

4

1

8

5

2

0

9

6

3

+

-

e

n

t
e

r

A Data Becker book published by

« ■ You Can Count On

Abacus wmm Software

Commodore 128

Internals
an authoritative insider's guide

By K.Gerits, J.Schieb & F.Thrun

A Data Becker Book

Published by

Abacusfa™Software

First Edition, October 1985

Printed in U.S.A.

Copyright © 1985 Data Becker GmbH
Merowingerstr. 30

4000 Dusseldorf, West Germany

Copyright © 1985 ABACUS Software, Inc.
P.O. BOX 7211

Grand Rapids, MI. 49510

This book is copyrighted. No part of this book may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording, or otherwise without the

prior written permission of ABACUS Software or Data Becker, GmbH.

ISBN 0-916439-42-9

Table of Contents

Chapter 1: Fundamentals of the C-128 3

1.1 Introduction to the C-128 3

1.2 The Datasette Interface 4

1.3 The User Port 5

1.4 The RS-232 Interface 8

1.4.1 Programming the baud rate 11

1.4.2 Reading the status variable ST 12

1.5 Cartridge Port 13

Chapter 2: The VIC Chip 19

2.1 Register Layout of the VIC Chip 21
2.2 The VIC Operating Modes 25
2.3 Sprites 25

2.3.1 Address of the sprites 27
2.3.2 Turning on the sprite 28
2.3.3 Color 28
2.3.4 Sprite position 29

2.3.5 Expanding a sprite 30
2.3.6 Background 30
2.3.7 Collision: Sprite-Sprite 31
2.3.8 Collision: Sprite-Background 32

2.3.9 Multi-color sprites 32
2.3.10 Interrupts via the VIC chip 35

2.3.10.1 More than 8 sprites on the screen 36

2.4 Normal Character Display 38
2.4.1 Move the video RAM 38

2.4.2 Moving the character generator 40

2.4.3 The color RAM 40
2.5 Programming Color and Graphics 41

2.5.1 The hi-res mode 42
2.5.2 The multi-color mode 48
2.5.3 The multi-color mode (text) 49
2.5.4 The extended-color mode 50

2.6 Smooth-Scrolling 51

Chapter 3: Input and Output Control 55

3.1 General Information about the 6526 55

3.1.1 Pin Configuration 55

3.2 Register description of the CIA 56

3.3 I/O Ports 59

3.4 The Timer 60

3.5 The Real-time Clock 61

3.5.1 Real-time in BASIC 62

3.6 The CIAs in the Commodore 128 63

3.7 The Joystick 65

3.8 The Commodore 128 Serial Bus 65

3.8.1 Fast and slow modes 67

3.8.2 The device addresses 68

3.8.3 The secondary addresses 69

3.8.4 The system variable ST 70

Chapter 4: The Sound Chip SID 73

4.1 The Sound Controller 73

4.1.1 General information about the SID 73

4.1.2 Pin-layout of the 28-pin device 75

4.1.3 Register description of the SID 76

4.1.4 The analog/digital converter 80

4.1.4.1 The operation of the A/D converter 80

4.1.4.2 Using paddles 81

4.1.5 Programming the SID 83

4.2 The Filters 87

4.3 Synchronization and Ring Modulation 88

Chapter 5: The 8563 VDC Chip 93

5.1 General Information about the VDC Chip 93

5.2 The Pin Layout 94

5.3 The VDC Registers 95

5.4 General Information about the VDC Registers 100

5.4.1 The character set 107

5.4.2 The attribute 108

5.5 Using the VDC Registers 109

5.5.1 Smooth scrolling 110

5.5.2 Block copying 111

5.5.3 Foreground and background color 112

5.5.4 The cursor mode 113

5.5.5 The character length and width 114

5.5.6 More than 25 lines on the screen 114

5.5.7 Hi-res graphics 120

Chapter 6: The Memory-Management Unit - The MMU 129

6.1 Introduction to the MMU 129
6.2 The Configuration Register 131

6.2.1 The pre-configuration register 132

6.3 The Mode Configuration Register 133

6.4 The RAM Configuration Register 134

6.5 The Page Pointer 136
6.6 The Version Register 139

Chapter 7: Assembly Language Programming 143

7.1 Introduction to Assembly Language Programming 143

7.2 The CPU - the 8502 ~ 143
7.3 The Kernal Routines 144

7.3.1 FETCH, STASH and CMPARE 144

7.3.1.1 FETCH 145

7.3.1.2 STASH 146

7.3.1.3 CMPARE 147

7.3.2 GETCONF 147

7.3.3 JSRFAR and JMPFAR 148
7.4 The Important Kernal Routines 151

7.4.1 Kernal routines with vectors at $FF4D 151

7.4.2 Other useful kernal routines 175

7.5 Tips and Tricks 177

7.5.1 Disable STOP key 177

7.5.2 Disable STOP-RESTORE combination 178

7.5.3 The IRQ vector 179
7.5.4 Disabling the BASIC interrupt 180

7.5.5 Positioning the cursor 181

7.6 The Z-80 182

7.6.1 The Z-80 ROM 184

7.7 Boot Sector and Boot Routine 188

Chapter 8: The ROM Listing 193

8.1 ROM Listings 194

8.2 The Zero Page 404

8.3 Alphabetical Listing ofKemal Routines 427

8.4 The Token Table 435

8.5 The Character Set 438

8.6 The Keyboard Matrix 451

8.7 The Computer Modes 454

8.7.1 The power-up modes 458

Chapter 9: The Hardware 463

Chapter 10: Decimal-Hexadecimal-Binary

Conversion Table 485

Index 489

CHAPTER 1

Abacus Software C-128 Internals

Chapter 1: Fundamentals of the C-128

1.1 Introduction to the Commodore 128

After the success of the C-64, Commodore brought out the Plus 4,

C-16, and C-116. These computers didn't really offer anything new, but

the Commodore 128 does. It's really three computers in one: the

well-known C-64, with mountains of software available for it; also, it

contains a new computer based on the "success chips11 (the 6510 (6502),

VIC, SID, 6526, etc); and last, it is a CP/M computer. In total, it's a brand

new computer with lots to offer.

The C-128 has an 80-column video controller, so it has the potential of

becoming a professional machine. The VIC chip and the 6510 have been

changed slightly, though they remain basically the same. It's hard to

understand why the 65C02 was not selected as the microprocessor for the

C-128, since it runs faster, is compatible with the 6502, and has additional

useful commands. This would not have affected the C-64 mode at all. The

microprocessor which Commodore did choose is the 8500, which can run

twice as fast as its predecessor, the 6510.

The C-128 is also a CP/M computer, it uses CP/M 3.0+. CP/M 3.0 is

the version for 128K computers. The Z-80 processor runs at 4MHz. The

speed decreases when the bus is accessed, since it was not designed to

handle this speed.

Well be concentrating on both the C-64 and C-128 modes, since they

are equally important and equally interesting. The most interesting is the
C-128 mode. As a result, the operating system ROM listing and zero page

maps are for this mode. Some things can be better explained in the C-64

mode, such as the VIC chip.

This book is the latest in a compehensive series of books from
ABACUS Software & Data Becker. Well go into each component

individually and in detail so that the BASIC programmer, whether beginner
or advanced, can get an in-depth look. The assembly-language programmer

can get the most out of the information presented as well. Naturally, we
cannot include all of the C-128!s capabilities. This book is not intended as

an introduction to BASIC.

Abacus Software C-128 Internals

Commodore has provided the 128 with an advanced version of BASIC

to make use of their advanced computer, BASIC 7.0. Here are some of the

important features of the C-128:

*128K of dynamic RAM

* 2 x 4K character generator

* Color video controller (VIC) with hi-res graphics

* 80-column video controller (VDC) with RGB output

* Hi-res graphics on the 80-column monitor

* Synthesizer with three independent voices (polyphonic)

*32K BASIC ROM

* 16K operating system

* 2 parallel I/O ports

* 2 output screens available

At this time we'll be discussing the various input and output ports of the

C-128. The outputs for the monitors are not discussed here, since a special

chapter is devoted to the chips that generate the video signals.

1.2 The Datasette Connection

The Datasette connections is virtually identical to that found in the C-64.

The importance of the Datasette has dropped markedly since the price of the

disk drive has been reduced. Only Commodore cassette recorders can be

connected to this interface. The recorders are of high quality and have
proven very reliable in the past

The Datasette gets its power via its connector to the C-128. The data

travels serially to and from the Datasette through the cable. In addition to the
lines for read and write data, there is a line for turning the motor on and off
and a line to check to see if the PLAY button is depressed The figure gives
the pin layout for this interface:

Cassette

12 3 4 5 6

■LHLJHJHLJHUH

A B C D E F

Pin

A-1

B-2

C-3
D-4

E-5

F-6

Signal

GND

+5V

CASSETTE
CASSETTE

CASSETTE
CASSETTE

MOTOR
READ

WRITE

SENSE

Abacus Software C-128 Internals

1.3 The User Port

The user port is a 8-bit parallel interface. The user port can be
programmed to set any or all of the 8 bits to either input or output. This

interface is used frequently by experimenters and individuals interested in
computer hardware. The user port can be programmed from BASIC using
PEEK and POKE commands. Two handshake lines are available for

process control.

To give you an idea of how to program the user port, we have included
a short example. Our example circuit consists of four switches, four
light-emitting diodes, eight resistors, and one IC. This should be enough to
teach you the basic concepts of data input and output using the user port.

The circuit diagram is shown at the end of this section; it is very simple, so

we have not documented it here.

Since there are so many connections on the user port, we must first
explain which connections are actually available to the user. If you are not

using an RS-232 cartridge, you can use the following lines without
affecting the normal operation of the computer: (1,2,4-8,10-12, A-N).

The layout of the user port lines:

1

2

3

4

5

6

7

8

9

10
11

12

A

B

C-L

M

N

GND

+5V; up to 100mA

-Reset; connected to the processor reset line

CNT1; connected to CNT on CIA1

SP1; connected to SP on CIA1

CNT2; CNT line on CIA2

SP2; connected to SP on CIA2

-PC2; handshake output on CIA2

ATN OUT; control line of the serial bus, conies from

PA3 on CIA2

9V; 100 mA max.

Opposite pole for 10

GND

GND

-FLAG2; handshake input on CIA2

PB0-PB7; I/O lines from CIA2

PA2; I/O line from CIA2

GND

Abacus Software C-128 Internals

Back to our example. Data lines PB0-PB7 can be programmed
individually for input or output. We will use lines PB0-PB3 as input and
lines PB4-PB-7 as output. This data direction is assigned by simply setting
the data direction register for data port B at address 56579. A set bit
indicates output on the corresponding bit of data port B (address 56577); a
cleared bit indicates input on the corresponding bit of port B. We use the
following command to set the data directions for our example (bits 0-3 as
input, 4-7 as output):

POKE 56579,240

This sets the high order bits and the corresponding bits of data port B
are set to output while the rest are set to input.

How do we use our little circuit? Nothing could be easier!

PRINT PEEK(56577) AND 15

returns the values of the four switches and the command

POKE56577,X

can be used to turn the LEDs on and off, where the value X may be a
combination of the values 16, 32, 64, and 128-the lower bits are only used
for reading.

If you have a project of your own already planned—you want to help
your wife and connect the washing machine to the Commodore 128~be
sure to pay attention to the following so as not to damage your computer:

When using the user port for input, the input voltage must not exceed 5
volts. A voltage from 0 to 0.6 volts is interpreted as zero, while a voltage
from 1.6 to 5 volts is interpreted as one. All voltages between 0.7 and 1.5
volts will be randomly interpreted as zero or one.

If you use the user port for output, note that the outputs can drive only
one TTL input. They cannot directly drive an LED-this would lead to
damage to the CIA. It is recommended that you use a buffer, as in our
example.

Above all, NEVER connect an external voltage to a port with a bit
programmed as output. Make sure you load the data direction register with

the proper values so you don't mistakenly program an input bit as output.

Abacus Software C-128 Internals

If you want the computer to power your project, remember that no more

than 100 mA of current are available. If this maximum is exceeded slightly,

the cassette recorder will refuse to work properly and then the fuse inside
the C-128 will blow; finally the primary fuse in the power supply will blow.

Hopefully, nothing else will be damaged.

This is intended only as a brief introduction to using the user port in a
simple application. If you want to use the other lines for more complex

tasks, see Chapter 4 for more information on the CIA.

m

a
<

4 *3300Q

Abacus Software C-128 Internals

1.4 The RS-232 interface

The RS-232 interface opens up the whole world of communications for

the Commodore computer user. Most peripherals have an RS-232 interface,
such as the laser printer used to print this book. Telephone modems are also

connected using such an interface. RS-232 is the designation for an

interface for serial data transfer only-parallel data transfer over the phone
lines, for example, is not possible.

In serial transmission, the eight bits of a byte are sent one bit at a time,

not all eight at once as in parallel data transmission. Serial transmission has

the advantage that fewer lines are needed; the disadvantage is that it's

slower. It is well-suited for transferring data via telephone lines because so

few lines are required.

The software for using the RS-232 interface is built into the C-128

operating system. The interface is available from Commodore as a cartridge

which is inserted in the user port. The cartridge is necessary to make the

voltage conversions to ±12Volts for the true RS-232 standard.

The RS-232 interface is assigned device address 2 by the operating
system. If a logical file is opened with device 2, two 256-byte buffers are

allocated: an input buffer and an output buffer. In the 128 mode these

buffers are placed at addresses $0C00 and $0D00. In the 64 mode, two

pointers point to these buffers: $F7/$F8 points to the RS-232 input buffer
and $F9/$FA points to the output buffer. You must also remember the
following in C-64 mode: the buffer area is usually located in the upper area
of unused memory. If a BASIC program uses the RS-232 interface, the
program should begin with the OPEN command because it will erase all of
the variables that BASIC stores in upper memory. Furthermore, no check is
made to see if enough memory space is available. The CLOSE command
frees the buffers again, but the variables are also erased since a CLR
command is executed (other files are "forgotten11!). For this reason, you
should not close the file until the end of the program. Only one RS-232 file
may be open at a time.

When an RS-232 data channel is closed, any transmission is broken off
and the buffer is reset. If you want to wait until the entire contents of the
buffer have been transmitted, use the command:

SYS 61604 (JSR $F0A4) in the 64 mode or
SYS 59372 (JSR $E7EC) in the 128 mode

8

Abacus Software C-128 Internals

This command should always be used before the CLOSE command.

The parameters for data transfer are determined with a control register

and a command register. These two registers are passed together with the

filename when the file is opened.

The control register defines the baud rate and determines the number of

data bits and stop bits transmitted. The baud rate determines the speed of

the data transfer. 1000 baud means that 1000 bits are transmitted per

second. The stop bits are sent after the data word (5-8 bits).

The command register determines the method of transfer, the parity

checking, and the type of handshake.

In the control register, the lowest four bits determine the baud rate

according to the following table:

Bit 3 2

0 0

0 0

0 0

0 0

0 1

0 1

0 1

0 1

1 0

1 0

1 0

1 0

1 1

1 1

1 1

1 1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

0
1

0

1

0

1

0

1

0

1

0

1

0

1

Decimal

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Baud rate

user baud rate, see below

50

75

110

134.5

150

300

600

1200

1800

2400

3600 (n.i.)

4800 (n.i.)

7200 (n.i.)

9600 (n.i.)

19200 (n.i.)

The (n.i.) means that the given baud rate is not implemented and
cannot be attained by the C-128. Therefore we can program baud rates

between 50 and 2400.

The number of data bits is determined by bits 5 and 6:

Abacus Software

Bit 6 5

0 0

0 1

1 0
1 1

Decimal

0

32

64

96

Number of data bits

8 bits

7 bits

6 bits

5 bits

C-128 Internals

Bit 7 controls the number of stop bits:

Bit 7 Decimal Number of stop bits

0 0 1 stop bit
1 128 2 stop bits

After we have defined the first byte, we must define the second byte,
the command register.

Bit 0

0

1

Bit 4

0

1

Bit 7 6 5

Decimal

0

1

Decimal

0

16

Decimal

Handshake

3-wire handshake

X-wire handshake

Transfer method

Full duplex

Half duplex

Parity checking

x x 0 0 No parity checking
no 8th data bit

0 0 1 32 Oddparity
Oil 96 Even parity
10 1 160 8th data bit always 1

no parity checking

111 224 8th data bit always 0

A comment about handshaking: if you select a 3-wire handshake, the
control lines CTS (Clear To Send) and DSR (Data Set Ready) are not
checked when sending and receiving. This means that the computer sends
the data (to a printer for example) whether the receiver is ready to process
the data or not If we want the device to be able to stop the transmission, we
must select X-wire handshake. The two control lines just mentioned must

10

Abacus Software C-128 Internals

be wired; the assumption is that the receiver can service these lines. If two
computers are being connected, a 3-wire handshake is usually sufficient.

Let's go through an example: We want to open an RS-232 data channel

with the following parameters:

* 2400 baud

* 7 data bits (ASCII)

* 2 stop bits

* No parity checking

* 8th data bit always 0

* Full duplex

* 3-wire handshake

After you have determined all the bits from the above tables, open the
channel with the following OPEN instruction:

OPENl,2,0,CHR$(10+0+128)+CHR$(0+0+224)

The second byte in the OPEN instruction is usually CHR$(0).

1.4.1 Programming the baud rate

The various baud rates are implemented through the timers in the CIAs.
You can also program baud rates that are not in the table, such as 111 baud.
The maximum rate of 2400 baud cannot be exceeded, because the software
in the operating system is too slow. The CIAs (or the timers) generate an
NMI after a certain amount of time dependent on the baud rate. If we want
to use our own baud rate, we can pass the corresponding timer values as the
third and fourth characters of the filename in the OPEN command. The
timer values can be obtained from the following formula:

T = 492662/BAUD - 101

The value which we get from this formula must be split into high and
low bytes and then passed as the third and fourth characters of the filename.
In the control register we use a zero instead of the baud rate (user baud
rate), so that the operating system knows that we want to use our own baud

rate.

11

Abacus Software C-128 Internals

The following example uses the same parameters as the previous
example, except that the baud rate is set to 1H

100 BAUD=1000

110 T=492662/BAUD-101

120 TH=INT(T/256) : TL=T AND 255

130 OPEN l,2,0,CHR$(128)+CHR$(224)+CHR$(TL)+
CHR$(TH)

Baud rates between 8 and 2400 baud can be obtained with the user
baud-rate programming option.

1.4.2 Reading the status variable ST

The status variable ST is used to determine if any errors occunred while
transferring data via the RS-232, just as with the serial bus. The meaning of

ST is somewhat different for the RS-232, however. The variable ST is reset
(to zero) each time it is read in BASIC. Therefore, if youll be checking the

status variable multiple times you must store the value in a temporary value:
A=ST. Now A can be checked multiple times without resetting the status

variable ST. The status value should be available for multiple checks, so it
must be stored in a temporary variable.

Here is the bit by bit breakdown of the status variable ST. A set bit
indicates that the given event occurred.

Bit Description

0 Parity error

1 Framing error

2 Receiving buffer full

3 Receiving buffer empty

4 CTS (Clear To Send) signal missing
5 Unused

6 DSR (Data Set Ready) signal missing
7 Break signal received

In the C-64 mode you can assign the memory area the RS-232 input
and output buffers will be located. In the C-128 mode these buffers have
preassigned locations. The pointers for these buffers are at addresses
$F7-$FA.

12

Abacus Software C-128 Internals

1.5 Cartridge Port

The cartridge port—also known as the expansion bus-is one of the most
useful interfaces on the C-128. ROM cartridges can be inserted in this port;
they might be games, BASIC extensions or something altogether different
such as a MIDI interface. The address lines as well as the data lines of the
computer are available on this interface. For this reason the computer is also

very sensitive to damage here.

First the pinout of the 44-pin connector:

I GND

2-3 +5V
4 -IRQ; connected to the processor IRQ line
5 CR/-W; connected to the processor R/-W line
6 DOT CLOCK; dot raster clock for the VIC, about 7.83 MHz
7 -I/Ol; usually =0 in address range $DE00 to $DEFF
8 -GAME; input to AM (Address Manager)

9 -EXROM; as above

10 -I/O2; usually =0 in area $DF00 to $DFFF
II -ROML; output from AM

12 BA; signal from VIC, indicates the validity of read data
13 -DMA; input. 0=bus system reserved for external access

14-21 CD7-CD0; data bus

22 GND

A GND

B -ROMH; output fromAM

C -RESET

D -NMI

E 02; system clock output

F-Y CA15-CA0; address bus

Z GND

Both the 128 and 64 modes test to see if the cartridge port is occupied
when the computer is turned on or reset. If the cartridge port is occupied,

the memory configuration is set appropriately in the address manager, and

control of the computer is given to the cartridge and not the built-in ROM

operating system. This is a very user-friendly feature, since the user need

only insert the cartridge and turn the computer on to start the application.

13

Abacus Software C-128 Internals

EXPANSION

2221 20 1918 17 16 15 141312 11 10 j

I■ ■§■■■■■■■■■■■

I MMM—M1MMIMMMMM

ZYXWVUTSRPNML

PIN SIGNAL

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

GND

CDO

CD1

CD2

CD3

CD4

CD5

CD6

CD7

DMA

BA

ROML

I/O2

EXROM

GAME

1/Oi
DOT CLOCK

CR/W

IRQ

+5V

+5V

GND

PORT

J 8 7 6 5 4 3 2 1

m mm ■■an"art

KJHFEDCB A

PIN SIGNAL

Z

X

Y

W

V

u

T

s

R

P

N

M

L

K

J

H

F

E

D

C

B

A

GND

CAO

CA1

CA2

CA3

CA4

CA5

CA6

CA7

CA8

CA9

CA10

CA11

CA12

CA13

CA14

CA15

02

NMI

RESET

ROMH

GND

14

Abacus Software C-128 Internals

PIN
1

2

3

4

5

6

7

8

9

10

11

12

USER PORT

1234 56789 1011

JHJHWBJIHJUUUUi

■■■■■■■■■■■

ABCDEFHJKLM

SlfiNAI CAPACITY

GND

+5V MAX. 100mA

RESET

CNT1

SP1

CNT2

SP2

PC2

SER. ATN IN

9 VAC

9 VAC

GND

12

J5zi

N

PIN

A

B

C

D

E

F

H

J

K

L

M

N

SIGNAL

GND

FLAG2

PBO

PB1

PB2

PB3

PB4

PB5

PB6

PB7

PA2

GND

15

CHAPTER 2

Abacus Software C-128 Internals

Chapter 2: The VIC Chip

As you already know, the Commodore 128 has three plugs for
connecting monitors. Theoretically, all three can be used at once, but this
wouldn't be terribly useful, since the two 40 column screens would be
identical.

Two of the three connectors are connected to the VIC chip. The VIC
chip has been well-proven in the Commodore 64. The VIC chip is well
liked since it has many fine features like the ability to display sprites. The
VIC chip in the Commodore 128 has two additional registers which will be
described later. It runs the display in the 40-column mode as well as BASIC
7.0fs representation of graphics.

A television can be connected via the RF connector. This is a relatively
popular solution because of the low cost. Depending on the television, the
screen quality may also be satisfactory, though it is not suited for long
periods of working with the computer. This is because the carrier frequency
is first modulated by the computer (it must be "broadcast") and then
demodulated by the television receiver. The picture quality naturally suffers
as a result of all this manipulation.

If your wallet has recovered from the purchase of the Commodore 128,
you might consider a color monitor such as the Commodore 1702. This
monitor uses the second connection: the composite video output. Here the
signal does not need to be modulated or demodulated—pure screen
information plus the synchronization pulse is sent to the monitor. These
monitors are a bit more expensive, but they offer significantly better screen
quality because the screen resolution is better.

The VIC chip in the Commodore 128 has the same address as the 64,
which makes sense, since it must also be accessed in the 64 mode. For the
sake of compatibility the addresses must remain the same.

Start address: $D000

The VIC-II chip (we will call it VIC-II since it is not identical to its

predecessor) cannot function with the 2MHz clock frequency (fast mode).

The VIC-II chip contains the system clock. As you may know, the VIC chip

uses the clock gaps (times in which the processor does not access the

memory) in order to get characters out of the video RAM to refresh the

19

Abacus Software C-128 Internals

picture. This is done so as not to slow down the processor. If the processor

is clocked at 2MHz, the operating speed is doubled and the clock gaps are

halved. These clock gaps aren't long enough to access memory. The VIC-II

chip switches the video output off and you get a single color picture (which
you may recognize from cassette loading). The video controller responsible

for the 80-column screen is not affected by this. It continues to display its
80 columns per line. Switching from 1 to 2MHz can also be done in the 64
mode! To do this, you must set bit 0 in register 48 of the VIC.

POKE 53296,1 corresponds to the command FAST
POKE 53296,0 corresponds to the command SLOW

These two POKEs can also be used in the 64 mode. The FAST
command is a bit different from the POKE command; the BASIC 7.0
command FAST also causes the 40-column screen to be automatically
switched off, so that the colorful garbage caused by the 2MHz mode does

not appear on the screen.

The VIC chip not only performs all the tasks required to create a screen,

it also handles the timing for the dynamic memory.

Here are some features of the VIC chip:

* 16 colors

* graphics-capable with 320x200 pixels (hi-res mode)

* Four color graphics with 160x200 pixels (multi-color mode)

* Multi-color mode possible in text mode

* Display and management of 8 sprites

* Raster and sprite-collision interrupt

* Creation of a standard NTSC signal

* Movable video RAM and character generator

* Independent handling of 16K of dynamic RAM

20

Abacus Software C-128 Internals

The pin layout of the VIC-II chip:

1-7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24-29

30-31

32-34

35-38

39

40

41-44

D6-D0;

-IRQ;
-LP;
-CS;

R/W;

BA;

VDD;

COLOR;

SYNC;

AEC;

0OUT;

-RAS;

-CAS;

GND

0COLOR;

OIN;

All;

Processor data bus

0 when one bit of the IMR and the IRR are equal
Input, Light pen strobe

Processor-bus action only takes place if CS=0
0 = taking over data from bus

0 = data not ready at receiving device
+12VDC

Color information output

Impulses to synchronize lines and screen
0 = VIC uses system bus, 1 = bus free
Clock output

Dynamic RAM control
as above

Input color frequency

Input dot frequency

Processor address-bus

A0/A8--A5/A13; Multiplexed (video-) RAM address-bus
A6-A7;

A8-A10;

D11-D8;

D7;

VCC;

K0-K3;

(video-) RAM address-bus

Processor address-bus

Data from colorRAM

Processor data-bus

+5V

Keyboard-Interface-Control. These pins go

directly to the (expanded) keyboard.

2.1 Register Layout of the VIC Chip

The VIC-II chip has 49 registers at the address $D000+(the register

number). These registers are individually described:

REG 0 Sprite register 0: X-coordinate

Here are 8 bits of the X screen coordinate of sprite 0. Bit 9

(overflow bit) is found in register 16 of the VIC chip.

REG 1 Sprite register 0: Y-coordinate

This register contains the Y-position of sprite 0. The

Y-coordinate does not need an overflow (9th bit) because the

maximum Y-value is 199.

21

Abacus Software C-128 Internals

Registers 2 through 15 correspond to registers 0 and 1 for sprites 1 to

7. Each sprite has a register pair in the VIC chip: Sprite 0 has register pair

0/1, sprite 1 the pair 2/3 ... sprite 7 the pair 14/15.

REG 16 MSb of the X-coordinates (note that the lower-case b in MSb is
intentional! [This is to indicate til, not byte]). This register
contains the overflow bits from the X-coordinates of the sprites.

A set bit means that the MSb (9th bit) of the corresponding sprite

is set, 0 means not set. The MSb of sprite 0 is represented by bit

0, the MSb of sprite 7 is set by bit 7.

REG 17 Control register 1

Bit 0-2: Offset of the upper screen border in raster lines.

Bit 3 : 0=24 lines, 1=25 lines

Bit 4 : 0=screen off

Bit 5 : l=standard bit-map mode (graphics)

Bit 6 : l=extended color mode (text)

Bit 7 : Carry from register 18.

REG 18 Raster IRQ

Number of the raster line at which a raster IRQ should be

generated. The 9th bit of the raster line is found in register 17.

REG 19 X-portion of the screen position at which the beam was found

when a strobe was generated.

REG 20 As register 19, but the Y-portion.

REG 21 Sprite enable

This register indicates whether a sprite is turned on (bit = 1) or

off (bit = 0). Sprite 0 is represented by bit position 0, sprite 7 by

bit 7 of the register.

REG 22 Control register 2

Bits 0-2: Offset of the left screen border in raster dots.

Bit 3:0=38 characters, 1=40 characters (horizontal)

Bit 4: Multi-color mode (graphics)

REG 23 Sprite expand X

The sprites can be doubled in the x direction by setting the

corresponding bit in this register.

22

Abacus Software C-128 Internals

REG 24 Base address of the character generator and video RAM

Bits 1-3: Address bits 11-13 for the character RAM base

Bits 4-7: Address bits 10-13 for the video RAM

REG 25 IRR: Interrupt Request Register

This register indicates which register generated an interrupt.

Bit 0: generator is REG 18

Bit 1: generator is REG 31

Bit 2: generator is REG 30

Bit 3: generator is pin LP

Bit 7: =1 when at least one other bit is one

REG 26 IMR: Interrupt Mask Register

Layout like REG 25- If at least one bit in the IRR and IMR agree

(IRR AND IMRoO), an interrupt is generated (pin IRQ=0).

REG 27 Priority register (sprites)

If the corresponding bit is set, the background character has

precedence over the sprite.

REG 28 Multi-color register (sprites)

If the bit representing a given sprite is set, that sprite is

represented in multi-color mode.

REG29 SpriteexpandY

The sprites can be doubled in the Y-direction by setting the

appropriate bit in this register.

REG 30 Sprite/sprite collision

Each sprite is assigned a bit. If two sprites touch each other, the

two corresponding bits are set. These bits remain set until they

are explicitly cleared! At the same time, bit 2 in the IRR is set. If

bit 2 in the IMR is also set, an interrupt will be generated.

REG 31 Sprite/background collision

Each sprite is assigned a bit. If a sprite touches the background,

the corresponding bit is set. The bits remain set until they are

explicitly reset! Bit 3 in the IRR is set; if bit 3 in the IMR is also

set, an interrupt is generated.

REG 32 Exterior color (border color)

The border color is set in this register (0-15).

23

Abacus Software C-128 Internals

REG 33 Background color registers 0-3

to Background color register 0 determines the background color in

REG 36 the "normal11 text mode. If the multi-color mode is enabled, it

accesses registers 1-3.

REG 37 Sprite multi-color color 0/1
and Sprites which are represented in multi-color can assume the back-

REG 38 ground color, the sprite color, or the multi-color 0 and 1.

REG 39 Color sprite 0-8

to The colors for the individual sprites are placed in these registers.

REG 46

REG 47 Keyboard control register

This register contains the status of the four keyboard interface

pins K0 to K3. Bits 0 to 3 are responsible for this. Bits 4-7 are

unused and are always 1.

REG 48 2MHzbit
Bit 0 of this register determines whether the computer operates at

2MHz or 1MHz. Bits 1-7 are unused. If the bit is set, all accesses

from the VIC-II chip to the memory are halted, except for

refreshing the dynamic RAM.

NOTE: All of the following example programs must be entered, in the
64 mode. This is necessary because the BASIC 7.0 interpreter makes inputs

to the VIC-II chip practically "ineffective". For example, if you switch the
graphics on with the necessaiy POKE instructions, you will see only a flash

on the screen. The same applies to programming sprites, etc. The reason for

this is that the BASIC 7.0 interpreter must have its own method of interrupt

control. You can, for example, create a moving sprite with the MOVSPR

command; this can be done only with BASIC 7.0 using the interrupts. We

will tell you how you can get around this interrupt control in Section 7.5.

But even when the sprites aren't moving, the coordinates are always

corrected by the BASIC 7.0 interpreter. You are probably asking yourself
why you should program in the 64 mode when you own a 128. This is a
good question, but the VIC chip can be programmed just as well from the

64 mode as it can from the 128 mode. We will use "simple" POKE
commands in the following sections, in order to give examples as close to

assembly language as possible. Since programming the VIC chip would be
ruined by the BASIC 7.0 interpreter, we will try out the following examples
in the 64 mode. This will allow us to learn and understand the operation of

24

Abacus Software C-128 Internals

the VIC chip. Machine language programmers have to feel their way
through step by step. In machine language (in the 128 mode), you can get
around the annoying sprite corrections by changing the IRQ vector.

2.2 The VIC Operating Modes

As you may already know and can gather from the many registers, there
are a number of possible ways to arrange the screen with the VIC chip. It is

quite easy to do this in the 128 mode thanks to easy-to-use BASIC 7.0
commands. In the 64 mode, it is somewhat more difficult to switch between

the various modes since it must be done with POKE commands.
Programming sprites in the 64 mode is also more complicated than it is in
the 128 mode, in which you can easily move them about with the MOVSPR
command. If you think the layout of the VIC chip doesn't interest you since

you don't want to program in the 64 mode, you may not be right. If you

want to program in machine language, you will need to learn more about the

register layout of the VIC, which is what we want to do now.

2.3 Sprites

Sprites are movable, freely-definable figures with a resolution of 24 by
21 points. Sprites can be represented in either the two-color mode (sprite
color and background color) or the multi-color mode (four colors, but the
resolution is cut to 12 by 21 points). The VIC chip can manage 8 sprites,
which can be moved simultaneously on the screen. The sprites can assume
their positions in a frame of 512 by 256 raster points, which means that
sprites can be moved completely outside of the screen.

If a sprite is defined in the two-color mode, a set bit means a set point in
the color defined for this sprite. An unset bit means transparent (the
background color will be displayed). In the multi-color mode, two bits
apply to one point, which means that one can define four colors. The
possible bit combinations refer to the following colors:

00: Transparent, background color (REG 33)
01: Multi-color register 0 (REG 37)
11: Multi-color register 1 (REG 38)

10: Sprite-color register (REG 39-46)

25

Abacus Software C-128 Internals

You see that two colors (multi-color registers 0 and 1) are defined to be

the same for all sprites. The sprites can differ from each other in at most one

color. But let's define a sprite "from scratch". We won't use the BASIC 7.0

commands, but only the commands available to us in the 64 mode (which

can be used in the 128 mode as well). First we must define a sprite by

means ofDATA statements (the sprite editor does not exist in the 64 mode).

These DATA lines should look like the following:

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

000,000,000

000,000,000

000,000,000

000,000,000

000,000,000

000,000,000

000,000,000

003,255,255

000,002,000

192,170,128

194,150,080

234,150,080

194,170,168

192,170,168

000,032,128

000,170,160

000,000,000

000,000,000

000,000,000

000,000,000

000,000,000

In the normal development of a sprite, you would draw out the figure
on paper before programming, and divide the paper up into a grid of 24 by
21 points. This gives 21 lines of 24 points each. These 24 points are then
grouped into three 8-bit groups which can then be stored as bytes. Every
filled box means a set bit, an empty box means an unset bit. In the
multi-color mode this is more difficult You must insert one of four bit
combinations from a self-defined color table.

Note: You must first consider what colors you will define in common to
all sprites, and which you want to have as the individual color for each

sprite.

26

Abacus Software C-128 Internals

Once you have done this you can calculate the individual bytes and

write them down. These values are then given in rows ofDATA lines, as in

our example. Our example sprite is a helicopter. You probably didn't

recognize it in the DATA statements.

2.3.1 Address of the sprites

We have our data and now we need to store it someplace. There is a

pointer for each sprite which tells the VIC chip where it can find the sprite.

These pointers are found in addresses 2040 to 2047, immediately following

the video RAM. Each sprite needs 3x21=63 bytes. You have probably

already noticed that each pointer need only be one byte long and does not

give an absolute address. It gives the position "pointer times 64," which

accounts for exactly 16K. If you move the start address of the video RAM,

the sprite pointers also move as well as their start addresses. For the sake of

simplicity, let us assume that sprite number 1 is defined at address

13*64=832.

POKE 2041,13

Address: 2040 2041 2042 2043 2044 2045 2046 2047

Sprite*: 0 12 3 4 5 6 7

You can assign this address to other sprites, meaning that several

sprites will have the same appearance. But to display our sprite, we first

need to POKE the values from the DATA statements into the correct

memory addresses.

10 FOR 1=0 TO 63

20 READ D

30 POKE 13*64+1,D

40 NEXT

50 POKE 2041,13: REM SPRITE 1 AT ADDRESS 832

27

Abacus Software C-128 Internals

2.3.2 Turning on the sprite

When you start the program, you will notice that something is still

missing. We need to explicitly turn our sprite on! The best way to do this is

with a logical OR of the corresponding bit in register 21, since a direct
POKE would erase any other sprites,

POKE 53248+21,PEEK(53248+21) OR 2

turns sprite 1 on. If you want to turn on sprites 0 and 7, for example:

POKE53248+21,PEEK(53248+21) OR 1 OR 128, or better yet:

POKE53248+21,PEEK(53248+21) OR 129,

To turn off sprite 1:

POKE 53248+21,PEEK(53248+21) AND NOT(2)

If you want to turn off several sprites at once, such as sprites 0 and 7,

POKE 53281+21,PEEK(53248+21) AND NOT(1 OR 128)

it can be done by a logical OR of the sprites to be turned off, which is then

negated and then ANDed with the original value. In our example program,

we want to turn our sprite on:

60 POKE 53248+21,1: REM TURN ON SPRITE 1

Sprite: 7 6 5 4 3 2 10

Bit: 7 6 5 4 3 2 10

2.3.3 Color

We want to be able to define the color of our sprite, otherwise we might

not be able to see it:

70 POKE 53248+39+1, 5: REM COLOR = GREEN

This is done in registers 39 through 46: register 39 defines the color for

sprite 0; register 46, correspondingly, defines the color of sprite 7.

28

Abacus Software C-128 Internals

The following colors are available:

0

1

2

3

4

5

6

7

2.3.4 Position

Black

White

Red

Cyan

Purple

Green

Blue

Yellow

8

9

10

11

12

13

14

15

Orange

Brown

light red

Grey 1

Grey 2

Light green

Light blue

Grey 3

After you have made the color specification and started the program

with RUN, you still won't see anything because the sprite is positioned

outside of the screen area* Registers 2 and 3 must be loaded with the

appropriate values in order to assign a position to sprite 1:

80 POKE 53248+2,50: REM X-COORDINATE

90 POKE 53248+3,70: REM Y-COORDINATE

You can move your sprite across the whole screen with a loop. Many

readers may start to groan here. You know that BASIC 7.0 handles all of

the work with sprites for you. But there's even more that must be done in

64 mode. If you want to position the sprite at X-coordinate 310, for

example, eight bits aren't enough. Here you must set the ninth bit of the

corresponding sprite in register 16 (or reset it if you are moving the sprite

from right to left). We position our sprite at X-coordinate 310:

POKE 53248+16,2: REM SPRITE 1 - SET 9TH BIT

If you want to avoid disturbing other sprites with this command, you

must again address the appropriate bit explicitly:

POKE 53248+16, PEEK(53248+16) OR 2

Let's move our sprite from left to right across the screen:

29

Abacus Software C-128 Internals

FOR 1=0 TO 400

POKE 53248+2, I AND 255 :

REM MASK OUT LOWER 8 BITS

POKE 53248+16,PEEK(53248+16) AND NOT 2 OR

2*ABS(I>255)

NEXT I

The line just before the last is a bit complicated: The most-significant bit

of sprite 1 is reset to zero by AND NOT 2. The corresponding bit is again

set if necessary (X-coordinate greater than 255) by OR 2*ABS(I>255).

This is all done without disturbing the other bits.

2.3.5 Expanding a sprite

Another important and useful capability is the ability to display sprites

twice as large in the horizontal and/or vertical directions* The VIC chip has

two registers available for this purpose: X-expand and Y-expand. Again,

each sprite is represented by a bit. By setting this bit, the corresponding

sprite is expanded in the X or Y direction. In our example we will expand

our sprite in both the X and Y directions:

POKE 53248+23,2 : REMDOUBLE SPRITE 1 IN Y-DIRECTION

POKE 53248+29,2 : REM DOUBLE SPRITE 1 IN X-DIRECTION

Since we can expand a sprite in both the X and Y directions, we have

the ability to enlarge our sprite by a factor of four.

2.3.6 Background

You have no doubt noticed when entering or changing the example

program that the sprite does not scroll along with the rest of the screen.

Sprites also remain visible when the screen is cleared. The sprites are

ultimately determined by their position. If you want to remove a sprite from

the screen, you can either a) turn it off, or b) position it outside the screen.

Sprites have another noteworthy property. If you move the text cursor

over a sprite and start typing, the sprite covers the letters~the letters are

visible only where the sprite is transparent It almost has the appearance of a

three-dimensional picture.

30

Abacus Software C-128 Internals

The sprites and the background can be imagined as two separate layers.
It is possible to inform the VIC chip that we do not want to have individual
sprites in the foreground There is a priority level for each sprite that tells
the VIC whether the sprite has precedence over the background or not. In
our example, the letters would appear on top and the sprite would be
covered up. In order to move a sprite behind the background, the
corresponding bit in register 27 must be set. We want to take away the
priority of our helicopter:

POKE 53248+27,2

Now the helicopter appears behind the letters. In order to put it in front
again, we need only reset the bit:

POKE 53248+27,0

Register 27 : Background priority

Bit: 76543210
Prior: 765432 10

You have no doubt noticed that all registers are organized in the same
manner. One byte is all that is required in order to represent all eight
possible sprites. Bit 0, the lowest order bit, always stands for sprite 0 while
bit 7 always corresponds to sprite 7.

You may be wondering what happens when several sprites occupy the
same space on the screen. There are set rules for determining the appearance
of the result. The sprite with the lowest number appears on fttop" of the
others. If sprites 0 and 6 come in contact with each other, for example, all
of sprite 0 will be visible, while at best only an outline of sprite 6 will be
visible. Sprite 6 will appear on top of sprite 7, sprite 5 on top of sprite 6, up
to sprite 0 on top of sprite 1. The lower the sprite number, the higher the
priority.

2.3.7 Collision: Sprite-sprite

It is also possible that two sprites will come into contact with each
other, that is, they have at least one point in common. Often it is desirable

to be able to detect such contact, especially for games. The VIC has a

register just for this purpose: Register 30 gives the information if sprites

31

Abacus Software C-128 Internals

have collided, and if so, which sprites were involved. If, for example,

sprites 0 and 6 collide, bits 0 and 6 of register 30 are set If more than two

sprites encounter each other, the bits of all the sprites involved are set. In

our example—if sprites 0 and 6 encounter each other—we would get the

following result:

PRINT PEEK(53248+30)

65

The number 65 is a combination of bits 0 and 6 set: 64+1=65. After

you have read register 30, you must set it back to 0, or you will not be able

to detect future collisions since the register is not automatically reset.

POKE 53248+30,0

2.3.8. Collision: Sprite-background

Sprites can also come into contact with the background characters. It is

possible to check to see if our helicopter comes into contact with the cursor

or not. This test is independent of whether the sprite has precedence over

the background or not. If a sprite does contact some part of the background,

the corresponding bit in register 31 is set. Here the same applies as for

register 30: You must clear the register after reading it The register can only

tell that the given sprite has come into contact with a background character,

it cannot tell you which character, though that usually doesn't matter. This

can be determined by the position of the sprite.

2.3.9 Multi-color sprites

Certainly the "icing on the cake" of sprite programming is the ability to

define sprites in multi-color. Multi-color simply means four-color. One

color is the background color; two additional colors are the same for all

eight sprites. If you want to display several sprites in multi-color, you must
consider carefully what colors you will choose. You must then define these

in the two fixed sprite color registers. The multi-color mode does have a

price: the resolution is cut in half. This usually does not present a problem

since the resolution is usually more than enough. This gives you a

resolution of 12x21 points. The size of the sprites remains the same since

the points themselves become twice as large-two bits define one color.

32

Abacus Software C-128 Internals

The various bit combinations have the following meanings:

00 The point has the background color (no point is visible)

01 The color is taken from register 37

10 The color is taken from the given sprite color register

11 The color is taken from register 38

We must tell the VIC chip which sprites are multi-color. This is

naturally done bit by bit, in register 22. To display our helicopter as

multi-color:

POKE 53248+22,2

And look: it appears in shimmering color. The helicopter looks so ugly

because we defined it as a single color sprite. The various bit combinations

of a monochrome sprite naturally have a different character than they do

with a multi-color sprite. We'll now list the entire program responsible for

bringing our helicopter to life. This program will help show you how

sprites are programmed, whether in BASIC or machine language.

10 REM SPRITE DEMONSTRATION PROGRAM

20 V = 53248: REM START ADDRESS OF THE VIC CHIP

30 POKE V+32, 15; POKE V+33,14:REM BACKGROUND COLOR

40 PRINT"<CTRL-7>": REM <CRTL> KEY AND 7

50 POKE V+21, 3 : REM ENABLE SPRITE 0 AND 1

60 POKE V+28, 3: REM SPRITE 0 AND 1 IN MULTICOLOR

70 POKE V+39, 6 : REM COLOR FOR SPRITE 0 = BLUE

80 POKE V+40, 2: REM COLOR FOR SPRITE 1 = RED

90 POKE V+37, 14: REM MULTI-COLOR 1 = LIGHT BLUE

100 POKE V+39, 0: REM MULTI-COLOR 2 = WHITE

110 POKE 2040, 13: REM SPRITE 0 AT 832 TO 895

120 POKE 2041, 13 : REM SPRITE 1 THE SAME

130 FOR I = 0 TO 62: REM NUMBER OF DATA ITEMS

140 : READ X : REM READ THE VALUES

150 : POKE 1+832, X : REM STORE THE VALUES

160 NEXT I

170 POKE V+0,25:POKE V+l, 50:REM POSITION SPRITE 0

180 POKE V+2, 60:POKEV+3,50 :REM POSITION SPRITE 1

190 FOR D = I TO 2000 : NEXT:REM DELAY LOOP

200 FOR I = 0 TO 200 : REM MOVE

210: POKE V, 1=24 : REM X-COORD. SPRITE 0

220: POKEV=2, 200-1 :REM Y-COORD. SPRITE 1

33

Abacus Software C-128 Internals

230: POKE V=l, 40+1: REM Y=COORD. SPRITE 0

240: POKE V+3, 200-1:REM X-COORD. SPRITE 1

250 NEXT

260 GOTO 200: REM MOVE CONTINUALLY

1000 DATA 000,000,000

1010 DATA 000,000,000

1020 DATA 000,000,000

1030 DATA 000,000,000

1040 DATA 000,000,000

1050 DATA 000,000,000

1060 DATA 000,000,000

1070 DATA 003,255,255

1080 DATA 000,002,000

1090 DATA 192,170,128

1100 DATA 194,150,080

1110 DATA 234,150,080

1120 DATA 194,170,168

1130 DATA 192,170,168

1140 DATA 000,032,128

1150 DATA 000,170,160

1160 DATA 000,000,000

1170 DATA 000,000,000

1180 DATA 000,000,000

1190 DATA 000,000,000

1200 DATA 000,000,000

It is certainly more complicated to prepare multi-color sprites than

single-color sprites, in which a point on paper corresponds directly to a

point on the screen. Fortunately there are sprite editors which make the

work a good deal easier. Such an editor is built in to BASIC 7.0

(SPRDEF). But as we said before, it is very important for the machine

language programmer to know how sprites are programmed without BASIC

commands.

The sprites that you define and use with the sprite editor built into

BASIC 7.0 are stored in RAM at $0E00-$1000.

Sprites in any of the possible modes can be covered by the background,

whether it be in text, graphic, or multi-color graphic mode.

34

Abacus Software C-128 Internals

2.3.10 Interrupts through the VIC chip

The VIC chip is capable of generating interrupts. Interrupts temporaily

halt the machine language program currently being executed by the

microprocessor because a certain event occurred. There are four different

sources of interrupt on the VIC:

* The lightpen

* The raster-line interrupt

* A sprite/sprite collision

* A sprite/background collision

Because of the VIC chip's ability to generate raster-line interrupts, it is

possible for BASIC 7.0 to mix text and graphics (by means of the

GRAPHIC command). To program an interrupt, you set the appropriate bits

in the IMR register specifying which interrupt source(s) you want. In

addition, you must change the interrupt vector to your own interrupt routine

so that you can react appropriately to the interrupt

If the interrupt comes from CIA1, you must branch to the kernal

routine. The CIA1 generates interrupts every sixtieth of a second in order to

read the keyboard. Otherwise you can branch to you own routine. You can

determine if the CIA1 caused the interrupt by reading register 13, ICR

(Interrupt Control Register).

If the interrupt came from the VIC chip, bit 7 of the IRR (Interrupt

Request Register) is set in addition to the bit of the generator. You need

only test for the generator bit if multiple interrupts are enabled on the VIC.

If you use only the raster-line interrupt, you must check bit 7. You can

specify which raster line is to cause the interrupt by setting registers 18 and

17 (overflow). When this line is encountered while the screen is being

constructed, an interrupt is generated. By the time the routine reacts, the

beam creating the picture is already a few lines farther down. You must be

sure to take this time delay into consideration.

The possibilities which interrupt programming offers, as well as the

flood of programming tricks to be mentioned and explained would go far

beyond the scope of this book.

35

Abacus Software C-128 Internals

2.3.10.1 More than 8 sprites on the screen

We will use the following program as a small example of what can be
done with the raster-line interrupt The raster-line interrupt makes it possible
to display more than the usual 8 sprites on the screen at one time. The
control program need only exchange the data for the sprites with an area
reserved for this purpose or redefine the pointers at a specific raster-line.

If you display more than 8 sprites using the raster-line interrupt, the
freedom of movement in the vertical direction is somewhat limited. If you
use 16 sprites, for example, the first eight sprites must move above the
middle line (0--99) while the second set of eight must be satisfied with the
lower half (100-199). The sprites can move freely in the horizontal
direction. For many games the vertical restriction is not a problem so you
can make extensive use of the raster-line interrupt

Our example program displays 16 sprites in various colors and moves
them across the screen. Eight sprites are to be displayed in the upper half of
the screen. If the video controller has displayed the upper half, we generate
an interrupt. In the interrupt routine we set the parameters for the sprites
which are to be displayed in the lower half of the screen. At the same time,
we must prepare the next raster interrupt for the end of the screen so that we
can again switch back to the upper 8 sprites.

1 REM 16 SPRITES

5 PRINT CHR$(147)

100 FOR I = 0 TO 7: POKE 2040+1, 15: NEXT

110 V = 53248

120 POKE V+21, 255 : POKE V+ 33, 0

130 FOR I = 0 TO 7: POKE V+2*I,(I+l)*30:

POKE V+2*I+l,70;NEXT

140 FOR I = 0 TO 7: POKE V+3 9+I,I+l: NEXT

200 FOR I = 828 TO 907: READ X: POKE I, X : NEXT

300 FOR I = 960 TO 960 + 62 :READ X:POKE I, X: NEXT

350 SYS 828

430 D = D + 1; FOR I = 0 TO 7: POKE V+2*I,(1+1)* D:

POKE V+2*I=1,1*5+60: NEXT

440 IF D> 28 THEN D=l

450 GOTO 430

900 DATA 120, 169,100,141,18,208,173,17

910 DATA 208,41,127,141,17,208,169,129

36

Abacus Software C-128 Internals

920 DATA 141, 26,208,169,91,160,3,141

930 DATA 20,3,140,21,3,88,96,173

940 DATA 25,208,141,25,208,41,1,208

950 DATA 3,76,49,234,173,18,208,201

960 DATA 200,176,22,160,200,169,170,140

970 DATA 18,208,162,14,157,1,208,202

980 DATA 202,16,249,104,168,104,170,104

990 DATA 64,160,100,169,90,76,115,3

1000 DATA 255,255,255,182,210,73,164,155

1001 DATA 109,255,255,255,164,155,109,182

1002 DATA 211,109,182,218,109,182,219,77

1003 DATA 182,219,105,182,219,109,255,255

1004DATA 255,0,0,0,0,0,0,0

1005 DATA 0,0,0,0,0,0,0,0

1006DATA 0,0,0,0,0,0,0,0

1007DATA 0,0,0,0,0,0,0,0

Examine line 430 closely. In addition to the sprite coordinates, you can

change all of the other sprite parameters as well, such as the color or size.
You can also change the sprite pointers so that other sprite patterns can be

displayed, even multicolor.

You can do more than display 16 sprites. If you change the display
mode in the raster interrupt routine, you can display a split screen~The top
half could display hi-res graphics while the lower half displays text.

Superimposed effects can also be achieved in this manner.

Now that we have described the programming and use of sprites in
detail, we want to look at the other operating modes of the VIC chip.

37

Abacus Software C-128 Internals

2.4 Normal Character Display

This mode is the most "normal" of all the display modes of the VIC: the
text mode. It is automatically enabled when the machine is turned on. One

thousand characters from the video RAM are displayed as a page of text on
the screen. Each character has a code which is used as a pointer to the
character generator. This pointer is used to display the bit pattern stored in
the character generator at the current screen position. In this manner the
computer can display 256 different characters on the screen. Two different
characters sets are stored in the Commodore 128. You can select between
upper/lower case and upper/graphics mode with SHIFT/Commodore. These
are two of the character sets. You can also select between the 40 column and

80 column screens, giving another character set which is a combination of
the upper/lower case and upper/graphics case sets.

There is a separate location in the color RAM for each character on the

screen. This location determines the color of the character. When the

character is displayed, the color of each set bit is fetched from the lower

nibble of the color RAM. 16 colors can be defined here. If a bit is not set,
the color is fetched from the background color register 0; the point is
therefore transparent

2.4.1 Moving the video RAM

A useful feature of the VIC chip is the ability to move the location of the

video RAM and/or the character generator. In this manner you can have two

or more text screens. For example, while you display one screen, you can

build another behind the scenes. The same applies to the graphic mode.
Color RAM cannot be moved, however.

As already mentioned, the VIC chip can address only 16K. Normally

the first 16K of bank 0 is addressed--the video RAM is found at address

$0400-$07FF. Register 24 of the VIC chip supplies the address of the video
RAM in IK increments. Bits 4-7 of this register represent the address bits

10-13 of the video RAM. The address $0400 looks like this in binary:

0000 1000 0000 0000 = $0400

38

Abacus Software C-128 Internals

The left-most bit is address bit 15, the right-most is address bit 0.

Address bits 10-13 read: 0010. This bit combination is also found in

register 24, bits 4-7. To move the video RAM by IK, the new address

would be $0800.

0001 0000 0000 0000 = $0800

Address bits 10-13 now read 0100. To write this address to register 24,

you must first mask out (=erase) bits 4-7 and then the bit combination can

be defined with a logical OR operation.

P=PEEK(53248+24): REM OLD CONTENTS

POKE 53248+24,(P AND 240) OR 64

This OR operation is necessary to make sure you do not disturb the

other bits in the register because they define the address of the character

generator.

The limit of movement is reached when you try to move the video RAM

by more than 16K. Registers 24 has bits 10-13 of the address available,

enough for movements within a 16K range. Since address bits 14 and 15

cannot be defined in the VIC chip, these bits must be stored outside it.
These two bits are found in register 0 of CIA2 (address $DD00), bits 0 and
1. Note that these two bits are active low, meaning that their values are

inverted. In order to address the lowest 16K (address bits 14 and 15 are 0),

bits 0 and 1 of register 0 in CIA2 must be set.

IMPORTANT!

If you change bits 0 and 1 of CIA2, not only does the video RAM move by
16K, the base of the character generator moves too. Remember this when

doing graphics programing.

The following values stand for given memory ranges:

X

0

1

2

3

Bits

00

01

10

11

Range

$C000-$FFFF

$8000-$BFFF

$4000-$7FFF

$0000-$3FFF (power-up condition)

POKE 56576, A: REM SELECT THE 16K PAGE

39

Abacus Software C-128 Internals

2.4.2 Moving the character generator

The CIA2 bits define the 16K page for both the video RAM and the
character generator. The character generator can also be moved, but in 2K
increments instead of IK increments. Bits 1-3 of register 24 in the VIC
represent address bits 11-13 of the character generator.

Normally this pointer points to the character ROM, which is responsible

for the appearance of the characters on the screen. In the graphics mode, the
character generator must be moved, however, in order to define the base of
the graphic page (the video RAM becomes the color RAM). The character
ROM is found physically outside the readable range of the VIC chip,
because the address $D000 is not addressable when a lower page is
selected. This character ROM has a special status thanks to the address
manager, however: If the relative addresses $1000-$lFFF or $9000-$9FFF

are addressed, the character ROM is automatically accessed
($D000-$DFFF). If you disturb this by programing in the graphics mode,
for example, you must use either page 1 or 3 or move the area for the
character generator.

If, for example, you want to program and use a couple of self-defined
characters, first copy the original character set out of the character ROM into

RAM. Then you can redefine individual characters or completely redefine
the entire set. You need only tell the VIC where it can find the new character
set.

2.4.3 The color RAM

The color RAM is probably the only tiling which you cannot redefine

on the VIC. This is not a hindrance for it is important to always know
where the color RAM will be. The color RAM serves as the color palette for

the text display; the VIC gets the color for each character from this RAM.

When you work in the hi-res mode, the color RAM is unused. You can use

this RAM for other purposes. In the multi-color mode, the color RAM

comes back into play~it yields color values for the entire screen area.

The color RAM begins at address $D800 and ends at address
$D800+999.

40

Abacus Software C-128 Internals

2.5 Programming Color and Graphics

We will clarify the theory behind video programming by using

examples.

Whenever you have the opportunity to define a color, whether it be in

the color RAM for a character on your text screen or the color for a sprite,

the following codes apply to the given colors:

Key Color Number

Ctrl-l

Ctrl-2

Ctrl-3

Ctrl-4

Ctrl-5

Ctrl-6
Ctrl-7

Ctrl-8
C=-l

C=-2

C=-3

C=-4

C=-5

C=-6

C=-7

C=-8

Black

White

Red

Cyan

Purple

Green

Blue

Yellow

Orange

Brown

Light red

Grey 1

Grey 2

Light green

Light blue

Grey 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

For example, to make the border and background black, the following

instructions are necessary:

POKE 53280,0

POKE 53281,0

To fill the screen (which is now black) with white A's we must fill the
video-RAM, at address $0400 to address $0400+999, with the color code

1. In addition, we must put 1 (for white) in all locations of the colorRAM at

address $D800 to $D800+999:

10 PRINT CHR$(147); : REM CLEAR THE SCREEN

20 FOR 1=0 TO 999 : REM 1000 CHARACTERS

30 POKE 55296+1,1 : REM WHITE

41

Abacus Software C-128 Internals

40 POKE 1+1024,1 : REM AN A

50 NEXT I

60 GET A$: IF A$=FI" THEN 60

Line 60 prevents the screen from being scrolled. The program is
stopped when a key is pressed If this is too boring for you, try the
following:

30 POKE 55296+I,RND(0)*16 : REM COLOR

40 POKE 1024+I,RND(0)*255 : REM CHARACTER

You should try it out to see what happens. But since programming the

text screen is as simple as it is boring, we will now turn to graphics
programing:

2.5.1 The hi-res mode

Since we wish to program at the lowest programming level, machine
language, we don't have commands for drawing lines or circles—not even a

command to set a point Those who want to program in the 64 mode should

get rid of the idea of using BASIC 7.0 commands. If you program in
machine language, you can naturally access the routines stored in the ROM.
But it usually better if you you write such routines yourself, since you can
adapt these routines to meet^your individual needs. In addition, the
operating system routines make time-consuming checks that we can
dispense with entirely in machine language.

Here is a program which plots a sine curve on the screen in the hi-res
mode, without using a single command from BASIC 7.0; everything is
done "by hand". This program can also be translated directly into machine
language, in which only the sine calculation will present a problem.

5 REM 128 MODE ONLY: GRAPHIC 1,1

10 REM SINE-PLOT-PROGRAM FOR C-64 MODE AND 128 MODE
20 V=53248: REM START ADDRESS OF VIC

30 AD=8192: REM START ADDRESS OF HI-RES BIT
MAP

32 REM 128 MODE ONLY: GOTO 120

40 POKE V+17,59: REM TURN ON GRAPHICS

50 POKE V+24,24: REM DEFINITION OF CHAR-GENERATORS

60 FOR 1=1024 TO 2023: REM SET THE HIRES COLOR RAM

42

Abacus Software C-128 Internals

70 POKE 1,16: REM COLOR

80 NEXT I

90 FOR 1=8192 TO 16383: REM CLEAR THE HIRES BIT MAT

100 : POKE 1,0

110 NEXT I

120 Y=100: REM POSITION X AXIS

130 FOR X=0 TO 319: REM MARK THE X AXIS

140 : GOSUB 1000:REM POINT SET

150 NEXT X

160 X=160: REM POSITION Y AXIS

170 FOR Y=0 TO 199: REM MARK Y AXIS

180 : GOSUB 1000

190 NEXT Y

200 X=0

210 FOR I=-3.141592654 TO 3.141592654

STEP 0.0196349541

220 : Y= 100+99*SIN(I): REM FUNCTION

230 : GOSUB 1000

240 : X=X+1: REM NEXT FUNCTION

250 NEXT I

260 GET A$:IF A$="" THEN 260

265 REM C-128 MODE ONLY : GRAPHIC 0

1000 OY= 320* INT(Y/8) + (Y AND 7): REM Y-OFFSET

1010 OX= 8* INT(X/8) : REM X-OFFSET

1020 MA - 2A(7-(X AND 7))

1020 AV = AD + OX + OY

1040 POKE AV, PEEK(AV) OR MA: REM SET POINT ON OR

1050 RETURN

When you start the program, you will not be very impressed by the
execution speed. This is because of the time-consuming calculations and the
REM commands. A very time-intensive calculation is the (2Aa) calculation
which can be replaced by a table in both BASIC and machine language.

Naturally this all can be done in BASIC 7.0 more effectively, but you
would never know a point is set internally. The program contains the
BASIC 7.0 commands in REM statements so you can see the differences.

Well take a closer look at the program to find out how we produced the

graphics on the screen.

In order to make the calculations in the program reference the VIC chip,
we have first defined the starting address of the chip. This also makes it
easier to see which register is being accessed. First we change register 17

43

Abacus Software C-128 Internals

by writing the value 59 into it Bit 5 is set to tell the VIC that we are in the
graphics mode. The start addresses of the video RAM and character
generator are placed in register 24. We write a 24 in this register.

24 = $18 = %0001 1000

Bits 4-7 of the register determine the address bits 10-13 of the video
RAM~we get the start address $0400, the normal value of the screen.
Furthermore, bits 1-3 determine address bits 11-13 of the character base:

%0010 0000 0000 0000 = $2000 = 8192

We have defined the address of the video RAM as well as the address
of the bit map with one POKE command. Based on our own experience,
most of the errors occur in the conversion of these two addresses. For this
reason you should do everything in detail, as in our example, by writing the
two addresses down and then putting together the bits that are required.

When you start the program, you return to BASIC again by pressing a
key. But you can see that the graphics mode is not turned off, and you can
see that the text is quite colorful. This is because the video RAM is filled
with the values that refer to these colors. You should save the contents of
registers 17 and 24 before you overwrite them so that you can reconstruct
them later. Insert the following lines to return to the text mode when you
press a key:

35 A1=PEEK(V+17): A2=PEEK(V+24)

270 POKE V+17, Al: POKE V+24, A2: END

This program makes use of the hi-res mode in which we have a
resolution of 320x200 points. This gives exactly 64,000 points available to
us. Since 8 points=8 bits that can be combined into one byte, we need a
memory area of exactly 8000 bytes in order to display the graphics. Three
hundred and twenty (320) points can be displayed in one line, or 40 bytes
(320/8); we recognize this from the text mode. Further, we have 25 lines of
8 points. Notice the parallel to the text mode.

One character in the text mode consists of 8x8=64 points which can be
independently set or cleared. The color for the set points comes from the
color RAM while the color for the unset points is taken from the
background color register 0. The graphic mode is similar. Here too 8x8
points are taken together as a unit. Two colors can be displayed in this little
box of 64 points. If a memory location were provided for the color of each

44

Abacus Software C-128 Internals

point, we would need 64K of color memory! By combining the points into
8x8 groups, we only need 1000 bytes for the color definition. We will take

a closer look at such an 8x8 unit

Such a unit is also called a character matrix. All of our letters and
special characters that we can see on the screen in the text mode are defined
in this matrix. In the hi-res mode we can define all of the matrices ourselves
and no longer have just a "pointer table" to pre-defined matrices (character

generator). This may sound complicated, but it really isn't.

You see that it must be possible to mix text and graphics or to "draw"
text in the graphic area without too much programming effort. Writing
directly to the graphic storage naturally doesnft work. But exactly how is
the graphic brought to the screen? What memory location in our graphic
storage defines which 8 points in our graphic? The following figure should

clarify these questions:

8192: 8200:

8193: 8201:

8194: 8202:

8195: 8203:

8196: 8204:

8197: 8205:

8198: 8206;

8199: 8207;

8124: 8257

etc.

This figure shows the shift between columns and lines as far as the
addressing goes. Our graphic storage starts at address 8192 and defines the
first 8 points of our graphic with the first byte. If we want to address the
ninth point in our first line, we must use the address 8200 which is where
this point resides. The scheme of representation is similar to the text mode;

45

Abacus Software c.128 internals

it is displayed character by character and line by line. But how do we
address a given point? We must first calculate the address in which it is
located. To establish such an algorithm we first simplify the conditions
First we will just try addressing a point in the first line:

AD = 8192 + INT(X/8)*8

For the sake of simplicity, we will call the term INT(X/8)*8, OX (or
offset of the X-position). This is all we need to do for the X-coordinate. We
now have the address of the point, but we don't know what bit to access
We don't want to disturb any of the others:

BIT = X - INT(X/8)*8

We need to find the remainder of X/8. This is done by masking out the
lowest three bits with a logical AND operation.

BIT = XAND7

Try it once; it works and is much faster than the division, especially in
machine language. Now, however, we must consider that the left-most bit
is not labeled 0, but 7. We must reverse this relationship:

BIT = 7 - (X AND 7)

Now the formula is correct. To set such a point in assembly language or
BASIC we have to set the appropriate memory location with a logical OR
operation. To do this, we have to calculate the power of two:

2A(7-(XAND7))

Now we can set any point in the first line:

POKE 8192+OX,PEEK(8192+OX) OR 2A(7-(X AND 7))

To address the first eight lines, we need only add the Y-coordinate. If
we want to access the ninth line, we have to skip 320 bytes. The following
addition takes the Y-position into account:

OY = INT(Y/8)*320 + (Y AND 7)

46

Abacus Software C-128 Internals

In order to address a point, add the offset of the X and Y positions to

the base address of the graphics memory. The following formula results for

the address calculation:

AD = OX + OY + 8192

Our terms for calculating the X and Y offsets are integrated into the

formula. We have now derived all of the calculations necessary to set a

point. The following sequence of commands in BASIC give us the correct

results:

OY=320*INT(Y/8) + (Y AND 7)

OX=8*INT(X/8)

BI=2A(X AND 7)

AD=8192 + OX + OY

POKE AV, PEEK(AV) OR BI

If we want to erase a point, the address calculation does not change, but

we must modify the POKE command. We must also mask out the

calculated bit

POKE AV, PEEK(AV) AND NOT BI

Now we know how to set and clear points. But we still don't know

how the colors to be displayed for set and cleared bits can be set. In our

example the bit map is found at addresses 8192-16192. You recall than we

have moved the normal RAM to color RAM. This means that the

information to determine the color of the points on the hi-res screen will

come from this memory, memory which otherwise contains the contents of

the screen. This memory area is located at address 1024 thru 2023.

Since we can define two colors with one bit, we must also place these
two colors in video RAM. Recall the construction of the graphic screen. We

always had "matrices" of 8 bytes-eight sequential bytes in our bit map.

Such a matrix has the same size as a character on the screen. The colors for

our first matrix, at address 8129-8199, is defined in the first byte of the
video RAM-address 1024. These two colors apply to all 64 points in this
matrix. Correspondingly, the colors for the second matrix, from address

8200 to 8207, are stored in address 1025. The question remains, how are
these colors defined?

Let's take another look at our example program that filled the range

from 1024 to 2023 with the value 16. What does 16 look like in binary?

47

Abacus Software C-128 Internals

16 = $10 = %00010000

If we separate the upper and lower nibbles (unit of four bits) from each
other, we get two values between 0 and 15-sufficient to define the available
colors. In this example we get the values 1 and 0. If we look at the color
table, we see that we have defined the colors white and black. In the hi-res
mode you must define the colors so that sufficient contrast is retained. Often
two adjacent points must be set in order to be able to see the color at all.
This varies from monitor to monitor, however. The contrast between white
and black is the best possible (perhaps black on white would be even
better), while red and blue result in utter chaos. The color defined in the
upper nibble of the color RAM is displayed for a set bit. In our example this
means that the background is black (0) and the graphic is shown in white
(1). The following rule applies for setting the color RAM:

POKE <color RAM>,<foreground>*16 + <background>

Naturally, you can define more than two colors across the entire screen:
there are 256 possible combinations within a matrix and black and white is
only one of them. Programming in hi-res mode is best learned by trial and
error.

2.5.2 The multi-color mode

In addition to the hi-res mode, there is another option for displaying

graphics on the screen: the multi-color mode. We are familiar with the term

multi-color from sprites. In multi-color we have four colors per matrix,

though as with sprites, the resolution suffers. In multi-color mode it is

"only" 160x200--exactly half. A byte now defines four points instead of
eight. To turn on the multi-color mode we must set bit 5 of register 17 (just

as for the hi-res mode). In addition, the fourth bit in register 22 must be set.

This is done by the instruction:

POKE 53248+22,PEEK(53248+22) OR 16

The addresses for the bit map and color RAM are programmed in the

same manner as for the hi-res mode. The following contents should be

found in address 8192 (the first byte of the bit map):

PEEK(8192)= %00011011 = $1B = 27

48

Abacus Software C-128 Internals

This byte defines the first four points of the first line. Since two bits are

taken together, we get the bit pairs 00, 01, 10, and ll~all four

combinations are possible.

Bits Color information comes from

00 Background color register 0

01 Upper four bits of the video RAM

10 Lower four bits of video RAM

11 ColorRAM

Here only the bit combination 00 is the same for the entire screen. Bit

combinations 01 and 10 work the same way as described for the hi-res

mode. The color RAM begins at address $D800 and makes one color

available. Programming in multi-color mode is very attractive since it offers

a wider selection of colors. Naturally our address calculation must change

since only four points are defined by each byte. The formula for the X

offset changes:

OX=8*INT(X/4)

MA=2A(6-2*(XAND3))

POKE AV, PEEK(AV) OR MA*<bit pattern>

You can see that the formula for the bit determination has also changed.

You must remember that a bit pair must be logically ORed with the existing

contents and the power of two may only go in steps of two. The <bit

pattern> is shifted left by the multiplication. Since the multi-color mode is

most often used in games, you should be familiar with the programming

tricks used in this mode.

2.5.3 The multi-color mode (text)

(register 22 bit 4=1)

Another relatively unused multi-color mode is the multi-color text

mode. In this mode characters on the screen can have more than one color.

For example, you can define a zero made up of a white circle with a blue

slash through it If the multi-color mode is enabled, the VIC checks to see if

bit 3 of the color register is set This means that the color of the character is

greater than 7 (8-15). If this is the case, the character is displayed in

multi-color mode. The character no longer has an 8x8 matrix, but just a 4x8

matrix with the following bit combinations:

49

Abacus Software C-128 Internals

Bits Color register Defined at address
00 Background register 0 $D021 (53281)
01 Background register 1 $D022 (53282)
10 Background register 2 $D023 (53283)

11 Color register Color RAM $D8OO-$D8OO+1000

If the bit combination is 11, the color is taken from the lower three bits
of the color register. If bit three is not set in the color register (color 0-7), a
normal single-color 8x8 matrix is displayed. This mode is only useful if

you define your own character set. This mode is used in some games
because it is easier to program than the hi-res mode. Switch to this mode

once: Since these characters are not intended for multi-color mode, you get a
colored spectacle:

POKE 53248+22,PEEK(53248+22) OR 16

The following command is used to turn this mode off again:

POKE 53248+22J?EEK(53248+22) AND 239

2.5.4 Extended-color mode

(register 17 bit 6=1)

Even all this wasn't enough for the designers of the VIC. They created

yet another mode: the extended-color mode. This mode is very similar to the

normal text mode. A character can consist of only two colors, but the

background color is not necessarily the same. One can choose between three

background colors (for the O-bits), while the 1-bits get their color from the

color register. The background color is determined by the two

most-significant bits in the video RAM:

Bits Background color register #

00 0

01 1

10 2

11 3

Since two bits have been taken away from the video RAM, only six bits

remain to define the character to be displayed. This has the result that only

64 characters can be represented-these are the lowest 64 characters. There
are two sides to everything...

50

Abacus Software C-128 Internals

2.6 Smooth Scrolling

You may have seen this word in some computer literature and
wondered what it means*

Smooth scrolling is beautiful as it sounds: by means of this capability
you can move the screen horizontal or vertically by one pixel. Scrolling is

the shifting of the screen. This can be used in games to create moving
backgrounds so that one gets smooth scrolling. This movement can take

place in any one of four directions (up, down, left, or right). Moving in one

direction causes one row of pixels to be covered up while a new row
appears at the other end. The screen can be placed in eight different

positions with this scrolling, sufficient to allow a character to appear on the

screen slowly. To make use of smooth scrolling, the screen must be made

smaller. The VIC has two bits available to do this, in which one can select

the display mode of 38/40 characters per line and 24/25 lines. The border
then increases correspondingly.

If we want to move the screen vertically, we must give up a line, while

if we want to move it horizontally, we lose two characters per line. To
switch to the 38-column mode, bit 3 of register 22 must be cleared:

POKE 53248+22,PEEK(53248+22) AND 247

After you have entered this line, the screen shrinks in size. To switch

back to the "normal" mode, we must set bit 3 again:

POKE 53248+22,PEEK(53248+22) OR 8

The same thing applies to the 24-line mode. Here bit 3 of register 17

must be cleared if we want 24 lines:

POKE 53248+17,PEEK(53248+17) AND 247

POKE 53248+17,PEEK(53248+17) OR 8

In register 22, bits 0-2 indicate what offset the left edge of the screen

has. By varying these three bits one can achieve soft scrolling in the

horizontal direction. If you want to scroll vertically, the offset in register 17

must be changed accordingly.

But we don!t want to keep you in suspense any longer. Here is a demo

program to clarify what effects can be achieved with smooth scrolling:

51

Abacus Software C-128 Internals

10 PRINT CHR$(147) : REM CLR SCREEN

20 POKE 52348+17,PEEK(53248+17) AND 247

30 FOR 1=1 TO 24

40 : PRINT " HELLO !!": REM 12 SPACES

50 NEXT I: PRINT " HELLO !!";

: REM NO SCROLLING AND 12 SPACES

60 POKE 53248+17,PEEK(53248+17) AND 248 OR 7

: REM SET FIRST POSITION

70 FOR 1=6 TO 0 STEP-1

80 POKE 53248+17,PEEK(53248+17) AND 248 OR I

90 FOR 11=1 TO 60: NEXT II: REM DELAY LOOP

100 NEXT: REM END OF LOOP

110 GOTO 60: REM AGAIN

Naturally this smooth scrolling works in the graphic mode too. It is in

the graphic mode that the most refined effects can be created For example,
you can have a space ship moving soundlessly through a never-ending

universe. After all eight rows of points have been scrolled, you must fill a

graphic column or row with new values.

You can see that the VIC-II chip offers a great deal. Not everything is

covered by the BASIC 7.0 commands. This chapter covers all of the

features of the VIC-II so that you won't miss out on anything.

52

CHAPTER 3

Abacus Software C-128 Internals

Chapter 3: Input and Output Control

3.1 General Information about the CIA 6526

CIA stands for Central Intelligence Agency, though that really doesn't
concern us here. For us, CIA stands for Complex Interface Adapter, and
that should be more interesting. The Commodore 128 uses the CIA 6526. A
brief run-down of its main features:

* 16 individually programmable input/output lines
* 8 or 16-bit handshake for input and output
* 2 independent, cascadable 16-bit interval timers
* 24-hour (AM/PM) clock with programmable alarm time
* 8-bit shift register for the serial I/O

3.1.1 Pin Configuration

1 GND

2-9 I/O PA (port A); 8-bit directional
10-17 I/O PB (port B); 8-bit directional

Bits 6&7 can be programmed to signal the time-out of
both timers

18 -PC (port control); output only;
signals the availability of data on port B or both ports

19 TOD (Time OfDay); input only, 50/60 Hz;
triggers the real-time clock

20 +5V; operating voltage

21 -IRQ (interrupt request); output only;
0 if a set bit in the ICR matches the occurrence of the
given event

22 R/W (read/write); input only;
0=input from data bus

l=output to data bus

23 -CS (chip select); input only;

0=data bus valid, l=data bus high-impedance
(tri-state)

24 -FLAG; input only; meaning same as -PC
25 02 (system clock 2); input only

all data bus actions occur only on 02=1

55

Abacus Software C-128 Internals

26-33 DB7-DB0 (data bus); bidirectional;

interface to processor

34 -RES (reset); input only;

O=resetCIA

35-38 RS3-RS0 (register select); input only;

serves to select a 16-bit register;

valid only if -CS=0

39 SP (serial port); bidirectional;

input/output of the shift register

40 CNT (count); bidirectional;

input/output of the shift register clock or trigger input

for the interval counter.

3.2 Register Description of the CIA

REG 0 PRA (port register A)

Access: read/write

Bits 0-7: This register corresponds to the condition of pins

PA0-PA7.

REG 1 PRB (port register B)

Access: read/write

Bits 0-7: This register corresponds to the condition of

PB0-PB7.

REG 2 DDRA (data direction register A)

Access: read/write

Bits 0-7: These bits determine the direction of data on the

corresponding data bits of port A.

0=input, l=output

REG 3 DDRB (data direction register B)

Access: read/write

Bits 0-7: These bits determine the direction of data on the

corresponding data bits of port B.

0=input, l=output

56

Abacus Software C-128 Internals

REG 4 TA LO (Timer A, low byte)
Access: read

Bits 0-7: This register returns the current condition of the
low-order byte of time A.

Access: write

Bits 0-7: This register is loaded with the low-order byte of
the value from which timer is supposed to count down to
zero,

REG 5 TA HI (Timer A, high byte)
Access: Read

Bits 0-7: This register returns the current condition of the
high-order byte of time A.

Access: Write

Bits 0-7: This register is loaded with the high-order byte of
the value which timer is supposed to count down to zero.

REG 6 TB LO (Timer B, low byte)
Same as register 4.

REG 7 TB HI (Timer B, high byte)
Same as register 5.

REG 8 TOD lOths (Clock tenths of a second)
Access: Read

Bits 0-3: Tenths of a second in BCD format
Bits 4-7: Always 0

Access: Write and CRB bit 7=0

Bits 0-3: Tenths of a second in BCD format
Bits 4-7: Must be 0!

REG 9 TOD SEC (Clock seconds)
Access: Read

Bits 0-3: Seconds (one's digit) in BCD format
Bits 4-6: Tens of seconds in BCD
Bit 7: always zero

REG 10 TOD MIN (Clock minutes)
Access: Read

Bits 0-3: Minutes (one's digit) in BCD format
Bits 4-6: Tens of minutes in BCD
Bit 7: always zero

Write access as per REG 8.

57

Abacus Software C-128 Internals

REG 11 TOD HR (Clock hours)

Access: Read

Bits 0-3: Hours (one's digit) in BCD format

Bits 4: Tens of hours

Bits 5-6: Always zero

Bit7:0=AM, 1=PM

Write access as per REG 8

REG 12 SDR (Serial data register)

Access: Read/write

Bits 0-7: The data are shifted out to or shifted in from pin SP

from/to this register.

REG 13 ICR (Interrupt control register)

Access: Read (INT DATA)

Bit 0: l=Timer A timeout

Bit 1: l=TimerB timeout

Bit 2: l=Alarm time equals clock time
Bit 3: 1=SDR full/empty (depending on operating mode)

Bit 4: l=Signal on FLAG pin

Bits 5-6: Always zero

Bit 7: At least one bit in INT MASK matches a bit in INT

DATA

Note: Reading this register erases all of the bits!

Access: Write (INT MASK)

Meaning of bits as above, except bit7:

Bit 7: l=Every 1-bit sets the corresponding mask bit The
other remain unchanged.

0=Every 1-bit clears the corresponding mask bit. The

other remain unchanged.

REG 14 CRA (Control Register A)

Access: Read/write

Bit 0: l=Timer A start, O=stop

Bit 1: l=Signal timer A timeout on pin B6

Bit 2: l=Every timeout on timer A inverts PB6
0=Every timeout on PB6 creates a high signal on PB6

for the length of the system clock

Bit 3: l=Timer A counts down to zero and stops

0=Timer A counts down to zero and repeats

continuously

58

Abacus Software C-128 Internals

Bit 4: l=Absolute loading of start value in timer A. This bit
functions as a strobe* It must be set for each
absolute load.

Bit 5: This bit determines the source of the timer trigger.
l=timer counts rising CNT edges, 0=timer counts
system clock pulses.

Bit 6: 1=SP is output, 0=SP is input
Bit 7: l=Real-tjme clock trigger is 50Hz

O=Real-time clock trigger is 60Hz

REG 15 CRB (Control register B)
Access: Read/write

Bits 0-4: These bits have the same meaning as in REG 14,
except they apply to timer B and PB7.

Bits 5-6: These determine the source of the trigger for timer
B. 00=timer counts system clocks, 01=timer counts rising
CNT edges, 10=timer counts timeouts of timer A, ll=timer
counts timeouts of timer A when CNT=1.

3.3 I/O Ports

Ports A and B each consist of an 8-bit data register (PRA or PRB) and
an 8-bit data direction register (DDRA or DDRB). When a bit is set in the
DDR, the corresponding bit in the PR functions as an output. If a bit in the
DDR=0, the corresponding bit in the PR is defined as an input.

During a read access, the PR returns the current condition of the
corresponding pins (PAO-7, PBO-7); it does this for both input and output
pins. PB6 and PB7 can assume output functions for the two timers.

The data transfer between the CIA and the "outside" world connected to
PA/PB can be accomplished with handshaking. PC and FLAG are used for

this. PC goes low for one clock period when a read or write access occurs
on PRB. This signal can indicate the availability of data on PRB or indicate

receipt of data by PRB. FLAG is a trailing-edge triggered input which can
be connected to the PC of another CIA, for example. A trailing edge on

FLAG sets the FLAG interrupt bit.

The serial data port SDR is a synchronous 8-bit shift register. CRA bit

6 determines the input or output mode. In the input mode the data are

accepted into the shift register on a rising edge on CNT. After 8 CNT pulses

59

Abacus Software C-128 Internals

the contents of the shift register are placed in SDR and the SP bit in ICR is
set. In the output mode timer A functions as a baud rate generator. The data
are shifted out of SDR to SP at half the timeout frequency of timer A. The
theoretical limit to the baud rate is 1/4 of the system clock.

The transfer begins after data are written to the SDR, assuming timer A
is running and is in the continuous mode (CRA bit 0=1 and bit 3=0). The
clock derived from timer A appears on CNT. The data from SDR are loaded
into the shift register and are shifted out on every trailing edge on CNT.
After 8 CNT pulses, the SP signal is created. If the SDR is loaded with new
data before this event, these are automatically loaded into the shift register

and shifted out No interrupt is generated in this case.

The data in SDR are shifted out high-order bit first Data going into the

register must following the same format

3.4 The Timers

Both timers have a 16-bit timer (read-only) and a 16-bit temporary

storage (write-only). If a timer is read, its current contents are returned.

When writing, the data are first written to the temporary storage.

Both timers can be used independently of each other or in connection.

The various operating modes allow long time delays, variable pulse lengths,

and pulse chains. By using the CNT input, the timer can measure external

pulses or frequencies.

Each timer has a control register (CRA and CRB) assigned to it, which

allows the following functions:

Start/Stop (Bit 0)

This bit allows the timer to be started or stopped at any time.

PB ON/OFF (Bit 1)

This bit directs the timeout to PB (PB6 for timer A, PB7 for timer B).

This function has precedence over die data direction set in DDRB.

Toggle/Pulse (Bit 2)

This bit determines the method in which the timeout signals will appear

on PB. Either the condition of PB is inverted at every timeout, or a

positive pulse is created for the duration of the clock.

60

Abacus Software C-128 Internals

One-shot/Continuous (Bit 3)
In the one-shot mode the timer counts from the temporary storage value
down to zero, sets the IRC bit, reloads the timer with the temporary

storage value and stops. In the continuous mode, this procedure does
not stop.

Force-load (Bit 4)

This bit allows the timer to be loaded at any time, independent of
whether it is running or not.

Input mode (Bit 5 CRA, Bits 5-6 CRB)

These bits select the clock which determines the rate at which the timers
will count down. Timer A can be clocked either by the system clock or
by a clock supplied on CNT. Timer B can be further clocked by the
timeout pulses from timer A, either absolutely or dependent on CNT=1.

3.5 The Real-time Clock

There is a 24-hour real-time clock (TOD) in the CIA with a resolution of

1/10 second. In consists of four registers: Hours, minutes, seconds, and

l/10ths of second. In the hour's register, the highest bit (bit 7) indicates

whether it is AM or PM. All registers are given in BCD format so that the

clock can be used without a lot of processor effort, even in machine

language.

The clock is a 50/60 Hz signal at the pin TOD, which can be

programmed in CRA bit 7. In addition, there is an alarm register that can be

used to generate an interrupt at any desired time. The alarm register

occupies the same address as the TOD register, so the access is controlled

by CRB bit 7.

Note that the alarm register is write only! Any read access returns the

TOD register regardless of the state ofCRB bit 7.

In order to be able to properly set and read the alarm time, the following

order must be preserved:

If the hours register is written, the clock automatically stops-it starts to

run when the tenth of second register is loaded. The starting of the clock can

be controlled exactly in this manner.

61

Abacus Software C-128 Internals

Since a carry can occur in a register already read when reading the

clock, the registers are stored in temporary storage. This temporary storage

is freed again when the tenths of a second are read.

3.5.1 Real-time in BASIC

Most of you probably know about the "clock" available from BASIC,
TI$ and TL Unfortunately the long-time accuracy of this clock leaves much

to be desired; it is off about 1/2 hour per day.

Ifyou need a more exact time indication, you can use the real-time clock

built into the CIA. Thie CIA clock uses the line frequency, which has

excellent long-term accuracy.

Here are two BASIC programs, one for setting the clock time, and one
for reading it. Since it doesn't make a whole lot of sense to read the tenths,

the register is always set to zero.

10 C=56328: REM BASE ADDRESS OF THE CLOCK IN CIA1

20 REM C=56584 FOR THE CLOCK IN CIA2

30 POKE C+7,PEEK(C+7) AND 127: REM SET CLOCK TIME

40 POKE C+6,PEEK(C+6) AND 128: REM LINE FREQ=60HZ

50 INPUT "PLEASE ENTER THE TIME IN THE FORMAT

HHMMSS: ";A$

60 H=VAL(LEFT$(A$,2))

70 M=VAL(MID$(A$, 3,2))

80 S=VAL(MID$(A$,5))

90 IF H>23 THEN 40 : REM ERROR

100 IF H>11 THEN H=H+68 : REM SET PM FLAG IF

NECESSARY

110 POKE C+3,16*INT(H/10)+H-INT(H/10)*10

120 IF M>59 THEN 40 : REM ERROR

130 POKE C+2,16*INT(M/10)+M-INT(M/10)*10

140 IF S>59 THEN 40 : REM ERROR

150 POKE C+l,16*INT(S/59)+S-INT(S/59)*10

160 POKE C,0 : REM TENTHS — START CLOCK

The values are converted to BCD format in lines 110,130, and 150.

You can use the following program to read the clock:

62

Abacus Software C-128 Internals

10 C=56328 : REM BASE ADDRESS OF THE CLOCK IN CIA1

20 PRINT CHR$(147) : REM C=56584 FOR CLOCK IN CIA2

30 H=PEEK(C+3):M=PEEK(C+2):S=PEEK(C+1):T=PEEK(C)

40 FL=1

50 IF H>32 THEN H=H AND 127: FL=0: REM FLAG FOR PM

60 H=INT(H/16)*10+H-INT(H/16)*16:ON FL GOTO 80

70 IF H=12 THEN 90: ELSE H=H+12

80 IF H=12 THEN H=0

90 M=INT(M/16)*10+M-INT(M/16)*16

100 S=INT(S/16)*10+S-INT(S/16)*16

110 T$=MID$(STR$(T) , 2)

120 H$=RIGHT$("0"+MID$(STR$(H) ,2) ,2)

130 M$=RIGHT$("0"+MID$(STR$(M),2),2)

140 S$=RIGHT$("0"+MID$(STR$(S) ,2),2)

150 PRINT "<Home>";

160 PRINT H$;":"/M$;":";S$;":";T$

170 GOTO 30 : REM LOOP

If you press the STOP/RESTORE key combination, the clock must be

reset because the operating system sets all of the registers back to the

starting values. Unfortunately, the bit responsible for the clock (50/60Hz) is
also affected by this.

3.6 The CIAs in the Commodore 128

If you want to make use of the CIAs in the Commodore 128, you must
remember that the CIAs have predetermined tasks to perform. Its first
priority is to handle the interrupts, which the operating system requires for a
number of routines. If possible, refrain from changing the ICR register.

CIA 1: Base address $DC00 (56320)

REG0 (PRA)

Bits 0-7: In normal operation the row selection of the
keyboard matrix is found here. Some bits are also connected

to controller port 1 on the outside of the computer. This is

used to connect joysticks or paddles.

Bits 0-4: Joystick 0, order: up, down, (left right, and fire
button).

Bits 6-7: Select paddle set A/B. Only one of the two bits may
be 1.

63

Abacus Software C-128 Internals

REG1 (PRB)

Bits 0-7: In normal operation the column selection of the

keyboard matrix is found here, if a key was pressed.

Bits 0-4: The same function as REG 0, but for control port 2

(joystick 1).

REG 13 (ICR)

Bit 4: Input data on cassette port

Timer A and CRA are required for the disk operation, timer B & CRB for

the cassette operation.

CIA 2: Base address $DD00 (56576)

REG 0 (PRA)

Bits 0-1: VA 14-15 (highest-order address bits of the video

RAM),

Bit 2: TXD (only in connection with an RS-232 cartridge,

else free),

Bit 3: ATN (serial bus output)

Bit 4: CLOCK (serial bus output)

Bit 5: DATA (serial bus output)

Bit 6: CLOCK (serial bus input)

Bit 7: DATA (serial bus input)

REG 1 (PRB)
Bits 0-7: User port/RS-232. These bits have following

meaning when an RS-232 cartridge is inserted:

Bit 0: RXD (Receive Data)

Bit 1: RTS (Request To Send)

Bit 2: DTR (Data Terminal Ready)

Bit 3: RI (Ring Indicator)

Bit 4: DCD Pata Carrier Detect)

Bit 6: CTS (Clear To Send)

Bit 7: DSR Pata Set Ready)

REG 13 (ICR)
Bit 4: RXD (only for RS-232 operation, else free).

Timer A & CRA are required for the RS-232 baud rate, timer B & CRB for

the RS-232 bit checking.

64

Abacus Software C-128 Internals

3,7 The Joystick

In addition to the BASIC 7.0 commands for reading the joystick you

can use the following BASIC program for interpreting the data:

10 Jl=56320 : REM JOYSTICK PORT 1

20 J2=56321 : REM JOYSTICK PORT 2

30 J=PEEK(J1) : REM READ FROM PORT

40 IF (J AND l)=0 THEN PRINT "UP

50 IF (J AND 2)=0 THEN PRINT "DOWN ";

60 IF (J AND 4)=0 THEN PRINT "LEFT ";

70 IF (J AND 8)=0 THEN PRINT "RIGHT ";

80 IF (J AND 16)=0 THEN PRINT "FIRE";

90 PRINT: GOTO 30

The program reads from joystick port 1; if you want to read from port

2, you need only replace Jlwith J2 in line 30.

If you want control in two directions at once, such as up and right, this
can also be read-in our example both directions are displayed on the screen.

This increases the number of directions from 4 to 8.

3.8 The Commodore 128 Serial Bus

Peripheral devices are connected to the computer via the serial bus.

These can be such things as a printer or disk drives. You can think of a bus

as working like this: Data is transported from the computer over the bus to

specific stops (peripheral) and they return via the same path. The serial bus

built into the Commodore 64 and 128 is a trimmed-down version of the bus

included in the "larger11 Commodore computers. The "big" bus has 24 lines

while the "smaller" bus has only 6. This reduction may have been made for

reasons of cost or space, but this bus has definitely contributed to the

success of the Commodore computers (Many even think that it is

Commodore's secret recipe).

65

Abacus Software C-128 Internals

Here is the pinout of the bus:

1 SRQ; Service request. If a device has completed a task and now

needs new data, or has some to send, or requires some kind of

action, it can signal the controller by means of this line (like in the

hospital where you can ring for a nurse). This initiates an identify
cycle (by means ofEOI or ATN), in order to determine which device

is involved. This function is not used on the Commodore.

2 GND; ground connection

3 ATN; (In) ATtentioN. Whenever the controller wants to send a

command, it activates this line. It must still be determined for which

device the command is intended (all of the devices should "listen").

This is done when the device address is transmitted so that the other

devices can get off the bus.

4 CLK; (In/Out) CLocK. Since the data travel through the bus bit by bit

in serial and not in parallel, the TALKER sends a CLK pulse along

with each bit, which indicates the validity of the data line.

5 DATA (In/Out) is the sole data line, over which a data byte is shifted

with the lowest-order byte first

6 RESET; sends a reset to the connected devices.

All of the additional lines found on the larger bus, like EOI, NDAC,

etc., are simulated or replaced by the two lines CLK and DATA. The time

between the signal jumps of the two lines gives information about the

signal.

66

Abacus Software C-128 Internals

3.8.1 Fast and slow modes

You may think it a waste to leave one line unused on the already puny

bus. But unfortunately, that's the way it is—at least in the "normal" mode.

If there is a "normal" mode, you know there must be some other

"abnormal" mode. This is true! As you know, the 1541 can hardly be

described as a fast disk drive (quite the opposite). This is because each byte

must be picked to pieces and then sent over the bus bit by bit. This

deplorable state of affairs must be corrected~what good is a super machine

like the Commodore 128 when it has such a handicap? Commodore

developed the 1571 disk drive which loads up to eight times (!) faster than

the 1541 (you can find out more in the book 1571 Internals by Abacus

Software). Other things have been added in the CP/M mode as well. The

speed advantage is possible only in the 128 mode, not in the 64 mode. The

1541 can be operated as usual in the 128 mode.

You may have already given some thought as to how this speed

increase was accomplished; with the help of the unused SRQ signal. In the

fast serial mode this line is used as second CLK line, as a fast, bidirectional

CLOCK line.

On power-up, the 1571 is always in the slow mode, which is why you

can connect it to a C-64. The user can then specify the "fast" mode, which

will remain in effect until it is turned off. The existing kernal routines in the

C-128 have been changed in order to recognize the fast and slow modes.

There is a special flag in the kernal to indicate if the current peripheral device

is fast or slow.

In order to declare the 1571 as a fast device, the user must send an HRF

signal (Host Request Fast). This is done by sending eight CLOCK pulses

over the SRQ line. The 6526 on the control board of the 1571 disk drive

recognizes this signal and generates an interrupt. A flag is then set in the

drive which indicates the fast mode. If the disk drive is the LISTENER and

receives data, it sends a DRF signal (Device Request Fast). By means of

this signal the computer recognizes that the disk drive can send and receive

data in the fast mode. A 1541 can't send this signal, of course. The

fast-mode flag in the computer can be reset by the following occurrences:

UNLISTEN, UNTALK, bus error, and <RUN/STOPxRESTORE>

67

Abacus Software C-128 Internals

3.8.2 The device addresses

It's possible to connect a variety of devices to the serial bus, such as

two disk drives and a printer This makes it necessary to be able to

distinguish between the different devices so that the data know where they

have to "get off the bus.11 You can imagine a device address as a house

number. The values 0-30 are possible as device addresses.

Device address

0-3 Internal device (keyboard, screen, user port, cassette

port)

4-7 Normally CBM printer

8-11 Normally CBM disk drives

12-30 Not used

The device address contains additional information besides the actual

device number: the action which is to be performed. The possible actions

are the following:

32 The device is addressed as a LISTENER, which means that it is to

receive data.

This action is called for by the BASIC command PRINT# or

DSAVE, for instance.

64 The device is supposed to be the TALKER; it is supposed to send

data.

This is used, for example, by the BASIC commands INPUT# or

DLOAD.

48 The operating mode LISTEN is ended (UNLISTEN). The lower

half-byte (device) is always 15.

80 The operating mode TALK is ended (UNTALK). The lower half-byte

is always 15.

For example, if you want to address a printer with the device address 4

for printing, the whole device address is 32+4=36 ($24).

68

Abacus Software C-128 Internals

3.8.3 The secondary address

The secondary address does not select a device on the serial bus-it is
used to select a mode in the device addressed. For example, a specific
printing mode can be selected on most printers by specifying a secondary

address. On the CBM printers, secondary address 0 selects the

upper/graphics mode, secondary address 7 selects the upper/lowercase

mode. With a disk drive one can choose a data channel with the secondary

address.

The secondary address is also composed of the actual secondary

address and the connection in which the secondary address occurs.

96 PRINT, INPUT, or GET

224 CLOSE

240 OPEN

This next table will also prove useful. It shows the bit patterns for the

individual device and secondary addresses.

Command

Host Request Fast

Device Request Fast

Talk address

Listen address

UNTALK

UNLISTEN

SA OPEN

SA CLOSE

SA normal

Abbreviation

HRF

DRF

(TA)

(LA)

(UNTLK)

(UNLSN)

(SA(O))

(SA(C»

(SA)

Binary value

%1111

%0000

%010x

%001x

%0101

%0011

%1111

%1110

%011z

1111

0000

xxxx

xxxx

1111

1111

yyyy

yyyy
zzzz

The normal secondary address (zzzz) may have a value between 0 and
31. The channel address (yyyy) may have a value between 0 and 15. As an
example, the secondary addresses and their meaning for the 1541 disk

drives:

00 - PRG type (read data channel)

01 - PRG type (write data channel)

02-14 - Channels for all file types

15 - Command channel

69

Abacus Software C-128 Internals

3.8.4 The system variable ST

When peripheral devices are connected, errors can naturally occur. The

system variable ST gives information about whether the last action on the

serial bus was successful or not. If it was not successful, the error can be

analyzed by means of the error code passed in the status variable ST. ST

can have the following values:

1 Can occur after OPEN or PRINT. After transmission of a byte, no

acknowledgement was received via NDAC within 64milliseconds

(ms), and it will probably not come.

2 Can occur during INPUT or GET. If a device is addresses as a

TALKER and does not send a byte within 64ms, ST contains this

value.

64 The data byte last transmitted was sent in connection with an EOI

(End Of Information), which means the end of the file (EOF) for the

disk drive.

-128 An addressing attempt produced no reaction on the drive. In this case

a BASIC program will display the error message DEVICE NOT

PRESENT; in machine language you can react in whatever manner is

appropriate.

A combination of these values can also occur. Here it is advisable not to
read the absolute value in a BASIC program, but just the appropriate bit:

1000 IF (ST AND 64) THEN PRINT "<EOF>"

To read the status word ST in machine language, it is necessary to get it

from the zero page. Fortunately, it is at the same address in both the 64 and

128 modes: $90 (144 decimal). Reading the value in machine language
would look like this:

LDA $90 ;Get status variable

AND #$40 ;bit 6 set?

BNE EOF /EOF reached

70

CHAPTER 4

Abacus Software C"12» Internals

Chapter 4: The Sound Chip SID

4.1 The Sound Controller

4.1.1 General information about the SID

Music is an interesting computer applications area. You are fortunate
that such a powerful synthesizer (the SID chip) is contained inside the
C-128. It is the same component contained in the Commodore 64. Almost
every game uses some of the SID's soundmaking capabilities^ but none
really push the chip to its limits. Often the best-known melodies can be
heard coming from the computer in all possible and impossible tone colors.
The computer can also talk, thanks to the SID, without additional hardware.

All it needs is the right program.

SID stands for Sound Interface Device. While many synthesizers have
only one voice (monophonic), the SID has three completely independent,
freely programmable voices (polyphonic). Competing computers have also
adopted this element and installed polyphonic synthesizers.

Here are the important features of the SID 6581:

* 3 independent, freely programmable voices

* 4 mixable wave types for each voice
* 3 mixable filters (highpass, lowpass, bandpass)

* Envelope generator (ADSR control) for each voice
* 2 cascadable ring modulators

* alternation option for external signal sources

* Two 8-bit A/D converters

73

Abacus Software C-128 Internals

The Block Diagram of the SID

CAP1

CAP2

EXTIN

HIGH

AMPLITUDE

MODULATOR

WAVEFORM &

RING MODULATOR

REG

27

FILTER CUTOFF FREQ.

RESONANCE CONTROL
FILTER MODE

ENVELOPE

AD

SR

OSCILLATORS

REG

28

REGS

2/9/16

3/10/17

4/11/18
PULSE WAVEFORM

WIDTHS WAVEFORM

REGS

0/7/14

1/8/15
FREQUENCY

A1 IN

A2IN

74

Abacus Software C-128 Internals

4.1.2 Pinout of the 28-pin device:

1-2 CAP1A, CAP1B; connection for capacitor for programmable

filter. Recommended capacitance: 2200pF.

3-4 CAP2A, CAP2B; like 1-2
5 -RES (reset); =0 brings the SID back to start-up state
6 02 (system clock); all data bus actions occur only while 02=1

7 R/W (read/write); 0=write access, l=read access

8 -CS (chip select); 0=data bus valid, l=data bus high-Z

(tri-state)
9-13 A0-A4 (address bits 0-4); serve to select one of the 29 registers
14 GND (ground); Note: The SID should have its own ground

connection for power in order to reduce interference with or

from other system components.

15-22 D0-D7; data lines to and from the processor system

23 A2IN (analog input 2); operation described in Section 4.1.4
24 A1IN (analog input 1); as 23, except for A/D converter 1

25 VCC; supply voltage +5V
26 EXT IN (external input); input for external audio signals to be

alienated through the SID.
27 AUDIO OUT; summed output of all signals created in the SID
28 VDD; supply voltage +12V

As we already mentioned, the SID 6581 has three independently

programmable voices.

No doubt some of our readers have already programmed sounds or

sound sequences in BASIC 7.0. However, complex sound and music
cannot be produced using the BASIC 7.0 commands. Also, the easy-to-use

commands are not available in the 64 mode; this is no reason to give up
since you can get a lot out of the SID with POKE commands; in principle

the BASIC 7.0 interpreter does the same thing when it executes your

commands.

Those of you who have programmed some sounds in BASIC are

familiar with or aware of terms like "envelope" and "amplitude modulation."

We will explain these terms for everyone because they are very important

when working with the SID.

Each voice consists of an oscillator, an envelope generator, an

amplitude modulator, and waveform generator. With a clock frequency of

1MHz, the oscillator creates a fundamental frequency in the range 0-8200Hz

75

Abacus Software C-128 Internals

with a resolution of 16 bits. Four different waveforms are possible:
sawtooth, square (with variable duty cycle), triangle, and the "white noise'1
familiar to every hi-fi freak. The waveform is an important criterion for the
tone picture of the created sound, since every waveform has its own set of
harmonics. A triangle wave is very soft, like a wood flute. The sawtooth
waveform sounds more metallic, like a trumpet. A clarinet resembles a
square wave; it sounds very hollow. This leaves the white noise, which
doesn't really resemble any instrument, but can be used to simulate drums.
Special noise effects can be best created by superimposing another
waveform on the noise. Noise is achieved through the superimposition of
many random frequencies.

The amplitude modulator affects the volume while the tone is being
generated. This modulator is controlled by the envelope generator, which
you can program directly. We will see how the envelope generator is
programmed later.

In addition, the outputs of the all the devices can be sent to a
programmable filter where you can further influence the tone color. Another
possibility for SK> fans: Voices 1 and 2 can be ring-modulated by voice 3.

That means that it consists of the fundamental voice together with the sum
2nd difference with voice 3. With voice 3 you can read out the current value

of the envelope generator during the course of a sound and then change the
filter based on this data, for instance.

4.1.3 Register description of the SID

The basfc address of the SID 6581 is $D400 (54272).

REG 0 Lower byte of oscillator frequency for voice 1.

REG 1 Upper byte of oscillator frequency for voice 1.

REG 2 Pulse width LSB for voice 1.

REG 3 Pulse width MSB for voice 1.

Registers 2 and 3 determine the on/off duty cycle of the

square output on voice 1. Only bits 0-3 of register 3 are

used.

76

Abacus Software C-128 Internals

REG 4 Control register for voice 1
Bit 0: KEY; Control bit for the course of the envelope
generator. When changed from 0 to 1, the volume of voice 1
increases from zero to the maximum value (REG 24) within
the "attack" time specified in REG 5 and then within the
"decay" time specified in REG 5 falls to the "sustain" level
programmed in REG 6, at which it remains until the control
bit is changed to zero again. Then the volume falls to zero

within the "release" time specified in REG 6.
Bit 1: SYNC; l=oscillator 1 is synchronized with oscillator

3. This bit also has effect when voice three is supposed to be

silent.
Bit 2: RING; l=the triangle waveform output of oscillator 1
is replaced by a frequency mix (sum and difference of the
frequencies of voices 1 and 3). This effect also occurs when

voice three is silent.
Bit 3: TEST; When another waveform is selected along with
the noise generator in the same oscillator, it can occur that the
noise generator is disabled. It can be re-enabled with this bit.

Bit 4: TRI; l=triangle wave form selected.

Bit 5: SAW; l=sawtooth waveform selected.

Bit 6; PUL; l=square waveform selected. The on/off
relationship of this waveform is controlled in REG 2 and

REG 3.

Bit 7: NSE; l=noise generator selected

Note for bits 4-7: It is possible in practice to select multiple
waveforms at the same time. In addition to what was said for

bit 3, it should be noted that result is not exaclty the sum of
all of the forms but more of a logical AND of the

components.

REG 5 ATTAC/DECAY

Bits 0-3: These bits determine the time it takes until the

volume falls from the maximum value to the sustain level.

The selectable range is from 6ms to 24 seconds.

Bits 4-7: Here the time is takes for the volume to reach the

maximum value after the KEY bit is set is defined. The

selectable range is from 2ms to 8 seconds.

77

Abacus Software C-128 Internals

REG 6 SUSTAIN/RELEASE

Bits 0-3: These bits determine the time within which the
volume will fall from the sustain level after the KEY bit is
cleared (end of the tone). The selectable range is 6ms to 24
seconds*

Bits 4-7: These bits specify the sustain level, the volume
which will be maintained after the maximum value is reached
and before it falls back.

REG 7-13 These registers control voice 2 in the same manner as do
register 0-6, with the following exceptions:

SYNC synchronizes oscillator 2 with oscillator 3.
RING replaces the triangle output of oscillator three with the
frequency mix of oscillators 2 and 3.

REG 14-20 These registers control voice 3 in the same manner as do
registers 0-6 for voice 1, with the following exceptions:
SYNC synchronizes oscillator 3 with oscillator 2.
RING replaces the triangle wave from oscillator 3 with the
frequency mix from oscillators 2 and 3.

REG 21 Filter frequency, low-order byte

Only bits 0-2 are used.

REG 22 Filter frequency, high-order byte

The 11-bit number in registers 21 and 22 determines the
frequency.

In the Commdore 128 this frequency is determined as
follows:

F=(30+W*5.8) Hz, whereby W is the 11-bit number.

REG 23 Filter resonance and switch

Bit 0: l=voice 1 is directed to the filter

Bit 1: l=voice 2 is directed to the filter

Bit 2: l=voice 3 is directed to the filter

Bit 3: l=the external source is directed to the filter

Bits 4-7: These bits determine the resonance frequency of the

filter. These are used to enhance specific sections of the

frequency spectrum. The effect is especially noticeable on the

sawtooth waveform.

78

Abacus Software C-128 Internals

REG 24 This register has the following purposes:

Bits 0-3: Total volume

Bit 4: Switches the lowpass filter on

Bit 5: Switches the bandpass filter on

Bit 6: Switches the highpass filter on

The high and lowpass filters have a slope of 12 dB/octave.

The bandpass filter has a slope of 6 dB/octave.

More than one filter can be enable at a time. If, for example,

the high and lowpass filters are enabled, a notch filter results.

In order to hear the effects of the filter, at least one filter must

be enabled and at least one voice must be directed to the

filter.

In general, the filter is used to filter out specific ranges of the

frequency spectrum.

Filtering allows much finer and more ingenious manipulation

of the tone picture than simply selecting the waveform

permits.

Different instruments can be simulated perfectly by changing

the filter frequency during the tone.

Bit 7: l=voice 3 silent. This should be used whenever voice

3 is used to control the other voices.

All of the register described so far can only be written to. A read access

returns no useful information. Only read accesses may be made to the

following registers:

REG 25 A/D Converter 1

REG 26 A/D Converter 2

REG 27 Noise generator for voice 3

This register returns a random number which corresponds to

the cuixent state of the noise generator 3. TTie generator must

be enabled, but voice 3 can be made inaudible (bit 7 in REG
24 = 1).

REG 28 Envelope generator for voice 3

This register returns the current condition of the relative

volume of voice 3. This can be used to vary the frequency or
filter parameters during the tone creation, for example. An

example of this can be found in section 4.2.2.

79

Abacus Software C-128 Internals

Now that we have seen the table of registers, we want to clarify their

use by means of short examples. We will place the emphasis on the
tone-producing registers in section 4.1.5. Now we will examine the A/D
converters.

4.1.4 The analog/digital converter

The words analog and digital are widely known. For example, clocks
and watches with hands are called analog, while ones which display the

time using numerals are called digital. These terms are derived from the way
in which the time is displayed.

An A/D converter is a device for converting an analog signal, such as a

voltage, to a digital value. The problem is that one must convert an analog

value with theoretically an infinite number of levels to a finite digital value

with predetermined levels. In this conversion there is a maximum error of

+/- the smallest digital step.

As you can gather from the registers, the SID 6581 contains two A/D

converters. These are designed with an internal reference voltage of about

2.5 volts.

The measuring procedure consists of charging an external capacitance

and then placing a value in register 25 or 26 corresponding to the time

required for a new charge of the capacitor to reach the reference voltage.

This process is carried out repeatedly.

4.1.4.1 The operation of the A/D converter

A requirement of this type of A/D converter is that only resistance

values can be measured, such as the position of a potentiometer, a

light-sensitive resistance, or a temperature sensor.

If voltages are to be measured, they must first be converted to the
appropriate form, possibly with the help of a unijunction transistor. The
measurement is made simply by connecting +5V to one end of the resistance

and the other end to the analog input of the SID (available on the control
port, the designations are POTX and POTY). The values read from register

25 and 26 are measures of the resistances.

80

Abacus Software C-128 Internals

In order to use the entire scale of 8 bits, the resistance must range from

200 ohms (no smaller) to 200 Kohms. The programming aspects of the A/D

converter are handled in the next section*

4.1.4.2 Using paddles

Paddles are nothing more than potentiometers in handheld form and are

therefore well suited for the A/D converters. The generic Atari type paddles

can be connected to the Commodore 128. These are connected to control

port 1 or 2 where you connect a joystick.

Since some bits in CIA 1 and 2 are responsible for reading the keyboard

as well as the paddles, writing a program to read the paddles is not all that

simple. The best thing to do is to turn the keyboard off to inhibit

nonsensical values, but only during the exact time of access of the paddles,

since otherwise the keyboard will not be read.

We want to show you a short machine language program that makes it

possible to read the paddles with ease. The best thing to do is to include it in

your BASIC programs in the form of a BASIC loader. The program

occupies the area from $OC00to $0C41. This area was chosen because it is

free in C-128 mode. You can of course move it if you want to use it in

C-64 mode, remembering to change the address $0C03 and $0C16
accordingly.

ocoo

0C01

0C03

0C06

0C09

OCOC

0C0F

0C11

0C14

0C16

0C19

0C1C

0C1F

0C22

0C24

SEI

LDA

JSR

STX

STY

LDA

AND

STA

LDA

JSR

STX

STY

LDA

AND

STA

#$80

$0C2E

$0201

$0202

$DC00

#$0C

$0200

#$40

$0C2E

$0203

$0204

$DC01

#$0C

$0205

;INHIBIT KEYBOARD

/PARAMETERS FOR PADDLE SET A

;GET A/D VALUES Al AND A2

;AND STORE

;GET KEYS A FROM CIA1

/FILTER OUT REQUIRED BITS

/AND STORE

/PARAMETERS FOR PADDLE SET B

/GET A/D VALUES Bl AND B2

/AND STORE

/GET KEYS B FROM CIA2

/FILTER OUT REQUIRED BITS

/AND STORE

81

Abacus

0C27

0C2 9

0C2C

0C2D

0C2E

0C31

0C33

0C36

0C38

0C39

0C3B

0C3E

0C41

Software

LDA #$FF

STA $DC92

CLI

RTS

STA $DC00

ORA #$C0

STA $DC02

LDX #$00

DEX

BNE $CFF6

LDX $D419

LDY $D41A

RTS

C-128 Internals

;ALL BITS OUTPUT IN CIA 1

;TO REENABLE KEYBOARD READ

/RETURN TO BASIC PROGRAM

/SELECT PADDLE SET

;AND SET CORRESPONDING BITS

;TO OUTPUT

/DELAY LOOP

;TO QUIET THE

;A/D INPUT

;GET A/D I

/GET A/D 2

/BACK TO MAIN PROGRAM

Here is the BASIC loader with an example program. Connect the

paddles, start the program, and see what it does.

1 POKE 54528, 32: REM SET CONFIGURATION 128 ONLY

10 DATA 120,169,128,32,46,12,142,1,2,140,2,2,173

20 DATA 0,220,41,12,141,0,2,169,64,32,46,12,142

30 DATA 3,2,140,4,2,173,1,220,41,12,141,5,2,169

40 DATA 255,141,2,220,88,96,141,0,220,9,192,141,2

50 DATA 220,162,0,202,208,253,174,25,212,172,26,

212,96

60 FOR M = 3072 TO 3072 + 65

70 READ A: POKE M,A: NEXT : REM LOAD MACHINE

LANGUAGE

80 AX = 515 : REM PADDLE 1 CONTROL PORT 1

90 AY = 516 : REM PADDLE 2 CONTROL PORT 1

100BA=517 : REM BUTTON PADDLE 1

110BX=513 : REM PADDLE 2 CONTROL PORT 2

120 BY =514 : REM PADDLE 2 CONTROL PORT 2

130 BB = 512 : REM BUTTON PADDLE 2

135 PRINT"<CLR>"

140 SYS 3072 : REM START M/L

150 PRINT"<HOME>" PEEK(AX)" "PEEK(AY)" "PEEK(BA)

160 PRINT" <CRS DOWN TWO" PEEK (BX) " "PEEK (BY)"

"PEEK(BB)

170 GOTO 140

82

Abacus Software C-128 Internals

4.1.5 Programming the SID

We have already talked about terms like envelope and ADSR control;

we will now look at how we can program the SID directly in machine

language.

The tone color is determined by the selection of the waveform; filters

can further be used to change the tone picture* The envelope determines the

course of the tone, the volume, the length of the rise, etc. The following

figure should clarify the individual stages that a sound goes through:

15

I

u A ATTACK DECAY SUSTAIN A FELEASE

GATE BITON GATE BITOFF

We can recognize from the figure that sound is divided into four basic
stages: attack, decay to sustain level, sustain, and release to zero. The
duration of individual stages can be set for each voice independently. The
attack of the tone starts when the KEY bit is set (bit 0, register 4 for voice
1). All values, including frequency, attack, decay, sustain, and release,
must be defined before the KEY bit is set!

The tone rises from zero to the maximum volume (REG 14) within the
time frame defined in attack (REG 5, bits 4-7). After the maximum value is
attained, the volume drops to the sustain volume (REG 6, bits 4-7) within
the decay (REG 5, bits 0-3) time. This volume is maintained until the KEY

83

Abacus Software C-128 Internals

bit is cleared. Once this happens, the volume falls back to zero within the

release time (REG 6, bits 0-3). The register numbers given in parentheses

refer to voice 1. For voice 2 you must add 7, and add 14 for voice 3.

The duration of the attack can be defined in a time frame from 2ms to 8

seconds. The values for decay and release lie in the range 6ms to 24

seconds. These time frames are divided into 16 steps, which you see in this

table:

Value

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Attack

2 ms

8 ms

16 ms

24 ms

38 ms

56 ms

68 ms

80 ms

100 ms

250 ms

500 ms

800 ms

Is

3s

5s

8s

Decay/Release

6 ms

24 ms

48 ms

72 ms

114 ms

168 ms

204 ms

240 ms

300 ms

750 ms

1.5 s

2.4 s

3s

9s

15 s

24 s

The following program is designed to familiarize you with the

waveforms and sound range of the SID 6581:

10

20

30

40

50

60

70

80

90

SI

S2

S3

FL

FH

RS

PL

54272

54279

54286

54293

54295

54295

54296

POKE Sl+4,0

CONTROL REGISTERS AT 0

POKE Sl+2,0

PULSE AT 0

REM VOICE 1

REM VOICE 2

REM VOICE 3

REM FILTER LO-BYTE

REM FILTER HIGH BYTE

REM RESONANCE AND COUNTER

REM VOLUME

POKE S2+4,0: POKE S3+4,0: REM

POKE S2+2,0: POKE S3+2,0: REM

84

Abacus Software C-128 Internals

100 POKE Sl+5,0: POKE Sl+6,240: REM ATTACK/DECAY

VOICE 1

120 POKE RS,0: POKE PL,15: REM RESONANCE/ VOLUME

=15

130 PRINT "TRIANGLE..."

140 T = 16: GOSUB 400

150 PRINT "SAWTOOTH..."

160 T = 32 : GOSUB 300

170 PRINT "SQUARE..."

180 T = 64: GOSUB 300

190 PRINT "NOISE..."

200 T = 128: GOSUB 300

210 PRINT END"

220 END

300 POKE Sl,0: POKE Sl+1,0: REM FREQUENCY

310 POKE Sl+4, T+l: REM TONE, WAVE DEFINATION

320 FOR I = 0 TO 255 : RFOR J = 0 TO 255 STEP 50

330 POKE SI,J:POKE S1+1,I

340 NEXT J,I

350 POKE S1+4,T; REM TONE

360 RETURN

Lines 10 to 80 should be included in every program using sound. After

you have typed the program and started it, you will hear the frequency

spectrum and the various waveforms of the SID. We want to give you an

example of what happens when you change the envelope. For the sake of

simplicity, take lines 10 to 80 from our example and add the following lines:

100 A=9: D=9: S=8: R=9: H=400

110 POKE S1+15,16*A+D: POKE S1+16,16*S+R

120 POKE RS,0: POKE PL, 15

130 POKE SI, 37: POKE Sl+1,17: REM FREQUENCY

140 POKE Sl+4,33 : REM SOUND ON AND SAWTOOTH

150 FOR 1=0 TO H: NEXT

160 POKE Sl+4,32: REM RELEASE TONE

You have no doubt noticed the significance of the individual variables:
A=attack, D=decay, S=sustain, and R=release. The variable H is the
duration of the sustain. Change the variables to get a feeling for the various
sounds that different values can produce. Note that no variable, with the
exception of H, may contain a value greater than 15. If you want to use the
envelope, do not load register 4 with zero after the delay loop which defines
the duration of the tone; this causes the tone to die. Do it like we did in the

85

Abacus Software C-128 Internals

example: When turning the tone on, load register 4 with the waveform+1.
To turn the tone off, just load register 4 with the value for the waveform
again.

The best way to learn how anything works is to try it out. We would
like to present a few more examples for you to experiment with. Feel free to
change the tone parameters to see what sort of effects you can get. The next

example program uses all three voices of the SID. Again, add lines 10-80 to
this example.

100 A=0: D=l: S=13: R=10: H=100

110 POKE Sl+15,16*A+D: POKE S1+6,16*S+R

120 POKE S2+15,16*A+D: POKE S2+6,16*S+R

130 POKE S3+15,16*A+D: POKE S3+6,16*S+R

140 POKE RS,0: POKE PL,15

150 POKE SI,37: POKE Sl+1,17

160 POKE S2,154: POKE S2+l,21

170 POKE S3,177: POKE S3+l,25

180 POKE Sl+4,33: POKE S2+4,33: POKE S3+4,33

190 FOR 1=0 TO H: NEXT

200 POKE Sl+4,32: POKE S2+4,32: POKE S3+4,32

With the notes in DATA lines, you can use such a routine to play some

music. At the end of this section is a program to play a song.

The next example will demonstrate how the frequency of a tone can be

changed in relationship to the envelope. Here we use voice 3 since it is the

only one from which we can read the envelope.

100 A=9: D=9: S=9: H=30

110 POKE RS,0: POKE P,15

120 POKE S3+5,16*A+D: POKE S3+6,16*S+R

130 POKE S3+4,33

140 FOR 1=0 TO H: POKE S3+1,PEEK(54300): NEXT

150 POKE S3+4,32

160 FOR 1=0 TO R*4: POKE S3+l,PEEK(54300): NEXT

We want to give you an example of a special effect created with "white
noise". We'll let the Federation Starship Enterprise roar through our living

room:

86

Abacus Software C-128 Internals

100 A=15: D=0: S=8: R=13: H=800

110 POKE RS,0: POKE PL, 15

120 POKE Sl,0: POKE Sl+1,30

130 POKE S2,0: POKE S2+l,l

140 POKE S3,0: POKE S3+l,100

150 POKE S1+5,16*A+D: POKE S1+6,16*S+R

160 POKE Sl+4,129: POKE S3+4,23

170 FOR 1=0 TO H: NEXT

180 POKE Sl+4,128: POKE S3+4,16

To convert a note for the SID, you must insert th frequency of the note

into the following formula:

F=Freq/0.06097

Since this value consists of a high and low value, we must process the

calculated value further:

F1=F AND 15: Fh=INT(F/256)

4.2 The Filters

The SID offers three filters which you can use individually or in

combination. The harmonic content of a sound wave (which is what a tone

is) is controlled by means of filters. The highpass filter dampens
frequencies below a defined cutoff frequency. The tones then sound

somewhat metallic. The opposite of a highpass filter is the lowpass filter.
Frequencies above a defined cutoff point are damped by this filter. There is
also a bandpass filter which allows only a narrow band of frequencies
through. If the highpass and lowpass filters are combined, only the cutoff
frequency is damped, all other frequencies are undisturbed. This is called a
notch filter.

In addition to filter type and filter frequency, you can also set the filter
resonance. In order to understand the significance of this parameter, you
should imagine the filter as a fourth oscillator in the sound chip. Filters, like
oscillators, can be set to a specific frequency.

87

Abacus Software C-128 Internals

The resonance value that determines the filter itself works like an

oscillator. If the resonance is set to zero, the filter simply cuts frequencies

off (as already discussed). If the resonance value is increased step by step,

the filter begins to oscillate more and more at the filter frequency.

The maximum value of the filter resonance is 15—the sound of the

oscillator directed through the filter is then radically changed and influenced

by the filter frequency. It is easy to see that a whole spectrum of new

sounds can be obtained using the filters.

The following register table shows which SID registers influence the

filters:

Register — Contents —

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 BitO

21 freq2 freq 1 freqO

22 freqlO freq 9 freq 8 freq 7 freq 6 freq 5 freq 4 freq 3

23 res 3 res 2 res 1 res 0 filtext filt 3 filt 2 filt 1

24 3 OFF highp bandp lowp vol 3 vol 2 vol 1 vol 0

4.3 Synchronization and Ring Modulation

The filters allow use to change the signals produced by the individual
oscillators. There is another way to change the oscillator signal in the SID:
the synchronization and ring modulation.

While the only the signal of a single oscillator can be affected by the
filter, synchonization and ring modulation give us the ability to change the
signal of one or two oscillators in relation to their signals. An oscillator is a
tone source, but its signal is determined by the signal of another oscillator.

For ring modulation, the digital number values of the oscillations of a
given oscillator and the oscillator to be affected are multiplied together
within the SID and output through the affected oscillator. When the
frequencies of the two oscillators is close, a very complex waveform results
containing many non-harmonic overtones, so that it often sounds metallic or

bell-like.

Abacus Software C-128 Internals

Here is the program we promised that will play a song:

0 REM *** SONG ***

4 FOR 1= 54272 TO 54296: POKE I,0:NEXT

10 FIRST=54272

11 VL =FIRST+24

12 AN =FIRST+5

13 OUT =FIRST+6

14 HI =FIRST

15 H2 =FIRST+1

16 VC1 =FIRST+4

20 POKE VL,15

21 POKEAN,23

22 POKE OUT,123

30 READ NTE,DUR

40 IF NTE=0 THEN END

50 F2=NTE /256:F1=NTE AND 255

60 POKE H2,F2:POKE H1,F1

70 POKE VC1,33:FOR I = 0 TO DUR*100:NEXT

80 POKE VC1,32:FOR I = 0 TO DUR*100:NEXT

90 GOTO 30

100 REM *** NOTES ***

130 DATA 6430,1,6430,1,6430,3,7217,2,5407,2

140 DATA 6430,1,6430,2,8583,3,9634,2,9634,1,

10814,2

150 DATA 10814,3,9634,2,9634,2,8583,1,8583,5,
10814,1

160 DATA 11457,3,10820,2,10814,2,9636,4,10814,1,

9634,1

170 DATA 9634,1,8583,11,10814,1,9634,2,8534,5,
10814,1

180 DATA 12860,2,14435,5,12860,1,12860,2,10814,3
9634,2

190 DATA 9634,1,9634,2,10814,9,10814,2,11457,3
10820,2

200 DATA 10814,2,9634,4,10814,1,9634,1,9634,1,
8585,15

210 DATA 0,0

This concludes out chapter on the SID. We hope that you have found
enough information and suggestions to start working with this chip. This
applies particularly to those of you who can and want to program in
machine language. Have fun!

89

CHAPTER 5

Abacus Software C-128 Internals

Chapter 5: The 8563 VDC Chip

5.1 General Information

As mentioned in Chapter 2, you can connect two monitors to your
Commodore 128. The 40-column monitor is contrilled by the VIC chip. The
80 column RGB monitor, is driven by the 8563 VDC. The 80-column
screen is well suited for professional applications that are impossible or
more difficult with a 40-column screen. RGB stands for Red Green Blue,
which means that the colors red, green, and blue can be displayed on the
screen in various combinations. The color white, for example, is achieved
with an equal mix of all three colors; the color yellow can be made with a
combination of red and green. But don't worry--you don't have to figure
out which colors you have to mix to obtain the one you want. We will come
back to the color codes for the 15 possible colors.

An important bonus of the VDC chip is that it doesn't use up any of the
main memory for storing its screen contents. It has 16K of its own memory
which it uses for video RAM and attribute RAM. Even the character
generator is copied into this 16K.

On the international models of the C-128, pressing the <ASCII/DIN>
key copies a foreign language character set into memory. You will notice
that it takes a little while before the cursor is ready again.This is because all
4096 bytes of the charater generator are copied from ROM into the video
controller RAM. Stop and think for a minute: Why 4096 bytes? There are

two character sets. 2048 bytes are all that are required to define 256

characters! You are right of course, but both character sets selected with the
Commodore key on the 40-column screen are stored in the VDC memory.
These two character sets can be displayed simultaneously on the 80-column
screen. A bit in the attribute RAM determintes which character set is to be

used. Since the character set is in the VDC RAM, it is easy to change the

appearance of individual characters by simply changing the contents of the
RAM.

But all of these advantages that this separate video RAM offers us has

another side to it. Addressing this RAM is quite complicated—it has to be

done indirectly via two registers on the VDC chip. We will talk about this

more later.

93

Abacus Software C-128 Internals

Those who think it would be boring to take a closer look at this chip are
deceiving themselves. This chip offers an enormous number of possibilities;
to describe them all would far exceed the scope of this book. Hackers are
advised to take a closer look at this chip, since it seems that you always find
something new that can be done with it. We will limit ourselves to the most
important, most interesting possibilities. The expectations that one has for
an 80-column controller are far exceeded: this video controller can display
hi-resolution graphics with a resolution of 640x200 points!

5.2 The Pinout:

1 CCLK; Character Clock

2 -DCLK; Dot Clock
3 HSYNC; Horizontal Synchronization

4 CS; System time

5-6 Not connected

7 -CS; Chip Select
8 -RS; Resister Select (Address Line A0)

9 -R/W; Read-Write Selection

10-11 D7-D6; Data Lines D7-D6

12 GND;

13-18 D5-D0: Data Line D5-D0
19 DISPEN; Display Enable (not wired)
20 VSYNC; Vertical Synchronization

21 DR/-W; Display-RAM READ/WRITE

22 -RES; Reset Line (output) - meaning unknown

23 -RES; Reset Line (input)

24 TST; meaning unkown

25 LPEN; Light Pen

26-33 DA0-DA&; address Display-RAM
34-42 DD0-DD&; Data lines Display-RAM

37 VCC; operating voltage+5V

43 I; Intensity

44 B; Blue

45 G; Green

46 R; Red

47 -RAS; Low-Address Select

48 -CAS; Column Address Select

94

Abacus Software C-128 Internals

5.3 The VDC Registers

The 8563 VDC chip has a total of 37 registers available, which have the
following meanings: (The values in parentheses indicate the default values
that are loaded into the registers after a warm start.)

REG 0 HORIZONTAL TOTAL; (126) This register specifies the
total number of characters per line, including the beam
return. This register should be loaded with an 8-bit value
corresponding to the technical data of the monitor.

REG 1 HORIZONTAL DISPLAYED; (80) In this register the
number of actual characters per line is programmed. All 8-bit
values smaller than REG 0 are possible. The standard value
is 80.

REG 2 HORIZONTAL SYNC POSITION; (102) In this the left
border is sychronized. All 8-bit values smaller than REG 0
are possible. If the register value is reduced, the left border

moves right; if the contents are increased, the left border
moves left.

REG 3 SYNC WIDTH; (73) Bits 0-3 determine the horizontal sync
pulse width in characters. The value zero cannot be

programmed. Bits 4-7 determine the vertical sync pulse

width multiples of a raster period. If zero is programmed, it
means 16.

REG 4 VERTICAL TOTAL; (39) This register contains the number
of total lines including the vertical beam return. This register

should be programmed according to the technical data of the
monitor used.

REG 5 VERTICAL TOTAL ADJUST; (224) Bits 0-4 serve as a fine

adjustment for REG 4. Bits 5-7 are always set. The default

value 224 means that bits 0-4 are cleared.

REG 6 VERTICAL DISPLAYED; (25) Contains the number of

representable characters. Any value smaller than REG 4 is

possible.

95

Abacus Software C-128 Internals

REG 7 VERTICAL SYNC POSITION; (32) This register defines

the upper border of the screen. If the contents of this register
are increased, the screen moves up. Correspondingly, the

screen moves down when the value is decreased.

REG 8 INTERLACE MODE; (252) Bits 0-1 determine the interlace

mode. Normally these bits are cleared. 00 and 10=
non-interlace mode, 01=interlace-sync mode (the screen

appears to flicker), ll=interlace-sync and video mode. Try

this once!

REG 9 CHARACTER TOTAL VERTICAL; (231) Bits 0-4
determine the number of raster lines per character (vertical)

minus one. Bits 5-7 are always set. The default value 231
stands for 7, or 7+1=8 raster lines per character.

REG 10 CURSOR MODE/START RASTER; (160) Bits 5-6 set the
cursor mode: 00=non-blinking, 01=cursor not displayed,

10=blink fast, ll=normal blink.

REG 11 CURSOR END SCAN LINE; (231) Only bits 0-4 are

relevant; the others are always set. This register contains the
line at which the cursor will stop. For a block cursor for

example, the cursor starts at line 0 and stops at line 7. For an

underline cursor: start and end at 7.

REG 12 DISPLAY START ADDRESS HI; (0) The high byte of the

start of the video RAM is stored in this register. Normally the

video RAM lies at address $0000 in the special VDC

memory.

REG 13 DISPLAY START ADDRESS LO; (0) The low-bye of the

video RAM corresponding to REG 12 is defined here.

REG 14 CURSOR POSITION HI; The high byte of the cursor is

defined in this register. The cursor address must be specified

because the VDC will let it blink on its own.

REG 15 CURSOR POSITION LO; The low byte of the cursor

address corresponding to REG 14 is defined here.

96

Abacus Software C-128 Internals

REG 16 LIGHT PEN VERTICAL; This and the following register

can only be read. The two high-order bytes in register 16 are

always zero. This register returns the vertical address of the

light pen. The value must be corrected by the software

because the raster beam will have moved by the time the

raster line is determined.

REG 17 LIGHT PEN HORIZONTAL; Corresponding to register 16,

this register contains the horizontal address of the light pen.

REG 18 UPDATE ADDRESS HI; The high byte of the address to be

manipulated is given in this register. It doesn't make any

difference if the address is in video RAM, attribute RAM, or

somewhere else.

REG 19 UPDATE ADDRESS LO; The low byte of the address to be

manipulated is given here in connection with register 18.

REG 20 ATTRIBUTE ADDRESS HI; (4) The high-order byte of the

start address of the attribute memory is placed in this register.

The attribute RAM defines the color and status of each

character on the screen.

REG 21 ATTRIBUTE ADDRESS LO; (0) In connection with register

20, this register sets the low-order byte of the start address.

In the normal mode the attribute RAM starts at address

$0400.

REG 22 CHARACTER TOTAL & DISPLAYED; (120) Bits 4-7

determine the total number of displayed horizontal lines (7).

Bits 0-3 set the displayed number of lines (8). This defines
the width of a character.

REG 23 CHARACTER DSP(V); (232) Number of vertical lines
displayed (8); this defines the height of a character.

REG 24 VERTICAL SMOOTH SCROLL; (32)

Bit 7: COPY bit; when this bit is set, the range at the
block-start address is copied to the update address when the
word count register is written. If this bit is cleared, the

update address is filled with the data register (REG 31)

Bit 6: RVS bit; If this bit is set, the entire screen display is
reversed. A set point is cleared and a cleared point is set.

97

Abacus Software C-128 Internals

Bit 5: CBRATE; meaning is not yet known.

Bits 0-4: Here the vertical edge of the screen can be moved

(smooth scrolling).

REG 25 HORIZONTAL SMOOTH SCROLLING; (64)

Bit 7: TEXT; if this bit is cleared, the text mode is enabled.

The information for the characters is taken from the

CHARROM. If this bit is set, single-point graphics are

enabled.

Bit 6: ATR; This bit indicates whether the color information

for a character should come from the attribute RAM (set bit)

or if all points should appear in monochrome (color is in

REG 26).

Bit 5: SEMI; semi-graphic operating mode;
1: the existing horizontal space between two characters is

filled with the color of the character last displayed.

0: like (1), but the space is filled with the background color.

Bit 4: DBL; If this bit is set, the characters appear in double

width.

0: Pixel size=l dot clock

1: Pixel size=2 dot clocks
bits 0-3: Here the horizontal edge can be moved in raster

lines (smooth scrolling).

REG 26 FORGND/BACKGND; (240)
Bits 0-3 determines the background color.

Bits 4-7 determine the foreground color for graphic or

monchrome mode.

REG 27 ADDRESS INCREMENT ROW; (0)
This register defines the number of bytes are to be added to
the video RAM for each column. Normally this is zero. If
you redefine the character width, for instance, (and thereby
the the number of characters/line), this value must be

reprogrammed.

REG 28 CHARACTER BASE ADDRESS; (47)
Bits 5-7 determine the base of the character generator,

address bits 13 to 15; the character generator can only be

moved in 8K steps.

Bit 4: RAM; This bit defines the RAM type:

1:4164; 0:4416

98

Abacus Software C-128 Internals

REG 29 UNDERLINE SCAN LINE; (231)

Bits 0-4 indicate the line in which to underline. The default

value is 8. This register can be used to change underlining to

overlining.

REG 30 WORDCCDUNT;

In this register you write the number of characters which are

to be written to the update address, or if the COPY bit is set,

the number of bytes to be copied

REG 31 DATA;

This register contains the data to be written to a memory

location. If a memory location is read, the contents will

appear in this register.

REG 32 BLOCK START ADDRESS HI;

This register (and the following) defines the start address of

the block to be copied.

REG 33 BLOCK START ADDRESS LO;

Corresponding to register 32, this register defines the

low-order byte.

REG 34 DISPLAY ENABLE BEGIN; (125)

Number of characters from the start of the displayed line to

the postive edge on the display enable pin.

REG 35 DISPLAY ENABLE END; (64)

Like REG 34, but until the negative edge.

REG 36 DRAM REFRESH RATE; (245)

Bits 0-3 specify the rate at which the VDC memory must be

refreshed (refresh cycles per screen line).

99

Abacus Software C-128 Internals

5.4 General Information About the VDC Registers

To look at each register individually is not very informative. At best,

you can recognize what the individual registers do when you simply write

values to them and see what happens. Not all of the registers are useful to

the programmer, as is the case with the VIC or SID chip. The VDC contains

a number of registers that are present simply for screen display and

synchronization. You should never change these registers.

The base address of the 80-column video controller is $D600. A little

tip: At least in our prototype, the VDC could also be manipulated in the 64

mode; this means that 80-column mode is possible in the 64 mode as well!

In addition to the ability to program in the 2MHz mode, this presents

another small gap in the compatibility of the 64 mode.

You cannot address the various registers of the VDC as simply as with

the VIC or SID. Using the VIC or SID, you simply add the register number

to the base address. In the VDC, register manipulation is relative, meaning

that you have to tell the controller which register you want to read or write

and then perform this operation. This is certainly a complicated method, but

you get used to it quickly. If, for example, you want to change a byte in the

video RAM, you must address this memory location relatively via the

registers, since they are not directly addressable.

Now we'll describe the technique. The VDC can be accessed at address

$D600and$D601.

If you want to read a register, for instance, you must write the register

address in $D600. The VDC then returns the current contents of the register

in address $D601.

If you want to write to a register, write the register number in address

$D600 and the new register value in address $D601.

Address $D600

(Write) R5 R4 R3 R2 Rl RO

(Read) Status LPvblank

Address $D601
(Read/write) D7 D6 D5 D4 D3 D2 Dl DO

100

Abacus Software C-128 Internals

If you write to address $D600, the register is selected. Bits 0 to 5 are

used for this. You can also read from $D600; this will return a status report

of the VDC. Bit 7, the status bit, indicates if the VDC is finished with its

last action or not. If this bit is set, the video controller is not yet done, and

you must wait until it gives the green light or data will disappear. It is

necessary to test this bit only in machine language since BASIC is far too

slow for this to be a problem. If, for example, we want to write to the

DATA regiser in the VDC in machine language, it would look like this:

LDA #$1F /DATA REGISTER

STA $D600 /SELECT

WAIT BIT $D600 /TEST STATUS BIT

BMI WAIT /NOT SET, THEN NOT DONE

LDA #$21 /ASCII CODE FOR " ! "

STA $D601 /AND WRITE

RTS /RETURN

In this routine, we have placed the value $1F into the VDC select

register. We loop at WAIT until the VDC tells us that it has accepted our

value. Then we can write into the register at $D601. Another delay routine

should be included after writing to address $D601, though this depends on

the program.

Bit 6 of address $D600 is reserved for the light pen and does not

interest us at the moment. Bit 5 tells us if the cathode beam is on its return

course (bit is set) or not. This can be used for synchronizing various

activities to the beam. The rest of the bits are not used.

To summarize, writing to address $D600 selects the VDC register.

Writing to address $D601transfers the data.

You can use the following machine language code to read the value of

the DATA register:

LDA #$1F /DATA REGISTER

STA $D600 /ADDRESS REGISTER

WAIT BIT $D600 /STATUS BIT STILL SET?

BPL WAIT /NOT DONE

LDA $D601 /GET CURRENT CONTENTS

We can also manipulate the VDC from BASIC. But because of

BASIC'S slowness, there may be some problems, so you shouldn't be

annoyed if things donft work right away.

101

Abacus Software C-128 Internals

Read and writing the DATA register in BASIC would look like this:

10 A=DEC(lfD600") : D=A+1: REM BASE ADDRESS VDC

20 POKE A, 31: PRINT PEEK(D) : REM GET REG CONTENTS

30 POKE A, 31: POKE D,33: WRITE TO REGISTER

But now you may want to know how to work with screen addresses.
We know that the video RAM starts at address $0000 and consists of 2000
characters. To manipulate an address in RAM, you must first define
whether you want to read or write in the update register.

Let's show you with a short BASIC program:

10 A=DEC("D600"): D=A+1

20 POKE A,18: POKE D,0: REM UPDATE ADDRESS HI BYTE

30 POKE A,19: POKE D,0: REM UPDATE ADDRESS LO BYTE

40 POKE A, 31: POKE D,l: REM A 1 FOR "A"

50 POKE A,30: POKE D,l: REM SET CHAR COUNTER

It demonstrates several key points. The order in which you POKE is

important First the update address is selected Next the character to
be displayed is sent. Finally the number of times the character is to be
displayed is sent. If you haven't sent the update address, you won't get
your desired results.

Unfortunately this routine probably won't work! Not in the FAST

mode nor the SLOW mode. You can see this more clearly by adding the
following lines to the program:

5 PRINT CHR$(19);lf ": REM TWO SPACES

60 GETKEY A$: RUN

Each time you press a key, the first two positions on the screen are

erased. After this, the video controller is "requested" to display an "A" in

the first screen position. So we can check to see if an "A" is really displayed
at the correct position.

When we start the program, we see that the result does not correspond

to our expectations. The A moves from left to right. It is not always placed

at the right location. Sometimes an "(§>" even appears on the screen instead
of the A.

102

Abacus Software C-128 Internals

Unfortunately we can't achieve any better results here. In BASIC, it
appears to be impossible. We have tried various methods, all without
success. BASIC is simply too slow. What we can't accomplish in BASIC,
we should at least be able to do in machine language. So let's look at a short
machine language program which does the same thing as our BASIC

program.

Below is the assembly language listing of this routine, which is
designed to display an "A" on the screen. Press the reset button on your

computer to make sure all the VDC registers are reset before entering this

program.

00D00

00D03

00D06

00D08

00D0B

00D0C

00D0E

00D10

00D13

00D14

00D17

00D19

00D1B

00D1E

00D1F

8E

2C

10

8D

60

A2

A9

20

E8

20

A2

A9

20

CA

4C

00

00

FB

01

12

00

00

00

IF

01

00

00

D6

D6

D6

24

24

24

24

STX

BIT

BPL

STA

RTS

LDX

LDA

JSR

INX

JSR

LDX

LDA

JSR

DEX

JMP

$D600

$D600

$0D03

$D601

#$12

#$00

$0D00

$0D00

#$1F

#$01

$0D00

$0D00

This little machine language routine can be entered with the built-in
monitor and tested with the following BASIC program:

10 PRINT CHR$(147);

20 SYS DEC("0D0C"): GETKEY$: RUN

Start the program with RUN. The result will probably surprise you.

The position is right, but now we have two "A's" instead of one. The VDC

displays word count+1 many characters, though it does this very carefully

and at the correct address. If we had wanted to display two "A's", we

would be all set, but we wanted just one. Loading the word count register

with zero causes 256 characters to be printed.

The solution is quite simple: If you want to display just one character,

do not write to the word count register after selecting the update address and

103

Abacus Software C-128 Internals

the DATA register. Just load the update address with a new value or read
from this register—then it works.

To try this out we need to change our machine language program at
address $OOD1E:

00D1E A2 12 LDX #$12

00D20 4C 00 24 JMP $0D00

You see that it doesn't matter what value you write to the update
register. The sample program is located in the output buffer for the RS-232
($0D00-$0DFF). Now we'll change the machine language routine so we
can write any character to any position, even in BASIC.

====10 REM ====================

20 REM BASIC LOADER FOR 80-COLUMN POKE ROUTINE

30 REM ===

40 :

50 FOR 1=0 TO 36

60 : READ X

70 : POKE DEC("D00")+I,X

80 : S=S+X

90 NEXT

100 IF SO2850 THEN PRINT "*** ERROR IN DATA ***":

END

110 :

120 DATA 142,0,214,44,0,214,16,251,141,1,214,96,

162,18,169,0

130 DATA 32,0,13,232,169,0,32,0,13,162,31,169,1,

32,0,13

140 DATA 162,18,76,0,13

150 :

160 REM *** TRY IT OUT ***

170 :

180 PRINT CHR$(147);

190 SYS DEC("D0C"): GETKEY A$: GOTO 180

Now we have the program we wanted, even if it can't be done in "pure"

BASIC. Maybe there is some algorithm which works in BASIC and permits

manipulations to be made on the 80-column screen.

As already mentioned, this routine can display any character at any

location on the screen. To make it do this, you have to write the high byte of

104

Abacus Software C-128 Internals

the address to address $0D0F, the low byte to address $0D15, and the
character to address $OD1C. Try it once with the following sample program:

20 REM EXAMPLE PROGRAM FOR POKE ROUTINE

30 REM ======================================

40 :

50 LO=DEC("D15"): HI=DEC("DOF"): PO=DEC("D1C")

60 FOR 1=0 TO 1999

70 : POKE LO, I AND 255 : REM POKE LOW BYTE

80 : POKE HI, 1/256 : REM POKE HIGH BYTE

90 : POKE PO, I AND 255 : REM FOR EXAMPLE

100 : SYS DEC ("DOC")

110 NEXT

120 GETKEY A$

But we don't want to display just one character. Sometimes it would be
practical if we could display 80 characters at once (with the help of the word
count register), for example, to erase a line or something similar. But the
VDC might display one character too many. Imagine a word processing
program that had this problem: it would be quite aggravating.

This error must have been compensated for in the operating system,
though. The solution is (what, again?) rather simple and works very well.

You know the starting address of the area to be filled with characters.

Let's say that you want to display n characters. So you can calculate the
address in video RAM where they will be written. Simply let the video

controller fill n-1 characters.

Next we can read the update address (which the VDC
automatically increments) to determine if it has displayed the correct number

of characters. If so then we are done. Otherwise we must display one more

character. This method is always faster than writing each character by itself.

You can use an operating system routine that outputs a character based on

the update address and DATA register as many times as the value in the

accumulator specifies. This routine is found at the address $C53E. Place

the calculated address in $0A3C/$0A3D. Well add the routine to the one

already existing:

105

Abacus Software

00D25

00D27

00D29

00D2C

00D2F

00D30

00D32

00D35

00D38

00D3A

00D3C

00D3F

00D41

00D42

00D43

00D46

00D49

00D4B

00D4E

00D4F

A2

A9

20

8D

E8

A9

20

8D

A9

A2

20

A9

18

48

6D

8D

90

EE

68

4C

12

00

00

3D

00

00

3C

00

IF

00

00

3C

3C

03

3D

3E

0D

0A

OD

OA

OD

OA

OA

OA

C5

LDX

LDA

JSR

STA

INX

LDA

JSR

STA

LDA

LDX

JSR

LDA

CLC

PHA

ADC

STA

BCC

INC

PLA

JMP

C-128 Internals

#$12

#$00

$0D00

$0A3D

#$00

$0D00

$0A3C

#$00

#$1F

$0D00

#$00

$0A3C

$0A3C

$0D4E

$0A3D

$C53EA

You can add the following DATA lines to the BASIC loader:

150 DATA 162,18,169,0,32,0,13,141,61,10,232,169,0,

32,0,13

160 DATA 141,60,10,169,0,162,31,32,0,13,169,0,24,

72,109,60

170 DATA 10,144,3,238,61,10,104,76,62,197

Lines 50 and 100 must also be changed:

50 FOR 1=0 .TO 81

100 IF SO5859 THEN PRINT "*** ERROR IN DATA ***":

END

Store the high byte of the starting address at address $0D28, the low
byte at address $0D31. You must POKE the fill character into address

$0D39 and the number at address $0D40. Example:

POKE DEC("0D28"),0 : POKE DEC("0D31"),0: REM ADDR

POKE DEC("0D39"),33: REM FILL CHARACTER

POKE DEC("0D40"),79: REM FILL QUANTITY-1

SYS DEC("0D25") : REM CALL THE ROUTINE

106

Abacus Software C-128 Internals

Once you enter these lines, the first line will be filled with exclamation

points.

As already mentioned, you can change the attribute RAM in the same
way as we changed the screen contents. For example, if you want to display
the first line in flashing white, you must fill the attribute RAM with
$1F=31. To do this we enter the following lines:

POKE DEC("0D28"),8

POKE DEC("0D39"),31

POKE DEC("0D40"),80: REM FILL QUANTITY

SYS DEC("0D25") : REM CALL THE ROUTINE

POKE DEC("0D31"),0:

REM ATTRIBUTE RAM

REM FILL CHARACTER

5.4.1 The character set

The character set in the VDC can be easily changed. Sixteen bytes of
RAM must be defined per character. Eight bytes are copied from the
CHARROM, and eight additional zero-bytes are appended for reasons
internal to the VDC. The character set starts at address $2000 for the VDC.
To read a character out or to change it, you can find it with this address:

2*4096.+ <code>*16

The VDC, unlike the VIC, can display the two character sets, obtained

with <SHIFT><Commodore> in 40 column mode, on the screen at the

same time since these are both found in the VDC RAM. The reverse

characters are also defined, though these aren't really necessary since a bit

in the attribute RAM controls whether a character is displayed normal or in

reverse. Both of these features can be utilized if you want define additional

characters.

The memory layout of the VDC RAM looks like this:

$0000-$07CF:Video RAM

$0800-$0FCF: Attribute RAM

$2000-$3FFF:CHARRAM(character generator)

107

Abacus Software C-128 Internals

5.4.2 The character attribute

The attribute of a character is composed of several criteria: The first is
the RGB signal, whether red, green, or blue are active (all bits here are set
for white, for instance), then the intensity signal (which determines the two
levels of brightness of the character). Then there is a bit which determines
if a character should flash on and off, a bit to underline a character, a bit for
reverse, and a bit for the alternate character set* You can see that the reverse

characters really need not be defined at all, since a corresponding bit is
provided in the attribute RAM. But to make things simpler, the reverse
character set was simply copied along with the rest of the characters.

But now we come back to the actual attribute RAM: The eight bits of an
attribute byte are arranged as follows:

ALT RVS UL FLASH R G B I

7 6 5 4 3 2 10

ALT stands for ALTernate. If the second character set is selected (the

one obtained with <SHDFT><Commodore> on the keyboard), the ALT bit

in the attribute RAM is set

RVS stands for ReVerSe and means that the character will be displayed

in reverse. Unfortunately, no direct use is made of this bit. Professional

software programmers can make better use of the reverse characters.

UL stands for UnderLine. If this bit is set, the corresponding character

is underlined in the raster line defined in register 29; normally this is line 7.

FLASH is self-explanatory. If this bit is set, the character defined by
the given attribute byte will flash on and off. Color and any underlining is

retained.

R stands for Red, G for Green, and B for Blue. The color signal
consists of the set and cleared bits. There is also an intensity signal I that is
used to set the brightness; a set bit means bright.

108

Abacus Software

Here is a table of the

R

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

C-128 Internals

15 possible color and intensity combinations:

G

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

B

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

I

0

1

0

1

0

1

0

1

0

0

0

1

0

1

0

1

Color

Black

Dark grey

Blue

Light blue

Green

Light green

Cyan

Light Cyan

Red

Light red

Purple

Light Purple

Brown

Yellow

Light grey

White

5.5 Using the VDC Registers

As already mentioned, the 37 VDC registers account for a very flexible
80-column controller. We want to take a closer look at and demonstrate their
use with some examples. One of the more useful is the ability to display 30

lines on the screen instead of 25 a second is the ability to use the
high-resolution graphics with a resolution of 640x200 points. We will

concentrate on these two examples.

But first we present a program which is very useful for exploring the

world of the VDC registers. When testing, you may often find that your

screen displays nothing but garbage. This means you have confused the

controller so much that it can no longer display a meaningful picture. The

best thing to do is to press the <RUN/STOP><RESTORE> keys.

On international models of the C-128 that include a foreign character

set, the character generator may be overwritten. The best thing to do then is
to press the <ASCII/DIN> key to copy the character generator back to the

normal mode.

109

Abacus Software C-128 Internals

This program shows you the current register contents on the screen and
then lets you write to any of the registers. After you have entered the values,
you can observe the results directly on the screen (if in fact there are

results). The current register contents are then displayed again.

10 REM *** TESTING THE VDC REGISTERS ***

20 :

30 A=DEC("D600"): D=A+1

40 PRINT CHR$(147)"CURRENT REGISTER CONTENTS -"

50 FOR 1=0 TO 37

60 POKE A,I: C=PEEK(D)

70 PRINT "#";I;RIGHT$(HEX$(C),2) ,

80 NEXT I

90 PRINT: PRINT

100 INPUT "REGISTER, VALUE ";RE,VA

110 POKE A,RE: POKE D,VA: GOTO 40

5.5.1 Smooth scrolling

As with the VIC chip, you can move the screen vertically or

horizontally in raster line increments on the VDC. VDC register 24 (bits

0-4) and 25 (bits 0-3) are used for this purpose. Contrary to the way

smooth scrolling is done on the VIC, you don't lose any columns or lines

on the VDC. The VDC is not well-suited for games-it has very good

resolution, but its complicated addressing is far too slow-but you can use

smooth scrolling to create many useful effects. Here is a short

demonstration program which shows the operation of smooth scrolling on

the 80-column screen.

10 REM *** DEMO PROGRAM FOR SMOOTH SCROLLING ***

20 A=DEC("D600"): D=DEC("D601")

30 VE=24: HO=25

40 PRINT CHR$(147)CHR$(27);"M"; : REM SCREEN CLR

AND SCROLL OFF

50 A$="Hello C-128 fans!"

60 FOR 1=0 TO 24

70 PRINT A$

80 NEXT

90 :

100 FOR 10=0 TO 6

110 POKE A,VE: V=PEEK(D) AND 240 OR 10

110

Abacus Software C-128 Internals

120 POKE A,VE: POKE D,V

130 FOR 11=1 TO 20: NEXT

140 POKE A,HO: H=PEEK(D) AND 240 OR 10

150 POKE A,HO: POKE D,H

160 FOR 11=1 TO 20: NEXT

170 NEXT

180 GOTO 100

If this goes too fast for you or not fast enough, change the delay loops

in lines 130 and 160 correspondingly.

If bit 3 is cleared, 25 lines are displayed and the following (or

preceding) RAM is scrolled on the screen. If you set bit 3, only 22 lines are

displayed and you can scroll the last three lines of the screen by means of

smooth scrolling.

5.5.2 Block copying

If the controller is so hard to access, why is screen scrolling so fast?

The solution is simple: The VDC is intelligent enough to move entire blocks

in its memory. If this had to be done via the relative addressing, it would

take a considerably longer time.

If you want the VDC to move an area of memory, you must tell it this

via the COPY bit (bit 7 in REG 24). If this bit is set, the VDC copies instead

of filling. The starting address of the block to be copied is defined in

registers 32 and 33; the destination address of the copying procedure must

be defined in the update register (REG 18 and 19); the copy process begins

when you write to the word count register. This also specifies the number

of characters to be copied.

NOTE: The word count register specifies the exact number of characters

to be copied. For example, if you want to copy the first text line on the

screen to the line below and preserve the attributes, you must first copy the

text line and then the attributes. We will do an upward-scroll in our example

program—in BASIC it goes quite slowly, but in machine language it is fast
enough.

Ill

Abacus Software C-128 Internals

10 REM *** DEMO PROGRAM FOR BLOCK COPYING ***

20 A=DEC("D600"): D=DEC("D601")

30 POKE A,24: C=PEEK(D):REM *** CONTENTS OF REG 24

40 POKE A,24: POKE D,C OR 128:REM *** SET COPY BIT

50 FOR Z=24 TO 0 STEP -1

60 AQ=Z*80: AZ=AQ+80: REM *** SOURCE AND DEST

70 POKE A,18: POKE D,AZ/256: POKE A,19: POKE D,

AZ AND 255

80 POKE A,32: POKE D,AQ/256: POKE A,33: POKE D,

AQ AND 255

90 POKE A,30: POKE D,79: REM *** COPY TEXT

100 AQ=2048+AQ: AZ=2048+AZ:REM *** ATTRIBUTE ADDR

110 POKE A,18: POKE D,AZ/256: POKE A,19: POKE D,

AZ AND 255

120 POKE A,32: POKE D,AQ/256: POKE A,33: POKE D,

AQ AND 255

130 POKE A,30: POKE D,79: REM *** COPY ATTRIBUTE

140 NEXT

150 PRINT CHR$(19);CHR$(27)"D"; :REM CLEAR 1ST LINE

160 POKE A,24: POKE D,C: REM *** CLEAR COPY BIT

This routine does nothing more than the ESC sequence

CHR$(27);"W", but it shows the operation of block copying.

5.5.3 Foreground and background color

You can define the background color of the 80-column screen in

register 26 (bits 0-3). The foreground color has effect in the graphic mode

and~provided the ATR bit in register 25 is not set—also in the text mode.

The definition of the register:

POKE DEC("D600"),26

POKE DEC("D601"),<foreground>*16 + <background>

112

Abacus Software C-128 Internals

5.5.4 The cursor mode

You can also determine the appearance of the cursor yourself. You can

turn it off completely, make it blink fast or slow, and define it as a block or

underline cursor. You can make these definitions using ESC sequences, but
there are situations where this is not possible—such as in machine language.

The cursor mode is set in register 10. Further, register 10 indicates in which

raster line the block cursor is to begin. With the starting and ending line of

the block cursor you can turn the cursor into a broad stripe in the middle,

etc. (The underline cursor is defined in the same manner). Here are the four

possible bit combinations of the cursor mode:

00 - non-blinking cursor

01 -cursor off

10 - slow cursor (cursor flashes at 1/16 SRF)

11 - fast cursor (cursor flashes at 1/32 SRF)

SRF = Screen Refresh Frequency

As already mentioned, the VDC takes over all functions of displaying

the character under the cursor and does not burden the CPU with it.

For a block cursor, the start line is line 0; the end line, defined in

register 11, is line 7. In order to define a underline cursor, one need only

change the start line to 7.

To demonstrate the effects, simply try out the following:

10 REM *** DEMO FOR CURSOR ***

20 A=DEC("D60011) : D=DEC ("D60111)

30 FOR X = 1 to 7: REM LINE 1 TO 7

40 :POKE A,10: POKE D,X: REM *** NON-BLINKING-START

50 POKE A,11: POKE D,7: REM END LINE=7

60 FOR I = 1 TO 100 : NEXT I

70 NEXT X

The cursor address is defined in registers 14 and 15; the cursor is then
displayed at this location where it blinks if so instructed and negates the
character found underneath it. These two registers have no other function.

113

Abacus Software C-128 Internals

5.5.5 The character length and width

The matrix of the characters found in VDC RAM is 8x8 points; this

means that the characters displayed on the screen are 8 points wide and 8

lines tall. This can be changed. The height and width of the characters can

be set in registers 22 and 23. The following BASIC program demonstrates

this:

10 REM *** DEMO PROGRAM FOR CHARACTER MATRIX ***

20 :

30 A=DEC("D600"): D=A+1

40 FOR 10=0 TO 8: POKE A,22: POKE D,112+10

50 FOR 11=0 TO 8: POKE A,23: POKE D,I1

60 FOR 12=1 TO 30: NEXT 12,11

70 FOR 12=1 TO 30: NEXT 12

80 NEXT 10

90 GOTO 40

You must always add 112 to register 22 because the upper nibble must

always be $7.

5.5.6 More than 25 lines on the screen

Yes, you read it right! It is possible to display 25 lines with a total of

2000 characters on the screen, but you can even display 28 lines with 2240

characters and more. This is no trick of the imagination; every programmer
who wants to write a word processor or database for the C-128, for
example, will be pleased at this capability.

The technique we will present can manage 25 lines in BASIC. This
means that the other 3 lines remain when scrolling and clearing the screen

and are therefore well-suited for status lines. These three lines (including

attribute) can be changed with an appropriate machine language program.
But first to the theory:

In register 6 of the video controller, you can specify how many lines are

to appear on the screen. The default value here is 25. Let's change this value
to 10:

114

Abacus Software C-128 Internals

10 A=DEC(flD600ff) : D=A+1

20 POKE A, 6: POKE D,10

You see that the controller now displays only 10 lines on the screen and
the remaining lines are simply "swallowed up.H Just as we can make the
screen smaller, we also have the ability to increase the number of lines. We
do this by simply correcting line 20:

20 POKE A,6: POKE D,28

And now we have 28 lines on the screen. You also see some lines that
will usually flash in various colors. We can now (provided the monitor is

good enough) see all 28 lines on the screen-even if the last three lines don't
contain any useful information.

A small note: On a very well-adjusted IBM color monitor we have been

able to display up to 30 lines. It wouldn't make any sense to use this

though, since most monitors would not be able to display it. We have been

able to display 2 or 3 additional lines on every monitor. So we can say in

general that at least two additional lines are possible, which you can then

use for status lines, etc.

We already know that the video RAM lies at address $0000 and the

attribute RAM at address $0800. We must change this since we have

displayed 2240 characters; the end of the video RAM then lies at address

$0960 and part of the attribute RAM is overwritten (and vice versa). There

is enough space between the attribute RAM and the character generator.

Address $0A00 is then available for the start address of the attribute RAM.

But when we want to write to the 80-column screen with BASIC, we

have a small problem: The interpreter gets the base address of the attribute

RAM from address $0A2F in the zero page. This isn't so bad—we just

inform the BASIC interpreter of the new base address. This is correct—but

if we take a closer look at the kernal, we see that the base address is not

added but logically ORed. Bits 0 and 1 are affected by this; these two bits

may not be relevant; that is, they may not be set. This is why it is advisable

to define address $1000 as the start address of the video RAM. We do this

with the two instructions:

POKE DEC("0A2F"),16

POKE DEC("D600"),20: POKE DEC("D601"),16

115

Abacus Software C-128 Internals

When this is done, everything works as it should. We'll use these ideas
in our next program:

10 REM *** DEMO PROGRAM FOR 28-LINE SCREEN **

20 :

30 A=DEC("D600"): D=DEC("D601")

40 POKE A,20: POKE D,16:REM *** VDC RECEIVES NEW

BASE ADDRESS

50 POKE DEC(lf0A2F") , 16: REM *** KERNAL RECEIVES NEW

BASE ADDRESS

60 POKE A,6: POKE D,28: REM *** 28 LINES

80 PRINT CHR$(147)

When you start this program, 28 lines appear on the screen-though the

last three lines still have no meaningful content. Unfortunately, we cannot

write to these lines with the PRINT statement. The operating system is not

prepared for such things. It becomes clear that we must POKE characters

(strings) into memory. This is done by a small machine language routine so

that the characters to be printed can be put into a string.

This machine language routine is passed the address of the string to be

printed. The address of a variable can be obtained with the POINTER(var)

command. Before this, the low and high bytes of the screen address at

which the string is to be printed are stored in memory locations $FA (250)
and $FB (251). The current attribute is used as the color or attribute which

you may change. You cannot integrate any control characters in the strings.

These are accepted, but result in a gap in the screen. It is possible to allow

for execution of control sequences, but we have not included this feature for

space reasons. The routine is intended to output strings in our new window

without requiring a lot of effort on the part of the programmer. The

following commands are necessary in order to display a string on the first

line of our new window:

T$="This is a test string!11

POKE 250,(2000 AND 255)

POKE 251, (2000/256)

A=POINTER(T$)

SYS DEC("D27")fA AND 255,A/256

First the string variable is defined which contains the string to be

printed. Then we POKE the start address in $FA and $FB, low byte first.

We then indicate the address at which the string T$ is stored in bank 1. This

address is then, divided into low and high bytes, passed to the output

116

Abacus Software C-128 Internals

routine at address $0D27. The routine then gets each character and outputs

it. That's it. Here is the machine language program:

ACC. OF THE REGISTER

TEST STATUS

NO YET READY

STORE THE VALUES

END THE ROUTINE

UPDATE REGISTER HI

LOAD THE HI VALUE

SET THE HI ADDRESS

UPDATE ADDRESS LO

LOAD THE LO-BYTE

AND THE ACCUMULATOR

DATA REGISTER OF VDC

LOAD THE POKE VALUE

SET THE VALUES

DUMMY VALUE

UPDATE ADDRESS

SET THE VALUES

MARK LO-BYTE OF STRING

MARK HI-BYTE OF STRING

OFFSET - STRING LENGTH

BANK 1 FOR VARIABLES

$FC WITH THE ADDRESS

AND FAR FETCH

MARK LENGTH

OFFSET LOW-BYTE ADDRESS

BANK 1 FOR VARIABLES

$FC WITH THE ADDRESS

FAR FETCH

LO-BYTE OF STACK

POINTER OF HI-BYTE

ADDRESS

FOR VARIABLE

FAR FETCH

MARK THE HI-BYTE

GET LO-BYTE

STORE THE LO-BYTE

GET LO-BYTE

WHEN NOT NULL;DECREMENT

THE LO-BYTE, ELSE DEC

ALSO THE HI-BYTE

00D00

00D03

00D06

00D08

00D0B

00D0C

00D0E

00D10

00D13

00D14

00D16

00D19

00D1B

00D1D

00D20

00D22

00D24

00D27

00D29

00D2B

00D2D

00D2F

00D31

00D34

00D36

00D38

00D3A

00D3C

00D3F

00D40

00D41

00D43

00D45

00D48

00D4A

00D4B

00D4D

00D4F

00D51

00D53

8E

2C

10

8D

60

A2

A9

20

E8

A9

20

A2

A9

20

A2

A9

4C

85

86

A0

A2

A9

20

85

A0

A2

A9

20

48

C8

A2

A9

20

85

68

85

A5

DO

C6

C6

00

00

FB

01

12

00

00

00

00

IF

00

00

12

00

00

FC

FD

00

01

FC

74

FE

01

01

FC

74

01

FC

74

FD

FC

FC

02

FD

FC

D6

D6

D6

0D

0D

0D

0D

FF

FF

FF

STX

BIT

BPL

STA

RTS

LDX

LDA

JSR

INX

LDA

JSR

LDX

LDA

JSR

LDX

LDA

JMP

STA

STX

LDY

LDX

LDA

JSR

STA

LDY

LDX

LDA

JSR

PHA

INY

LDX

LDA

JSR

STA

PLA

STA

LDA

BNE

DEC

DEC

$D600 ;

$D600 /

$0D03 ;

$D601 ;
•

#$12

#$00

$0D00 ;
•

t

#$00

$0D00 ;

#$1F

#$00

$0D00 ;

#$12 ;

#$00 ;

$0D00 ;

$FC ;

$FD ;

#$00 ;

#$01 ;

#$FC ;

$FF74 ;

$FE ;

#$01 ;

#$01 ;

#$FC ;

$FF74 ;
•

•

#$01

#$FC

$FF74 ;

$FD
•

$FC

$FC

$0D53 ;

$FD :

$FC

117

Abacus

00D55

00D57

00D59

00D5B

00D5D

00D5F

00D61

00D63

00D65

00D67

00D69

00D6B

00D6E

00D70

00D72

00D75

00D77

00D79

Software

A5

DO

C6

C6

A5

85

A5

85

A2

A4

A9

20

A4

84

20

C6

DO

60

FA

02

FB

FA

FA

EO

FB

El

01

FE

FC

74

FE

EC

OC

FE

E4

LDA

BNE

DEC

DEC

LDA

STA

LDA

STA

LDX

LDY

LDA

FF JSR

LDY

STY

CO JSR

DEC

BNE

RTS

$FA

$0D5B

$FB

$FA

$FA

$E0

$FB

$E1

#$01

$FE

#$FC

$FF7 4

$FE

$EC

$C00C

$FE

$0D5D

C-128 Internals

;ALSO THE SOURCE ADDRESS

/DECREMENT THE LO-BYTE

;AND DEC

;ALSO HI-BYTE

;GET LO-BYTE

;LO-BYTE LINE ADDRESS

/GET HI-BYTE

/HI-BYTE LINE ADDRESS

/BANK 1 FOR VARIABLES

/POSITION IN STRING

/ADDRESS IN ZERO PAGE

/FAR FETCH

/GET POSITION IN STRING

/ALSO CURSOR COLUMN

/AND CHARACTER OUTPUT

/DEC THE POINTER

/IF NOT END OF STRING

/END ROUTINE

At first glance the routine may appear rather long, but it really isn't.

Remember that this routine and a few short BASIC lines give you three
additional lines to use. Furthermore, there is another short routine at the
start of this one that writes a character to a location in the VDC memory.
The BASIC loader for this routine is found after the example program. Here
is the example program, which allows displays 28 lines using both of the

new routines.

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

REM *** demO PROGRAM FOR 28 LINE SCREEN ***

A=DEC("D600"): D=DEC("D601")

POKE A,20: POKE D,16: REM *** VDC GETS NEW BASE

REM *** KERNAL GETS NEW

BASE ADDRESS

REM *** 28 LINES

REM *** NEW SYNC

POKE DEC("0A2F"),16:

POKE A,7: POKE Df28:

POKE A,6: POKE D,33:

PRINT CHR$(147)/

T$+" ": REM 20 SPACES

FOR X=0 TO 7 9 STEP 20: FOR Y=0 TO 2

GOSUB 1000: NEXT: NEXT

INPUT "Enter your name: "/T$

FOR Y=0 TO 2: X=2*Y: GOSUB 1000: NEXT

END

118

Abacus Software C-128 Internals

1000 REM *** OUTPUT T$ AT X,Y COORDINATE; Y=0 MEANS

1ST LINE ***

1010 AZ=2000+Y*80+X: REM DESTINATION ADDRESS

1020 POKE 250,AZ AND 255: REM LOW BYTE

1030 POKE 251,AZ/256: REM HIGH BYTE

1040 T%=POINTER(T$): REM ADDRESS OF THE STRING

1050 SYS DEC("D27"),T% AND 255,T%/256: REM PASS

1060 RETURN

1070 :

This program first enables the three additional three lines (lines 30-70).

Then the window is cleared and the name you entered is printed on each

line.

If you don't want to enter the machine language program with the

assembler, you can use the following BASIC loader and then save the

machine language program on disk as a BINary file.

10 REM BASIC LOADER FOR PRINT STRING

20 :

30 FOR 1= DECC'DOO") TO DEC("D79")

40 READ A$

50 POKE I, DEC(A$)

60 S=S+DEC(A$)

70 NEXT

80 IF SO16613 THEN PRINT"ERROR IN DATA STATEMENTS"

90 INPUT "SAVE PROGRAM ON DISKETTE Y/N";A$

100 IF A$O"Y" THEN END

110 INPUT "FILE NAME";F$

120 BSAVE""+ F$ +"",B1,P3328 TO P3449 :END
130 :

200 DATA 8E,00,D6,2C,00,D6,10,FB,8D,01,D6,60,A2,12,A9,00
210 DATA 20/00,OD,E8,A9,00,20,00,OD,A2,1F,A9,00,20,00/OD

220 DATA A2,12,A9,00,4C,00,0D,85,FC,86,FD,A0,00,A2,01,A9
230 DATA FC,20,74,FF,85,FE,A0,01,A2,01,A9,FC,20,74,FF,48
240 DATA C8,A2,01,A9,FC,20,74,FF,85,FD,68,85,FC,A5,FC,D0
250 DATA 02,C6,FD,C6,FC,A5,FA,D0,02,C6,FB,C6,FA,A5,FA,85
260 DATA E0,A5,FB,85,El,A2,01,A4,FE,A9,FC,20,74,FF,A4,FE
270 DATA 84,EC,20,0C,C0,C6,FE,D0,E4/60

119

Abacus Software C-128 Internals

5.5.7 Hi-res graphics

We probably got you excited when we mentioned that a graphics

display is also possible on the 80-column screen. The resolution of these

graphics is 640x200 points, exactly twice as great as the hi-res mode of the

VIC chip. There is no multi-color mode. The brillance of the graphics is

quite impressive (if the monitor can display it properly). Here you don't

have to set two points next to each other in order to see one point, as on the

VIC. There is "only" one color available, but this is completely sufficient

for most graphics (such as mathematical curves).

This graphic mode is not supported by the BASIC 7.0 graphics

commands. We again offer you a small machine language package that can

perform the following elementary functions:

* turn graphic mode on and off

* clear the graphic page

* set and clear points

We could have integrated more features into the machine language

routine package, but we don't want to turn the C-128 Internals into a

collection of programs!

The how of the VDC graphic mode is also interesting. The bit-map
mode is enabled by setting bit 7 of register 25. There are then 16Kbytes of
the VDC memory available for graphics on the screen. If you clear the
graphics, the character generator is also cleared.

On the international models of the C-128 if you exit with
<RUN/STOP> <RESTORE>, you must also press <ASCII/DIN> or you
will see nothing on the screen because the character set has been erased. The
character set can also be copied under program control when switching from
the graphic mode to the text mode. You can also press <ASCII/DIN> while
the graphic mode is enabled-you will be surprised.

The graphic mode is enabled by setting bit 7. The attribute RAM
becomes nonfunctional as it is required for graphic display, we must also
clear the ATR bit in register 25. We can combine these two actions by
loading register 25 with 128. This is all that is necessary to enable the
graphic mode. We can leave the attribute and video RAM addresses alone

since they play no role.

120

Abacus Software C-128 Internals

The graphic memory is defined at address $0000. The logic for setting
and clearing points is similar to that described for the VIC chip; here setting
and clearing are accomplished through logical OR and AND. One byte also
defined eight points (pixels) for the VDC. The first point, which has the
coordinates 0/0, is located in the upper left-hand corner, and thereby at
address $0000. The rest of the procedure is simpler than for the VIC chip.
The graphics are defined line by line. The memory layout is clarified in the
following figure:

$0000 $0001 $0002 $0003

$0280 $0281 $0282 $0283
$027F (639 decimal)

$04FF (1279 decimal)

On the VDC the memory is not divided into matrices of eight, so that
addressing a point is much easier. The following formula is needed to
address a given point (X/Y):

AD = INT(X/8) + Y*802

The point in this byte is addressed in the same manner as with the VIC,
by the following formula:

2A(7-(X AND 7))

Since this addressing is so simple, the machine language program is
correspondingly shorter. First the assembly language listing, followed by
the BASIC loader:

oocoo

00C03

00C06

00C09

OOCOC

00C0F

00C12

00C15

00C17

00C1A

00C1B

00C1E

00C21

00C23

4C

4C

4C

4C

4C

8E

2C

10

8D

60

8E

2C

10

AD

CD

DO

D3

EO

DD

00

00

FB

01

00

00

FB

01

OC

OC

OC

OC

OC

D6

D6

D6

D6

D6

D6

JMP

JMP

JMP

JMP

JMP

STX

BIT

BPL

STA

RTS

STX

BIT

BPL

LDA

$0CCD

$0CD0

$0CD3

$0CE0

$0CDD

$D600

$D600

$0C12

$D601

$D600

$D600

$OC1E

$D601

/SWITCH ON THE GRAPHICS

;TURN OFF GRAPHICS

/BACK TO TEXT MODE

;SET A POINT

/ERASE A POINT

/STORE IN REGISTER

/TEST STATUS

/NOT FINISHED YET

/STORE VALUE

/RETURN TO PROGRAM

/LOAD REGISTER

/TEST STATUS

/NOT FINISHED YET

/GET REGISTER VALUE

121

Abacus Software

00C26

00C27

00C29

00C2B

00C2E

00C30

00C32

00C33

00C36

00C38

00C3A

00C3D

00C3F

00C42

00C43

00C45

00C46

00C47

00C49

00C4B

00C4D

00C4F

00C51

00C53

00C55

00C57

00C59

00C5B

00C5D

00C5F

00C61

00C63

00C65

00C67

00C69

00C6B

00C6D

00C6F

00C71

00C73

00C74

00C76

00C78

60

A2

A9

20

A0

A2

98

20

A2

A9

20

A2

20

88

10

60

08

A5

85

46

66

46

66

46

66

A9

85

A5

06

26

06

26

65

85

90

E6

A2

06

26

CA

DO

A5

65

19

80

OF

40

12

OF

IF

00

OF

IE

OF

EB

FA

FE

FB

FA

FB

FA

FB

FA

00

FD

FC

FC

FD

FC

FD

FC

FC

02

FD

04

FC

FD

F9

FA

FC

OC

OC

OC

OC

RTS

LDX

LDA

JSR

LDY

LDX

TYA

JSR

LDX

LDA

JSR

LDX

JSR

DEY

BPL

RTS

PHP

LDA

STA

LSR

ROR

LSR

ROR

LSR

ROR

LDA

STA

LDA

ASL

ROL

ASL

ROL

ADC

STA

BCC

INC

LDX

ASL

ROL

DEX

BNE

LDA

ADC

#$19

#$80

$0C0F

#$40

#$12

$0C0F

#$1F

#$00

$0C0F

#$1E

$0C0F

$0C30

$FA

$FE

$FB

$FA

$FB

$FA

$FB

$FA

#$00

$FD

$FC

$FC

$FD

$FC

$FD

$FC

$FC

$0C6D

$FD

#$04

$FC

$FD

$0C6F

$FA

$FC

i^-iz» internals

/RETURN TO PROGRAM

/REGISTER 25 CHOSEN

;BIT 7 SET

/REGISTER 25 SET

/$40 FOR OFF

•.REGISTER 18 UPDATE HI

/HI BYTE TO ACCU.

/SET UPDATE HI

/REGISTER 31 DATA REG.
•

t

/DATA REGISTER WRITTEN

/WORDCOUNT REGISTER

/WITH NO FILL

/DECREMENT THE NUMBER

/FOLLOW BLOCK OFF

/RETURN TO OFF ROUTINE

/RETURN CARRY # SET/OFF

/LO-BYTE X-COORD.

/TEMP. STORAGE

/HI-BYTE WITH X OVER TWO

/COPY CARRY LOW-BYTE

/ S . O.

/ S . O.

/PUT TOGETHER INT(X/8)
•

i

/HI-BYTE OF ADDRESS ON

/ NULL SET

/Y-COORD. IN ACC.

;Y TIMES 2

/COPY CARRY

/TIMES TWO OPTION

/AMT * 4, PLUS 1*Y

/OPTION Y*5

:LO-BYTE

/NO CARRY

/CARRY INTO HI-BYTE

/IS WORD WITH 4 TIMES

/WITH 2 MULTIPLER THIS

/OPTION ONE * 16

/AND 16*5 FOR 80 OPTION

/WITH 80 MULTIPLER

/INT(X/8)

/ADD TO Y*80

122

Abacus Software C-128 Internals

00C7A

00C7C

00C7E

00C80

00C82

00C84

00C87

00C88

00C8A

00C8D

00C8F

00C92

00C93

00C95

00C97

00C98

00C99

00C9A

00C9C

00C9F

00CA1

00CA4

00CA5

00CA7

00CA9

OOCAC

OOCAD

OOCAF

00CB2

00CB4

00CB5

00CB8

OOCBA

OOCBD

00CC5

OOCCD

OOCDO

00CD3

00CD5

00CD7

00CDA

OOCDD

OOCDE

85 FC

90 02

E6 FD

A2 12

A5 FD

20 OF

E8

A5 FC

20 OF

A2 IF

20 IB

48

A5 FE

29 07

AA

68

28

BO 05

3D C5

90 03

ID BD

48

A2 12

A5 FD

20 OF

E8

A5 FC

20 OF

A2 IF

68

20 OF

A2 12

4C IB

80 40

7F BF

20 27

4C 2E

A2 19

A9 40

20 OF

4C OC

18

90 01

STA $FC

BCC $0C80

INC $FD

LDX #$12

LDA $FD

OC JSR $0C0F

INX

LDA $FC

OC JSR $0C0F

LDX #$1F

OC JSR $OC1B

PHA

LDA $FE

AND #$07

TAX

PLA

PLP

BCS $OCA1

;AND STORE

;NO CARRY

;REM CARRY

/REGISTER 18 UPDATE HI

;HI-BYTE OF ADDRESS

;SET

;UPDATE LO

/LO-BYTE OF ADDRESS

;SET THE LO-BYTE

/DATA REGISTER

/GET THE STORED VALUE

/STACK

/GET X-COORD. (LO)

;X AND 7

/POINTER NOT X

/GET VALUE BACK

/GET CARRY BACK

/SET POINT

OC AND $0CC5,X/CLEAR POINT

BCC $0CA4 /UNCONDITIONAL JUMP

OC ORA $0CBD,X/SET POINT

PHA

LDX #$12

LDA $FD

OC JSR $0C0F

INX

LDA $FC

OC JSR $0C0F

LDX #$1F

PLA

OC JSR $0C0F

LDX #$12

OC JMP $OC1B

20 10 08 04 02 01/

DF EF F7 FB FD FE/

/STACK

/UPDATE HI

/HI-BYTE OF LINE ADDRESS

/SET THE VALUE

/UPDATE LO

/LO-BYTE OF ADDRESS

/SET THE LO-BYTE

/DATA REGISTER

/RECOVER STACK

/SET NEW VALUE

/UPDATE ADDRESS HI

/AND POINT SET

TABLE SETTING PTS

TABLE CLEAR POINTS

OC JSR $0C27

OC JMP $0C2E

LDX #$19

LDA #$40

OC JSR $0C0F

CE JMP $CE0C

CLC

BCC $OCE1

/SET THE GRAPHIC MODE

/TURN OFF GRAPHICS

/REGISTER 25 SELECT

•ATR-BIT SET,TXT-BIT OFF

/SET THE TEXT MODE

/COPY CHAR ROM

/CLR CARRY FOR POINT OFF

/UNCONDITIONAL JUMP

123

Abacus

OOCEO

00CE1

00CE3

00CE5

00CE7

Software

38

85 FA

86 FB

84 FC

4C 46 OC

SEC

STA

STX

STY

JMP

$FA

$FB

$FC

$0C46

C-128 Internals

;SET CARRY FOR POINT SET

;STORE X-LOW

;STORE X-HI

/STORE Y-COORD.

;POINT SET/CLEAR

As you see, there are five entry points available. The graphic page is

automatically cleared when the graphic mode is enabled If you only want to

enable the graphic page, you can do this with the following BASIC

commands:

POKE DEC("D600"),25: POKE DEC(lfD601M),128

The following subroutines are reached with the five entry point

addresses:

$ocoo

$0C03

$0C06

$0C09
$0C0C

Enable and clear graphic page

Clear the graphics

Back to text mode

Set a point

Clear point

The coordinates for setting or clearing a point can be passed directly

with the SYS command. The syntax looks like this:

SYS <ENTRY POINT>,<X LOW>,<X HIGH>,<Y>

For example, the command

SYS DEC("0C09"),0,185,191

is necessary to set the point with the coordinate (185,191). The general call

looks like tin's:

SYS DEC("0C09"),X AND 255,X/256,Y

By the way, it pays to append the % sign to the variable names
whenever possible because then the variable is treated as an integer
variable-leading to great increases in speed. Unfortunately, this doesn't
work for loop variables. The constants 255 and 256 should be defined as
integer variables-this also increases the speed because the values do not
have to be recalculated by the interpreter each time. We have made use of
this in our example program.

124

Abacus Software C-128 Internals

Here is the BASIC loader for the graphics package:

10 REM *** BASIC LOADER FOR 80 COLUMN GRAPHICS***

20 :

30 FOR 1= DECPOCOO") TO DEC ("0CE9")

40 : READ X$:X=DEC(X$)

50 : POKE I,X

60 : S=S+X

70 NEXT

80 IF SO 25 905 THEN PRINT11***** ERROR IN DATA

STATEMENTS *****"

90 INPUT"SAVE PROGRAM TO DISKETTE";A$

100 IF A$O"Y" THEN END

110 PRINT:INPUT "FILE NAME"/F$

120 BSAVE""+F$+"",B0,P3072 TO P3306

130 END

140 :

1000 DATA 4C,CD, 0C,4C,D0,0C, 4C,D3,0C, 4C,E0,0C, 4C,DD,0C,8E

1010 DATA 00,06,20,00,D6,10,FB,8D,01,D6,60,8E,00,D6,2C,00

1020 DATA D6,10,FB,AD,01,D6,60,A2,19,A9,80,20,0F,0C,A0,40

1030 DATA A2,12,98,20,0F,0C,A2,lF,A9,00,20,0F,0C,A2,lE,20

1040 DATA 0F,0C,88,10,EB,60,08,A5,FA,85,FE,46,FB,66,FA,46

1050 DATA FB,66,FA,46,FB,66,FA,A9,00,85,FD,A5,FC,06,FC,26

1060 DATA FD,06,FC,26,FD,65,FC,85,FC,90,02,E6,FD,A2,04,06

1070 DATA FC,26,FD,CA,D0,F9,A5,FA,65,FC,85,FC,90,02,E6,FD

1080 DATA A2,12,A5,FD,20,0F,0C,E8,A5,FC,20,0F,0C,A2,lF,20

1090 DATA lB,0C,48,A5,FE,29,07,AA,68,28,B0,05,3D,C5,0C,90

1100 DATA 03,lD,BD,0C,48,A2,12,A5,FD,20,0F,0C,E8,A5,FC,20

1110 DATA 0F,0C,A2,lF,68,20,0F,0C,A2,12,4C,lB,0C,80,40,20

1120 DATA 10,08,04,02,01,7F,BF,DF,EF,F7,FB,FD,FE,20,27,0C

1130 DATA 4C,2E,0C,A2,19,A9,40,20,0F,0C,4C,0C,CE,18,90,01

1140 DATA 38,85,FA,86,FB,84,FC,4C,46,0C

This routine is located in the RS-232 input buffer and can therefore be
called from any bank configuration. This memory area was chosen because

it is seldom used. If you do need it, you must move the routine to a new
area and make the appropriate changes to the program.

In conclusion, we do not want to leave you with the graphics package

alone, we we wrote a short example program in BASIC which draws a
damped oscillation on the 80-column screen. We find that the execution

speed is quite satisfactory. You can also learn more about the operation of

125

Abacus Software C-128 Internals

the graphic routines from the example program. Naturally you can change

the function in line 30 to see what "your" function looks like.

10 REM ** EXAMPLE PROGRAM FOR GRAPHICS PACKAGE **

20 :

30 DEFFNR(X)=40*SIN(X)*EXP(-0.5*X)+100

40 FAST: TRAP 1000: REM IN CASE OF ERROR IN FNR(X)

50 F%=256: FF%=255: SE=DEC("C09"): RE=DEC("C0C")

60 SYS DEC("COO"): REM GRAPHICS ON

70 Y%=100: REM DRAW X-COORDINATE

80 FOR X=0 TO 639 STEP 3: REM DOTTED LINE

90 : SYS SE,X AND FF%, X/F%, Y%

100 NEXT

110 X%=320: REM DRAW Y-COORDINATE

120 FOR Y=0 TO 199 STEP 2 : REM DOTTED LINE

130 : SYS SE,X% AND FF%, X%/F%, Y

140 NEXT

150 C=-32

160 FOR X=0 TO 639

170 : FU%=FNR(C): IF FU%<0 OR FU%>199 THEN 190

180 : SYS SE,X AND FF%, X/F%, FU%

190 C=C+.l

200 NEXT

210 GETKEY A$: REM *** DONE, WAIT FOR KEY, BACK TO

TEXT

220 SYS DEC("C06"): PRINT CHR$(147): SLOW

1000 PRINT ERR_$ (ER) ;EL

There are an unlimited number of applications for graphics. We will let

your imagination run free here. We wish you much success with the use of

the 80 column graphics routines.

126

CHAPTER 6

Abacus Software C-128 Internals

Chapter 6: The Memory Management Unit

6.1 Introduction to the MMU

The Memory Management Unit (MMU) was designed to handle the
complex addressing tasks in the C-128. As you may know, the 8502 and
the Z-80 can address only 64K. You know from BASIC that the two RAM
banks can only be addressed separately. Each 64K of RAM overlays the
ROM and the I/O components. For example, there are two different RAMs
at address $D600, the I/O provided by the 80-column controller and the

ROMs. If a cartridges is inserted into the expansion slot, the MMU must

differentiate this too.

The MMU is also used in the 64 mode and is completely compatible
with the C-64. In addition it can handle the tasks that come up in the C-128
and CP/M modes. It also performs the computer mode selection and selects

between the 8502 and the Z-80. Here is a list of its features:

* Manages the translated address bus (TA8-TA15)

* Selects the computer mode (C-64, C-128, CP/M)

* Selects the processor (Z-80, 8502)

* Prepares and manages the CAS selection lines for bank-switching

the RAM.

The MMU has a total of 11 registers that are found starting at address

$D500. Since the I/O range is not always enabled, the memory

configuration register and load registers A-D are copied into the memory

range $FF00 to $FF05. This way there are four set configurations found in
the preconfiguration registers A-D. They can be selected simply by loading

a load register into the configuration register, without having to enable the

I/O range. This is a very useful feature and saves both time and

programming effort. But more about this later.

129

Abacus Software C-128 Internals

Here is a graphic representation of the available registers:

$FF04

$FF03

$FF02

$FF01

$FF00

$D50B

$D50A

$D509

$D508

$D507

$D506

$D505

$D504

$D503

$D502

$D501

$D500

LCRD

LCRC

LCRB

LCRA

CR

VR

P1H

P1L

POH

POL

RCR

MCR

PCRD

PCRC

PCRB

PCRA

CR

Load Configuration Register D

Load Configuration Register C

Load Configuration Register B

Load Configuration Register A

CONFIGURATION REGISTER

(Copyat$D501)

Version Register

Page 1 Pointer -High

Page 1 Pointer-Low

Page 0 Pointer-High

Page 0 Pointer-Low

RAM Configuration Register

Mode Configuration Register

Preconfiguration Register D

Preconfiguration Register C

Preconfiguration Register B

Preconfiguration Register A

CONFIGURATION REGISTER

(Copy at $FF00)

130

Abacus Software C-128 Internals

6.2 The Configuration Register

As already mentioned, there is a copy of some of the MMU registers at
address $FF00 (independent of the enabled RAM bank). This is not quite
correct. In reality there is a copy of one register at address $FF00; this is
the configuration register CR. If you read memory location $FF00, you get
the current contents of the configuration register. If you write to address
$FF00. the contents of the configuration register at $D500 in the MMU
change at the same time. The registers $FF01 to $FF04 are just "half
copies of the MMU registers. Half because when reading them they return
the current contents of the corresponding MMU preconfiguration register,
but when writing to these registers, the contents not of the corresponding
MMU registers, but the configuration register is changed.

This is not a disadvantage-quite the opposite. If you write to an LCRx
register, the CR will be loaded with the corresponding PCR. An example:
We write to LCRA at address $FF01. The contents of this register doesn't
change, but the contents of the CR does. The PCRA ($D501) is copied to
the CR. This is a very practical feature: We can change the CR register
without having to bother with the I/O range. We can select between four
configurations stored in the MMU. This means the programmer need only
say, "Select configuration #1," and the MMU switches this configuration
on. In machine language this selection looks simply like this:

STA $FF01 ;Acc. contents irrelevant—enable

configuration 1

At the start of a program one can pre-program the most-used configurations
into the four PCRs. But "manual" reconfiguration isn't much harder. Load
the accumulator with the bit pattern necessary and store this at address

$FF00. Example for bank 15:

LDA #00 /corresponds to BANK 15 command

STA $FF00 /select configuration

All eight bits of the configuration register are relevant:

Bits 7,6 Select RAM bank. The bit combinations 00 and 01 are /
possible in the 128K version. But since memory expansion/
up to 256K is allowed, the possibilities 10 and 11 exist forx.

this expansion. If these RAM banks are not present, 10 ^
means the same as 00 and 11 the same as 01.

131

Abacus Software C-128 Internals

Bits 5,4 Select what will be accessed when the memory range $C000
to $FFFF is addressed:

00 - System ROM (kernal)

01 - Internal function ROM

10 - External function ROM

11 - RAM (bank, see bits 6 and 7)

Bits 2,3 Select what will be accessed when the memory range $8000
to $BFFF is addressed:

00 - System ROM (BASIC)

01 - Internal function ROM

10 - External function ROM

11 - RAM (bank, see bits 6 and 7)

Bit 1 Select what will be accessed when the memory range $4000
to $7FFF is addressed:
0 - System ROM (BASIC)

1 - RAM (bank, see bits 6 and 7)

Bit 0 Select what will be accessed when the memory range $D000
to $DFFF is addressed:

0-System I/O

1 - RAM/ROM, dependent on bits 4 and 5

It should be noted that when ROM is enabled in the range $C000 to

$FFFF (bits 4 and 5) there is always a gap in the range $D000 to $DFFF. If
the system I/O is enabled, the system I/O components occupy this range. If

bit 0 is set, the character generator is found here.

6.2.1 The preconfiguration registers

The preconfiguration registers are found at addresses $D501 to $D504

and copies of them are found at addresses $FF01 to $FF04. They have no

significance in the C-64 mode. Preconfiguration registers are registers in the

MMU which can be pre-programmed with specific memory configurations.

These pre-programmed configurations can be transported to the

configuration register by means of the "Load Configuration Register11.The

use of these registers was described in section 6.2. The bits are encoded in

the same manner as for the configuration register. The encoding is also

found in section 6.2.

132

Abacus Software C-128 Internals

6,3 The Mode Configuration Register

The mode configuration register is found at address $D505. It sets the

current computer mode, that is, which CPU is operational (8502 or Z-80)

and whether the 64 or 128 mode is active.

Bit 7 Indicates if the 40/80 column key was pressed at reset. 0=80
column, 1=40 column mode.

Bit 6 This bit indicates whether the 64 or 128 mode is active;
0=128 mode. After power-up or RESET the 128 mode is

always active.

Bits 4,5 These two bi-directional bits indicates whether or not the
cartridge lines GAME or EXROMIN are being used. If so,

the 64 mode must be enabled and control passed to the

cartridge. In the 128 mode these lines are not used.

Bit 3 FSDIR control bit. This bit is used as the output bit for the
fast serial data bus buffer as well as the input bit for the disk

enable signal.

Bits 1,2 These bits have no significance.

Bit 0 This bit selects the processor; l=Z-80,0=8502.

If bit 0 of this register is written to, the contents are temporarily

buffered until the current clock cycle is done. Otherwise, complications

could occur when the processors are switched.

By looking at bit 0 we can determine whether the Z-80 or the 8502 is

operational. When writing to this register, the bit is stored until the clock
pulse falls. If the bit is set, the Z-80 is active and the range $D000 to
$DFFF is mirrored in the range $0000 to $0FFF. The BIOS ROM is also
physically located at the range $0000 to $0FFF. The BIOS ROM can!t be
read (via software) when the 8502 is enabled.

For example, if the Z-80 is enabled, the 8502 is stopped and the Z-80
continues where it left off. This simply means that the PC (Program

Counter) continues with the course of the program. The same is true when

the 8502 is switched on: it picks up its work where it left off and this takes

place immediately after the instruction to switch on the Z-80.

133

Abacus Software C-128 Internals

In the 64 mode the Z-80 enable line (defined by bit 0) is always zero so
that the Z-80 mode cannot be enabled in the C-64 mode. Furthermore, there
are no copies of the MMU registers in the addresses at $FF00 in the 64
mode.

6.4 The RAM Configuration Register

The RAM configuration register is found at address $D506 of the
MMU. It is used to define the common RAM areas. But why define
commonRAM areas?

Quite simple: The interpreter, for example, stores all of the required
system variables and pointers in the zero page (although there really isn't a

zero page anymore). If the interpreter now switches to bank 1, for instance,

in order to read or write variables, these system pointers would no longer be
available since they are found in bank 0. It would be a lot of bother to have
to make changes in both memory banks every time a zero-page location was
changed.

To avoid this, the Commodore engineers thought it would be very

practical to be able to define a certain memory range so that it looked the

same in all RAM banks. In reality, the zero page is stored in only one RAM

bank, bank 0. If you then address this memory range in RAM bank 1 (or

another bank), the MMU recognizes this and addresses the corresponding
area in bank 0.

These common memory ranges are called common areas. The MMU

offers the programmer the option of defining whether or not he wants a

common area, and if so, how large it should be and where it should be

located. But first the register layout before we take a closer look at the
individual bits:

Bits 6,7 These two bits store the RAM bank for the VIC chip, where

the text or a graphic page will be stored. Normally the video
RAM is found in bank 0.

00=RAM bank 0, 01=RAM bank 1, 10=RAM bank 2(0),

11=RAM bank 3(1)

Bits 4,5 These two bits are still unused in the present version. They

are intended for expansion to 1Mbyte of RAM. Then

selecting these would address a 256K block.

134

Abacus Software C-128 Internals

Bits 2,3 Bits 2 and 3 indicate if and where a common area is defined.

00=no common area, independent of bits 0 and 1

01=lower area is common

10=upper area is common

1 l=both upper and lower areas are common

Bits 0,1 Here is defined how many Kbytes will be used as a common

area. These two bits are valid only when bits 2 and 3 are not

equal to 00.

00=1 Kbyte common area

01=4 Kbyte common area

10=8 Kbyte common area

11=16 Kbyte common area

When a common area is defined, the minimum area possible is IK. But

is also possible to declare no area as common. To do this, set bits 2 and 3 to

zero. If only one of bits 0 and 1 are set, bits 4 and 5 will have effect.
Normally, only the lower area with lKbyte is defined as a common area. In

the 64 mode, this register has no effect.

If a lKbyte area is defined as a common area, the range $0000 to
$03FF is identical in both RAM banks if the lower area is enabled. If both
the upper and lower areas are enabled as the common area, the ranges

$0000 to $03FF and $FC00 to $FFFF are identical in both RAM banks.
You can define up to 32K as a common area by defining both areas and

16K as the common area.

Bits 6 and 7 determine from which RAM bank the VIC chip should get

its information regarding the video RAM. This offers us fantastic
capabilities. It is very easy to manage two 40-column screens without
having to move the address of the video RAM, which is more complicated
than switching the RAM bank. In RAM bank 0 you can define screen
number 1 at address $0400 and screen 2 at the same address in bank 1. You
can then switch between the two by setting or clearing bit 6.

LDA #00 /system I/O

STA $FF00 /enable

LDA $D506 ;old RCR value

ORA #$40 /screen in RAM bank 1

STA $D506 /enable

135

Abacus Software C-128 Internals

6.5 The Page Pointer

There are two page pointers: one page pointer for the zero page, and a
page pointer for page 1, in which the stack normally lies,

$D507/$D508: Page pointer 0
$D509/$D50A: Page pointer 1

The low-order byte of these pointers represents the address bits 8 to 15.
The high-order byte determines the RAM bank which will be used,

representing address bits 16 to 19. Bits 7-4 are not used in the high-order
byte.

If the high-order byte of a page pointer is written, it is stored

temporarily until the low-order byte of the pointer is also written.

If the zero page or page 1 is moved to another address, the MMU adds

the base address automatically to access the zero page or for stack actions.

Higher bytes ($D508/$D50A)

Bits 7-4 unused

Bits 3-0 Address bits 16 to 19 for translated address (TA)

In the present version, only bit 0 is of interest; the remaining bits
1-3 are ignored.

Lower byte ($D507/$D509)

Bits 0-7 These bits represent the high-order byte of the page pointer, that
is, address bits 8-15. For the zero-page pointer this byte is
usually 0; for the page-1 pointer it is 1.

The advantages are clear. You can have a separate stack for each
subroutine as well as a separate system-variable area if you don't call the
kernal routines. Moving the zero page has two advantages: Programs will
be shorter and faster.

Assembly language programmers are often searching for free memory
locations in the zeropage. As an example, the LDA ($xx), Y instructions
function only with zero-page addresses. Using the page pointers you can
move zero page to a free memory area.

136

Abacus Software C-128 Internals

The ability to move page 1 is also practical. This makes it possible to
give each subroutine its own stack. This is a very useful feature. You need
only save the stack pointer and then have a new stack available for the
subroutine. This results in more space on the stack, and the stack need not
be completely reconstructed when the routine is exited. You need only to
restore the page 1 pointer to the normal value ($01) and reset the stack
pointer SP. This is a particularly useful feature for PASCAL compilers.

Moving the stack might look something like this:

LDA #$00 /system I/O

STA $FF00 /enable

LDA #$F0 /stack at address $F000

STA $D507 /in RAM bank 0

TSX /and save SP

STX $FD /in zero-page $FD

LDX #$FF /initialize

TXS /new stack

Since the stack has been redefined, the stack must be reconstructed the
at the end of the routine, otherwise it is no longer possible to exit from the
subroutine with RTS. This reconstruction looks like this:

LDX $FD /get old stack pointer

TXS /and reset SP

LDA #$01 /stack again at address $0100

STA $D507 /default value

RTS /return now possible

Here is a rather unconventional way to clear the screen. It is used often
in professional programs because it is very fast. It is used in graphics

programs for filling surfaces, for example.

The whole thing is done by "misusing" the stack pointer for addressing.

A PHA instruction writes the contents of the accumulator to the current stack

address and the stack address is automatically decremented-all of this in a

one-byte command. This is much faster since it's all done in hardware. In

the "normal" assembler notation this looks like this:

STA ($xx),Y

DEY

137

Abacus Software C-128 Internals

The addressing mode is more complicated for the CPU, so it needs
more time. The same action requires three bytes, and it is slower since the
code must be fetched, interpreted, and executed

Our new screen-clear routine saves the stack pointer, places it at the
screen start $0400, and then pushes the accumulator onto the new stack
1024 times. After each 256 bytes the high-order byte must naturally be
incremented. The interrupts should also be disabled during the routine in
order to prevent stack overflow.

LDA

STA

SEI

LDA

STA

TSX

STX

LDX

TXS

LDY

LDX

LDA

NEXT PHA

DEX

BNE

INC

DEY

BNE

LDX

TXS

LDA

STA

CLI

RTS

#$00

$FF00

#$04

$D509

$FD

#$FF

#$03

#$00

#$20

NEXT

$D509

NEXT

$FD

#$01

$D509

/BANK 15

/DISABLE INTERRUPTS

/NEW START ADDRESS OF THE SP

/IS $0400 IN RAM BANK 0

/STACK POINTER TO X

/AND SAVE CURRENT POINTER

/SP TO START OF STACK

/256 BYTES TIMES 4

/256-BYTE COUNTER

/FILL CHARACTER

/SAVE CHARACTER

/DECREMENT LOOP

/NEXT CHARACTER

/INCREMENT SP HIGH BYTE

/ALL FOUR BLOCKS FILLED?

/NO, NOT YET

/GET OLD SP

/AND STORE AGAIN

/HIGH BYTE OF ORIGINAL STACK

/AND SET

/REENABLE INTERRUPTS

/END OF THE CLEAR ROUTINE

This routine isn't much longer than a "traditional11 screen-clear routine

and it is much faster. It also demonstrates the capabilities that are possible

by changing the page-pointer base addresses.

138

Abacus Software C-128 Internals

6.6 The Version Register

Bits 7-4 Bank version; These bits give information as to the total available
memory space. As already mentioned, the computer has the
possibility to expanded to IMbyte. The standard contents of this
register for the 128 are $20. The "2" stands for two 64K blocks.
A 1M version would contain sixteen 64K blocks. Bits 7-4 of this

register would then contain a 0.
Bits 3-0 MMU version; These bits indicate *he version number of the

MMU.

The system version register is quite uninteresting for actual memory
management. The low-order nibble contains a specification of the MMU
version. In the high-order nibble the existing memory construction can be
read. Here programs can determine how much memory they can access and
set themselves accordingly. Future programs will undoubtedly do this.

139

CHAPTER 7

Abacus Software C-128 Internals

Chapter 7: Assembly Language Programming

7.1 Introduction to Assembly Language Programming

We hardly need to explain to an Internals reader what assembly or

machine language is. This chapter is designed to show you how to use the
operating system routines in your own programs. Why keep reinventing the
wheel? There is a whole set of useful routines available which can be very

easily accessed. This makes your programs shorter and easier to read

We want to make the work easier for you and explain the kernal

routines by means of short examples. Naturally, we cannot go into all of the

kernal routines; there are simply too many.

7.2 The CPU - The 8502

The heart of a computer is the CPU and in the C-128 it's the 8502, in
addition to the Z-80. It is fully software-compatible to the 6510 and its
predecessor, the 6502. In contrast to the 6510, the 8502 can be driven at

2MHz--making it twice as fast

The pinout:

1 0IN System clock input; selectable 1 or 2MHz (approximately)

2 RDY Ready; 0=processor stops on the next clock cycle until
RDY=1. This can be used to operate slow memory, for

example.

3 -IRQ Interrupt request; 0=processor gets the next commands
address from $FFFE and continues from there. This occurs

only when interrupts are enabled.
4 -NMI Non-maskable interrupt; 0=processor gets the next

command address from $FFFA and continues from there. This

interrupt cannot be disabled.
5 AEC Address enable control; 0=processor brings data,

address, and control bus to the high-Z state (tri-state). The bus
can then be driven by other devices, such as a second

processor.

6 VCC Operating voltage +5V.

143

Abacus Software C-128 Internals

7-20 A0-A13; Address bus.
21 GND

22-23 A14-A15; Address bus

24-29 P5-P0; I/O pins

30-37 D7-D0; data bus

38 RAW; 0=write access, l=read access
All access occur only when 02=1.

39 02OUT; System clock output for supplying other components

40 RES Reset; 0=processor goes into the rest state. When the
signal goes from 0 to 1, the processor gets an address from

$FFFC executes the program at that address.

7.3 The Kernal Routines

First we like to dedicate ourselves to the routines that are found in part

in the extended zero page. These include the very important routines which
allow you to read from, write to, or peform a comparison with any memory
location in any bank.

7.3.1 FETCH, STASH, and CMPARE

These three routines are used to read, write, and compare memory
locations in any bank, regardless of the memory configuration. The
configuration is unchanged after calling one of these routines.

When calling the routines, you must pass the configuration index in the
X register. The operating system has 16 configurations of the 128 possible
stored in a table at $F7F0.

Find the desired memory configuration from the table on the next page
and load it into the X register.

144

Abacus Software C-128 Internals

X-Register

0

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

0

1

2

3

4

5

Memory Configuration

only

only

only

only

Int.

Int.

Int.

Int.

Ext.

Ext.

Ext.

Ext.

RAM

RAM

RAM

RAM

ROM

ROM

ROM

ROM

ROM

ROM

ROM

ROM

Kernal,

Kernal,

Kernal,

Kernal,

0

1

2 (RAM

3 (RAM

, RAM 0

, RAM 1

, RAM 2

, RAM 3

, RAM 0

, RAM 1

, RAM 2

, RAM 3

0)

1)
, I/O

, I/O

, I/O

, I/O

, I/O

, I/O

, I/O

, I/O

Int (Lo) , RAM 0, I/O

Ext (Lo), RAM 1, I/O

BASIC,

BASIC,

RAM 0, CHARROM

RAM 0, I/O

7.3.1.1 FETCH

Part of the FETCH routine is found at address $02A2 in RAM, To read
from a memory location, the following parameters are passed to this routine:

Ace : pointer to zero-page address

x-reg : configuration index (see above)

Y-reg : offset for the address

Before calling FETCH, place the two byte address of the memory

location to be read into a zero-page location. Then pass the address of the

zero-page location into the Accumulator.

The following example program reads from address $1000 in bank 1:

LDA #$00 /LOW BYTE OF $1000

145

Abacus Software C-128 Internals

LDA #$00 ;LOW BYTE OF $1000

STA $FC /IN ZERO PAGE

LDA #$10 ;HIGH BYTE OF $1000

STA $FD ;IN ZERO PAGE

LDA #$FC ;ADDRESS IN ZERO PAGE

LDY #$00 /OFFSET IS ZERO

LDX #$01 /SELECT RAM BANK 1

JSR $FF74 /FETCH—RETURN IN ACC.

After the call the accumulator returns the contents of the memory
address. The X-register contains the current configuration and the Y-register
remains unchanged.

7.3.1.2 STASH

The STASH routine is essentially the opposite of the FETCH routine.
Since you must pass in the accumulator the value to be stored, the
accumulator can no longer be used to pass the address of the zero-page
pointer. This is why you have to do "by hand" what the FETCH routine did
for you automatically.

Writing to the memory address $1000 in bank RAM looks like this:

LDA #$00 /LOW BYTE OF $1000

STA $FC /IN ZERO PAGE

LDA #$10 /HIGH BYTE OF $1000

STA $FD /IN ZERO PAGE

LDA #$FC /ZERO PAGE ADDRESS OF THE POINTER

STA $02B9 /WRITE TO STASH ROUTINE

LDA #$FF /VALUE TO BE WRITTEN

LDX #$01 /RAM BANK 1

LDY #$00 /OFFSET FOR ADDRESS

JSR $FF77 /CALL STASH

After calling the STASH routine, the accumulator and the Y-register are

unchanged; the X-register contains the current configuration. .

The MMU register can be written in the same manner, without having

to change the configuration. The same applies to the I/O components.

146

Abacus Software C-128 Internals

7.3.1.3 CMPARE

The CMPARE routine compares the contents of a memory location with
the contents of the accumulator. To do this, you have to write the address of
the memory location to be compared into the CMPARE routine before
calling it. Comparing the memory location $1000 in bank 1 with the value
$22 would look like this:

LDA #$00 ;LOW BYTE OF $1000

STA $FC ;IN ZERO PAGE

LDA #$10 ;HIGH BYTE OF $1000

STA $FD ;IN ZERO PAGE

LDA #$FC /ADDRESS OF THE PTR IN THE ZERO PAGE

STA $02C8 ;WRITE TO CMPARE ROUTINE

LDA #$22 /VALUE TO BE COMPARED TO

LDX #$01 ;RAM BANK 1

LDY #$00 /OFFSET

JSR $FF7A /COMPARE ($1000) IN RAM 1 TO $22

After the routine has been called, the flags (zero, minus, and carry) are
set according to the comparison. The accumulator and the Y-register remain

unchanged, the X-register contains the current memory configuration.

7.3.2 GETCONF

This routine does nothing more than get the configuration byte from the

table at $FF70 corresponding to the configuration index in the X-register.
This value is simply returned; it is not set. Since the kernal ROM must be

enabled in order to jump to this routine, it's recommended that you read the

configuration byte from the table; it goes faster.

LDX #$0F /SELECT CONFIGURATION 15

JSR $FF6B /GETCONF

STA $FF00 /SET CONFIGURATION

would be the same as:

LDX #$0F /SELECT CONFIGURATION 15

LDA $F7F0,X /GET CONFIGURATION BYTE

STA $FF00 /SET CONFIGURATION

147

Abacus Software C-128 Internals

The length of the routine is the same-it can be shortened by doing it

directly (without the X-register):

LDA $F7F0 + $0F

7.3.3 JSRFAR and JMPFAR

If, for example, you have blocked out part of the ROM and want to
jump to a kemal routine, you can do this via the JSRFAR routine. Here the
CPU registers are not used for passing parameters but the zero-page

addresses $02 to $09.

$02 Configuration index

$03, $04 New PC - jump address

$05 New processor status

$06 Accumulator

$07 X-register

$08 Y-register

$09 SP - stack pointer

The corresponding values are found at $05 as the output parameters.

Let us assume that we have configuration 1 enabled-that is, only RAM 1.
We want to determine the contents of address $0400 in RAM bank 0 (the
left-hand corner of the 40-character screen). We must use the FETCH

routine for this. For example:

LDA #$7F /ENABLE RAM 1 AND KERNAL

STA $FF00 ;INTO CONFIGURATION REGISTER

LDA #$0F /CONFIGURATION IDEX KERNAL & RAM 0

STA $02 /PASS

LDA #$FF /HIGH BYTE OF $FF74

STA $03 "PASS

LDA #$74 /LOW BYTE OF THE DESTINATION ADDRESS

STA $04 /PASS $FF74

LDA #$00 /LOW BYTE OF $0400

STA $FC /SAVE

LDA #$04 /HIGH BYTE OF $0400

SAT $FD /PASS

LDA #$FC /ZERO-PAGE ADDRESS OF THE POINTER

STA $06 /AND PASS

LDA #$00 /ADDRESS RAM BANK 0

148

Abacus Software C-128 Internals

LDA #$00 /VALUE FOR Y-REGISTER FOR FETCH

STA $08 ;SAVE OFFSET

JSR $FF6E /CALL JSRFAR

LDA $0 6 /HERE IS THE VALUE FROM $0400 IN

RAM 0

A lot of parameters to pass, right? First it's very important to ensure

that the kernal range $C000 to $FFFF is enabled. No RAM may be

addressed here or the JSRFAR routine will hang up (even if you call the

JSRFAR routine directly at $02CD--it simply branches back to the kernal).

So you should always check this before calling JSRFAR, which we do in

our example routine first. RAM bank 1 is enabled by the byte $7F and all
memory areas except for $C000 to $FFFF are switched to RAM. Then the

new configuration register is defined.

The second important point: The program counter PC is defined with

the high byte at address $03 and the low byte at address $04; note that this

is not the usual machine language convention.

All specifications that are not absolutely necessary can be omitted.

Usually all that is required is to define the memory configuration in $02 and
then the new program counter in $03/$04. All the others are options which

may be useful at various times.

The routine JSRFAR writes the corresponding values at addresses $05
to $09 when it returns. In our example, use is also made of parameter

passing in the accumulator.

We now want to show you another short example. Imagine that you

have program code in RAM bank 0 as well as RAM bank 1. This first

routine is the "subroutine" in bank 1 which in our example does nothing

more than add the accumulator and X-register. The carry is indicated in the

carry flag. Enter the routine in the monitor with A 12000. You then select

RAM bank 1.

12000

12002

12003

12005

LDA

CLC

ADC

RTS

$06

$07

,-ACC PARAMETER

/CLEAR CARRY FOR ADDITION

;ADD TO X REGISTER

;END OF THE ROUTINE

The routine gets the contents of the accumulator from address $06 and

then adds it to the X-register. The contents of the accumulator are returned

in address $06. In this example it is important that the processor status

149

Abacus Software C-128 Internals

in address $06. In this example it is important that the processor status
register, containing the flags, is passed to address $05. In the main program

the carry flag can be tested with BCC or BCS. But here is the routine in
RAM bank 0, which calls the routine in RAM bank 1 by means of the
JSRFAR routine:

RAM 0 AND KERNAL

SET AS CONFIGURATION

RAM 1 AND KERNAL

NEW CONFIGURATION

ACC IS $20

PASS

ADD $FF

PASS

HIGH BYTE OF $2000

PASS AS PC

LOW BYTE OF $2000

PASS AS PC

CALL JSRFAR

GET FLAGS

ON STACK

AND IN FLAG REGISTER

LOW BYTE OF ADDITION

STORE AS LOW BYTE

HIGH BYTE

STORE

NO CARRY, THEN JUMP

COMPENSATE FOR CARRY

TO MONITOR

When you enter and start this routine, you will find the result of the

addition $FF+$20 = $11F at address $FD/$FE. This routine shows how to

get the flags which are passed in memory location $05 actually into the
status register: Load the accumulator with the contents of $05, push it onto

the stack, and then pull it into the status register.

The JMPFAR routine works the same way as JSRFAR. Here however

there is no return via RTS, but that is also why this routine is called

JMPFAR. Naturally, no output parameters can be checked since there is no

return.

02000

02002

02005

02007

02009

0200B

0200D

0200F

02011

02013

02015

02017

02019

0201C

0201E

0201F

02020

02022

02024

02026

02028

0202A

0202C

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

JSR

LDA

PHA

PLP

LDA

STA

LDA

STA

BCC

INC

BRK

#$3F ;

$FF00 ;

#$0D ;

$02

#$20 ;

$06

#$FF ;

$07

#$20 ;

$03

#$00 ;

$04

$FF74 ;

$05

f

■

$06 ;

$FD ;

#$00 ;

$FE ;

$202C ;

$FS ;
•

150

Abacus Software C-128 Internals

7.4 The Important Kernal Routines

7.4.1 Kernal routines with vectors at $FF4D

First we want to look at the kernal routines defined via jump vectors at

address $FF4D. These include the most important routines, from input and

output of characters to the RS-232 routines.

The routines are introduced in the order of their definition at $FF4D.

Whenever possible, the input/output parameters are given, as well as a short

description. Where appropriate, a short example routine accompanies the

description. The entry addresses are given in both decimal (in parentheses)

and hexadecimal.

When vectors are present, you should always use them to access the

routine-it's why they are there. Should the operating system ever be

changed or extended, the location of these vectors will not be changed so

your program will not crash or go crazy.

C64 MODE

Purpose: Enable the 64 mode

Address: $FF4D (65357)

Description: A jump to this routine causes the computer to switch from the

128 mode to the 64 mode. The clock frequency is reduced to 1MHz and the
MMU locks all of the necessary registers so that they cannot be manipulated
in the 64 mode. There is no return!

Input parameters: None

Output parameters: -none, since no return-

151

Abacus Software C-128 Internals

DMA-CALL

Purpose: Initialize external RAM components

Address: $FF50 (65360)

Description: In order to have direct memory access (DMA) to external

RAM, it must be first initialized with this routine. The new configuration is

passed in the X-register.

Input parameter: .X

Output parameters:

BOOTCALL

Purpose: Boot the disk

Address: $FF53 (65363)

Description: When this routine is called, the computer attempts to boot from

the disk inserted in the drive~the same as when the computer is turned on.

If the routine cannot find a boot file, it returns control. The device address is

passed in the X-register so you can boot from device 8 or 9.

Input parameter: .X

Output parameters:

PHOENIX

Purpose: Cold start

Address: $FF56 (65366)

Description: Cold start the 128 mode. If a memory card is found in the
expansion cartridge, control is passed to this card. Otherwise an attempt is
made to boot the disk. Tabs, key definitions, etc. are all reset.

152

Abacus Software C-128 Internals

LKUPLA

Purpose: Search in the table for logical file number

Address $FF59 (65369)

Description: The routine searches in the table for the device and secondary

addresses of the logical file number given in the accumulator. The status

variable ST is set according to the results of the routine. If the logical file

number is found, the carry is cleared and the following parameters are

transmitted: A:LFN, X:device address, Y:secondary address. If the routine

does not succeed, the carry is set. Only logical file numbers opened with

OPEN can be found.

Input parameter: .A contains the LFN to find

Output parameters: Status ST at $90, .A, .X, .Y, carry

Zero-page address $B8 to $BA

Example:

;Search for LFN

LDA #$01 /SEARCH FOR LFN 1

JSR $FF59

BCS ERROR ;NOT OPENED—OUTPUT ERROR

TAX /LFN TO X

JSR $FF59 /CKOUT - SET FILE AS OUTPUT FILE

LKUPSA

Purpose: Search for a secondary address

Address: $FF5C (65372)

Description: This routine looks in the table of opened channels for the

secondary address passed in the Y-register. As for the LKUPLA routine,

the carry flag is set if the search failed. The carry is cleared if the search

succeeded and the accumulator contains the LFN, the X-register contains

the device address, and the Y-register the secondary address.

Input parameters: .Y contains the SA to search for

Output parameters: Status ST at $90, .A, .X, .Y, carry

Zero-page addresses $B8 to $BA

153

Abacus Software C-128 Internals

Example:

/Search for LFN of disk command channel

LDY #$0F ;SEARCH FOR LFN WITH

JSR $FF5C /SECONDARY ADDRESS 15

BCS ERROR /NOT FOUND, RETURN ERROR

TAX /LFN TO X

JSR CKOUT /OPEN AS OUTPUT DEVICE

JSR INITD /INITIALIZE DISKETTE

SWAPPER

Purpose: Switch 40/80 columns

Address: $FF5F (65375)

Description: This routine exchanges the 40/80 column mode. The
information in the zero page for the active screen must be exchanged with
that of the passive screen. The memory range $E0 to $FA is exchanged with

the area $0A40 to $0A5A. No input parameters are necessary.

Example:

/Clear both screens

JSR $C142 /CLEAR SCREEN

JSR $FF5F /EXCHANGE 40/80 COLUMN MODE

JSR $C142 /CLEAR PASSIVE SCREEN TOO

JSR $FF5F /BACK TO CURRENT SCREEN

DLCHR

Purpose: Copy the CHARROM

Address: $FF62 (65378)

Description: The character set is copied into the VDC RAM when the
<40/80 DISPLAY> key is pressed because the 80-column controller does
not get the character information from ROM. The graphics package, for
example, makes use of this routine because the character set in VDC RAM
is overwritten when graphics are used. The character set selected by the
<40/80 DISPLAY> key and is copied into VDC RAM by this routine.
There are neither input nor output parameters.

154

Abacus Software C-128 Internals

PFKEY

Purpose: Redfineakey

Address: $FF65 (65381)

Description: This routine allows you to define the function keys (Fl to F8
as well as SHIFT/RUN-STOP and HELP). The address in the zero page
which points to the KEY text is passed in the accumulator. The X-register

contains the number of the function key (1 to 10) and Y contains the length
of the string. Then you can call the routine PFKEY, which inserts this

siring into the table.

Input parameters: Zero page, .A, .X, .Y

Example: (at address $2100)

/Redefine the HELP key

LDA #$00 ;L0W BYTE OF $2000

STA $FC /STORE IN ZERO PAGE

LDA #$20 /HIGH BYTE OF $2000

STA $FD /STORE IN ZERO PAGE

LDA #$FC /POINTER

LDX #$0C /REDEFINE HELP KEY

LDY #4 /LENGTH OF STRING AT $2000

JSR $FF65 /REDFINE KEY

And at address $2000:

02000 52 55 4E 0D

SETBNK

Purpose: Define memory bank for disk operation

Address: $FF68 (65384)

Description: This routine must be called before LOAD, SAVE, VERIFY,

and every OPEN command. The configuration index of the filename is
passed to it in the Y-register, as well as the configuration index of the

memory area to be processed in the accumulator. The Y-register is stored in
zero-page address $C6 and the accumulator in $C7. See also the example
for SETNAM (FFBD).

Input parameters: .A, .Y

155

Abacus Software C-128 Internals

GETCONF

Purpose: Get the configuration byte

Address: $FF6B (65387)

Description: There is a table of 16 of the memory configurations required

for normal operation. This table is found at address $F7F0. You pass the

configuration index to this routine in the X-register and you get the

configuration byte back in the accumulator. Normally this byte is then

written in the configuration register at address $FF00 of the MMU.

Input parameter: .X

Output parameter: .A

Example:

;Set RAM bank 1

LDX #$01 ;ONLY RAM BANK 1

JSR $FF6B ;GET CONFIGURATION BYTE

STA $FF00 ;AND SET

JSRFAR

Purpose: Jump to a subroutine in any bank

Address: $FF6E (65390)

Description: The routine JSRFAR is used to jump to a subroutine in any

configuration. The parameters are passed through zero-page locations $02
to $09. After the routine returns, the old configuration is re-enabled. A

precise description including example program is found in Section 7.3.3.

Input parameters: Zero page $02 to $09
Output parameters: Zero page $05 to $09

JMPFAR

Purpose: Jump to any bank

Address $FF71 (65393)

Description: Here again the parameters are passed through zero-page
addresses $02 to $09. JMPFAR is not a subroutine call but just a jump to an

156

Abacus Software C-128 Internals

address in a bank; JMPFAR combines switching the configuration byte with

the jump. Since there is no return here, no parameters are returned. You can

find more about this routine in Section 7.3.3.

Input parameters: Zero page $02 to $09

INDFET

Purpose: Get a byte from any bank

Address: $FF74 (65396)

Description: This routine, completely contained in the zero page, allows you
to read any memory address in any configuration without having to change

the current configuration. To do this you must first define a pointer in a
zero-page address to the memory location to be read. This zero-page
address is then passed in the accumulator, while the configuration index is
passed in the X-register and the offset to the zero-page pointer in the
Y-register. You can find more information about the FETCH (=INDFET),

STASH, and CMPARE routines in Section 7.3.1.

Input parameters: .A, .X, .Y, 1 zero-page address

Output parameter: .A

Example:

;Get $1000 from RAM bank 1

LDA #$00 ;LOW BYTE OF $1000

STA $FC /STORE IN ZERO PAGE

LDA #$10 /HIGH BYTE OF $1000

STA $FD /STORE IN ZERO PAGE

LDA #$FC /POINTER IN ZERO PAGE

LDX #$0D /RAM 1 AND KERNAL

LDY #$00 /OFFSET IS ZERO

JSR $FF74 /GET BYTE FROM $1000, RAM BANK 1

INDSTA

Purpose: Store accumulator in any bank

Address: $FF77 (65399)

Description: Similar to the INDFET routine, this routine stores the contents
of the accumulator in any memory configuration. The parameters must be

157

Abacus Software C-128 Internals

passed in the accumulator, and the X and Y registers. The character to be
stored must be passed in the accumulator. The zero-page address at which

the pointer is stored must be defined at address $02B9. You can get more
detailed information about this routine in Section 7.3.1.

Input parameters: .A, .X, .Y, zero page, $02B9

Example:

/Store $FF at $1000 in RAM bank 1

LDA #$00 /LOW BYTE OF $1000

STA $FC /STORE

LDA #$10 /HIGH BYTE OF $1000

STA $FD /STORE

LDA #$FC /ADDRESS IN ZERO PAGE

STA $02B9 /PASS TO INDSTA ROUTINE

LDA #$FF /VALUE TO BE WRITTEN

LDX #$0D /RAM 1 AND KERNAL

LDY #$00 /OFFSET IS ZERO

JSR $FF77 /CALL INDSTA

INDCMP

Purpose: Compare the accumulator with memory in any bank

Address: $FF7A (65402)

Description: This routine compares the accumulator with any memory

location in any bank. Just as with the INDSTA routine, you must pass the

address of a zero-page pointer to the INDCMP routine. This is done at

address $02C8. The byte to be compared is passed in the accumulator while
the configuration index is passed in X and the offset in the Y-register. After

calling the routine, the result of the comparison~the processor status

byte-is found at address $05. The example below shows how you can react

accordingly to the result of the comparison. More information is in Section

7-3.1.

Input parameters: .A, .X, .Y, zero page, $02C8
Output parameters: $05 (status)

Example:
/Compare <acc> with <$1000> in bank 1

LDA #$00 ;LOW BYTE OF $1000

STA $FC /STORE

158

Abacus Software C-128 Internals

LDA #$10 ;HIGH BYTE OF $1000

STA $FD ;STORE

LDA #$FC ;POINTER IN ZERO PAGE

STA $02C8 ;PASS TO INDCMP ROUTINE

LDA #$FF /COMPARISON OPERAND

LDX #$0D ;RAM BANK 1 AND KERNAL

LDY #$00 /OFFSET

JSR $FF7A ;CALL INDCMP

LDA $05 ;GET STATUS (RESULT OF COMPARE)

PHA ;ON STACK AND THEN

PLP ;IN PROCESSOR STATUS REGISTER

BEQ EQUAL /JUMP IF EQUAL

/ NOT EQUAL

PRIMM

Purpose: Output text

Address: $FF7D (65405)

Description: This routine is very practical because it's simple to use. No
parameters need be passed. All characters following the call are sent to the

current output device via BSOUT. A zero-byte is used as the terminating

character. The program execution is then continued immediately following

the zero-byte. One disadvantage of this routine: The program will be
unreadable if it is disassembled.

Example:

JSR $FF7D /OUTPUT FOLLOWING CHARACTER

•ASC "This is a string!"

.BYT $0D,$0A,$0D,$00

LDA #$00 /THE PROGRAM CONTINUES HERE

See also the example in the ROM listing at $F908.

CINIT

Purpose: Initialize video controller and editor

Address: $FF81 (65409)

Description: The function keys are returned to the defaults, both video

controllers are initialized and the 40/80 column mode is enabled dependent

159

Abacus Software C-128 Internals

on the 40/80 column key. The keyboard buffer is cleared, all flags are reset,

and a CLRCH is performed.

IOINIT

Purpose: Initialize the input/output device

Address: $FF84 (65412)

Description: The input/output devices are initalized, meaning that the
RESET line on the serial bus is activated. Any printers connected are set to

their initial states and the disk drive clears its channels-it is like it had just

been turned on.

RAMTAS

Purpose: BASIC warm start

Address: $FF87 (65415)

Description: This routine initializes the zero page, resets the pointers for
SYSTOP and SYSBOT (the memory upper and lower boundaries), resets

the pointers for the RS-232 input/output buffers, and resets the cassette

buffer.

RESTOR

Purpose: Initialize system vectors

Address: $FF8A (65418)

Description: The system vectors at address $0314 to $0332 (inclusive) are
set to the default values. This routine should be called when you modified
many of the vectors and want to set them back. This routine calls the

following VECTOR routine with the carry cleared.

160

Abacus Software C-128 Internals

VECTOR

Purpose: Copy or reset system vectors

Address: $FF8D (65421)

Description: This routine copies the 16 vectors at $0314 to the address

defined by the X (low) and Y (high) registers, provided the carry flag is set.

If the carry flag is cleared, the vectors at $0314 are loaded with the area

given by the X and Y registers.

Input parameters: .X, .Y, carry

Example:

LDX #$00 ;LOW BYTE OF $1000

LDY #$10 /HIGH BYTE OF $1000

CLC /CLEAR CARRY FOR COPY ($1000)->($0314)

JSR $FF8D /LOAD VECTORS

SETMSG

Purpose: Enable/disable DOS messages

Address: $FF90 (65424)

Description: The routine stores the value of the accumulator in the zero-page

address $9D. If system messages should be printed, set bit 7 of the

accumulator. If $9D is positive, system messages are inhibited.

Input parameter: .A

SECND

Purpose: Send secondary address to LISTEN

Address: $FF93 (65427)

Description: The secondary address to be sent is passed in the accumulator.

The routine outputs the contents of the accumulator on the serial bus as the

secondary address.

Input parameters: .A

161

Abacus Software C-128 Internals

Example:

;SEND LISTEN

LDA #$F0 /SECONDARY ADDRESS 0 FOR CLOSE

JSR $FF93 ;SET SECONDARY ADDRESS

TKSA

Purpose: Send secondary address to TALK

Address: $FF96 (65430)

Description: This routine sends the secondary address given in the

accumulator on the bus preceded by a TALK signal.

Input parameter: .A

MEMTOP

Purpose: Set/get the memory top

Address: $FF99 (65433)

Description: If the carry flag is set, the maximum available memory location

is returned in the X-register (low) and Y-register (high). If the routine is

called with the carry cleared, the memory top is set with the two registers.

Input parameters: .X, .Y (for cleared carry), carry

Output parameters: .X, .Y (for set carry)

Example:

;Read the memory top

SEC /READ THE TOP

JSR $FF99 ;GET TOP

STX $FC /STORE

STY $FD /STORE

LDX #$00 /LOW BYTE OF $1000

LDY #$10 /HIGH BYTE OF $1000

CLC /FLAG TO SET MEMTOP

JSR $FF99 /SET MEMORY TOP

162

Abacus Software C-128 Internals

MEMBOT

Purpose: Set/get the memory bottom

Address: $FF9C (65436)

Description: Similar to MEMTOP, the lower boundary of the available

memory is set with the two registers X (low) and Y (high) if the carry flag

is cleared. If the carry flag is set, the memory bottom is read and returned in

the two registers.

Input parameters: .X, .Y (for cleared carry), carry

Output parameters: .X, .Y (for set carry)

KEY

Purpose: Return key pressed

Address: $FF9F (65439)

Description: This routine is elementary to keyboard decoding. The keyboard

is checked for a pressed key by means of the keyboard decoding table. If a

pressed key is returned, the ASCII value is determined and placed into the

keyboard buffer at ($034A).

SETTMO

Purpose: Set the time-out flag for IEEE

Address: $FFA2 (65442)

Description: The routine saves the value passed in the accumulator at

address $0A0E as the timeout flag for the IEEE routines. In order to permit

the timeout in the IEEE routines, bit 7 of the accumulator must be set

Input parameters: .A

163

Abacus Software C-128 Internals

ACPTR

Purpose: Get a byte from the serial bus

Address: $FFA5 (65445)

Description: The routine gets a byte from the serial bus. This character is

returned in the accumulator. The status byte ST at $90 is set according to the
action.

Output parameter: .A

CIOUT

Purpose: Output a character to the serial bus

Address: $FFA8 (65448)

Description: This routine is counterpart of ACPTR. The character passed in

the accumulator is output on the serial bus. Here too the status byte ST at

$90 is changed according to the action.

Input parameter: .A

UNTLK

Purpose: Send UNTALK on the serial bus

Address: $FFAB (65451)

Description: This routine is called when closing or redirecting an input

channel. It silences a "talking11 device.

UNLSN

Purpose: Send UNLISTEN on the serial bus

Address: $FFAE (65454)

Description: Corresponding to UNTALK, this routine shuts off a receiving

device. This is done when closing or redirecting an output channel.

164

Abacus Software C-128 Internals

LISTN

Purpose: Send LISTEN to a device

Address: $FFB1 (65457)

Description: A device on the serial bus is requested for input. The LISTEN

signal is sent over the serial bus to do this. The device address of the

appropriate device is passed in the accumulator. For example, a LISTEN is

sent to a printer before characters are sent to it over the serial bus. If you use

LISTEN, you must output the characters via the routine CIOUT (not via

BSOUT!). Use the routine UNLISTEN to close the channel. Only one

device may be active on the serial bus. To simplify all this, you can open

and close channels in the operating system. BSOUT and BASIN then take

care of sending LISTEN and UNLISTEN as well as TALK and UNTALK.

Input parameter: .A

Example:

;Send LISTEN to printer

LDA #$24 /DEVICE ADDRESS FOR PRINTER AND

LISTEN ON

JSR $FFB1

TALK

Purpose: Send TALK to a device

Address: $FFB4 (65460)

Description: This routine sends the command TALK to a device. The device

address is to be passed in the accumulator. The TALK command requests a

device connected to the serial bus for talking, i.e. for sending information.

Input parameters: .A

165

Abacus Software C-128 Internals

READST

Purpose: Get the I/O status byte

Address $FFB7 (65463)

Description: The current system status is returned in the accumulator. If the
RS-232 is active, the status byte is returned and immediately cleared in

memory. If you need the status byte more often, save it somewhere. If a

channel other than the RS-232 channel is open, the status byte is returned in
address $90.

Output parameter: .A

SETLFS

Purpose: Set file parameters

Address: $FFBA (65466)

Description: This routine is required to open a file. The logical file number

is passed in the accumulator, the device address in the X-register, and the

secondary address in the Y-register. The routine stores these values in the

zero-page addresses from $B8 to $BA.

Input parameters: .A, .X, .Y

SETNAM

Purpose: Set the filename parameters

Address: $FFBD (65469)

Description: Information for the filename is stored in the zero page in this

routine. These specifications must all be made before the channel is opened.

The length of the filename is passed in the accumulator, the low byte of the

address at which the filename is stored in the X-register, and the high byte

in the Y-register. Furthermore, you must pass with the SETBNK routine

the configuration indices for the filename and the memory range to be
processed.

Input parameters: .A, .X, .Y

166

Abacus Software C-128 Internals

Example:

;Open one of the directory files on the disk

LDA #$0C /AREA IN RAM BANK 0

TAX /FILENAME ALSO IN RAM BANK 0

JSR $FF68 /CALL SETBNK

LDA #$01 /LOGICAL FILENUMBER

LDX #$08 /DEVICE ADDRESS

LDY #$00 /SECONDARY ADDRESS FOR READING

JSR $FFBA /SETFLS

LDA #$01 /LENGTH OF THE FILENAME

LDX #$00 /LOW BYTE OF THE ADDRESS AT WHICH

LDY #$10 /THE FILENAME IS STORED ($1000)

JSR $FFBD /OPEN - OPEN THE CHANNEL

and at address $1000:

01000 24

OPEN

Purpose: Open a file

Address: $FFC0 (65472)

Description: The file defined by the routines SETNAM, SETLFS, and

SETBNK is entered into the list of logical file numbers. Not until this is

done can the logical file number be used for the routines CKOUT and

CHKIN. A maximum of nine files can be open at one time.

CLOSE

Purpose: Close a logical file

Address: $FFC3 (65475)

Description: The logical file specified in the accumulator is closed. All

stored values like the device address, secondary address, etc. are erased
from the table. If an error is encountered, the carry flag will be set.

Input parameter: .A

Output parameter: carry

167

Abacus Software C-128 Internals

Example:

/Example for CLOSE

LDA #$01 ;CLOSE THE EXAMPLE FILE FROM SETNAM

JSR $FFC3 /CALL CLOSE

BCS ERROR /ERROR ENCOUNTERED

CHKIN

Purpose: Define a logical file as the input channel

Address: $FFC6 (65478)

Description: The logical file number to be used as the input channel is

passed in the X-register. The given logical file number must have already

been opened with the OPEN command If the BASIN routine is called after

the OPEN command, the input is not done from the keyboard but from the

opened file; this can be from the disk drive. It should be noted that no

CHKIN is required when reading from the keyboard because it is the

standard input device. After a CLOSE or CLRCH, the keyboard is

automatically again the input device. The carry flag is also used as the OK

flag for this routine.

Input parameter: .X

Output parameter: carry

Example:

/Read the directory

JSR DIROP /OPEN 1,8,0,"$" (SELF-DEFINED ROUTINE)

LDX #$01 ;LFN OF THE OPENED FILE

JSR $FFC6 /EXECUTE CHKIN

JSR $FFCF /BASIN—GET CHARACTER

CKOUT

Purpose: Define a logical file as the output file

Address: $FFC9 (65481)

Description: This routine defines a file passed in the X-register as the output

file. It must have been previously opened properly. A file opened with

OPEN 1,8,0,"$" and then defined as the output file with CKOUT would
result in an error because this file was opened for reading and not for

writing. After defining an output file, the screen is no longer the output

168

Abacus Software C-128 Internals

device ~ the output file is. All characters output via BSOUT are sent to this

device. The carry flag is used to indicate an error. If it is cleared, the

operation was successful.

Input parameters: .X

Output parameters: carry

CLRCH

Purpose: Close input/output channel

Address: $FFCC (65484)

Description: This routine clears any input or output files defined with

CHKIN and/or CHKIN. An UNTALK is sent to the input device and

UNLISTEN is sent to the output device. The screen again becomes the

output device and the keyboard the input device. The files are not closed.

Neither input nor output parameters are passed.

BASIN

Purpose: Get a character from the input channel

Address: $FFCF (65487)

Description: The file opened and defined as the input file by CHKIN

(otherwise the keyboard) returns a character in the accumulator.

Output parameter: .A

BSOUT

Purpose: Output a character to the output channel

Address: $FFD2 (65490)

Description: The character passed in the accumulator is sent to the open file
defined as the output file by CKOUT. If the screen is the output file
(default), the ASCII character is converted to a printable POKE code (This
is an extensive procedure. Those interested should look at the appropriate

code in the C range of the kernal).

169

Abacus Software C-128 Internals

Input parameter: .A

Example:

;Switch the 40/80 column mode

LDA #$1B ;<ESC>

JSR BSOUT ;$FFD2, OUTPUT CHARACTER

LDA #"X" ;<ESOX TO EXCHANGE THE SCREEN STATUS

JSR BSOUT ;OUTPUT

(There is also a special routine to which you can jump.)

LOADSP

Purpose: Load a file into memory

Address: $FFD5 (65493)

Description: Before a file can be loaded with LOADSP, the device,

secondary address, filename, etc. must be defined by the routines SETLFS,

SETNAM, and SETBNK. The address at which the file is to be loaded is

passed in the X (low) and Y (high) registers.

Input parameters: .X, .Y

Example:

;Load an overlay

JSR PREP ;SETLFS, SETBNK, SETNAM, ETC.

LDX #$00 ;LOW BYTE OF $1000

LDY #$10 ;HIGH BYTE OF $1000 (LOAD ADDRESS)

JSR $FFD5 /LOAD FILE AT $1000

SAVESP

Purpose: Save memory to a file

Address: $FFD8 (65496)

Description: This routine saves a memory range to a file (disk, cassette). As
with the LOADSP routine, you must first define the device address,
secondary address, RAM bank, filename, etc. with the routines SETBNK,
SETLFS, and SETNAM. The zero-page address at which the start address
of the area to be saved is stored and passed in the accumulator. The end
address of the range is passed in the X (low) and Y (high) registers.

170

Abacus Software C-128 Internals

Input parameters: .A, .X, .Y, zero page

Example:

;Save the range $1000 to $1100

JSR PREP ;CALL SETLFS, SETNAM, SETBNK

LDA #$00 ;LOW BYTE OF $1000

STA $FC /STORE IN ZERO PAGE

LDA #$10 /HIGH BYTE OF $1000

STA $FD /STORE IN ZERO PAGE

LDA #$FC /THE POINTER IS LOCATED IN $FC

LDX #$00 /LOW BYTE OF THE END ADDRESS $1100

LDY #$11 /HIGH BYTE OF THE END ADDRESS $1100

JSR $FFD8 /SAVESP—SAVE THE RANGE $1000-$1100

SETTIM

Purpose: Set the system clock TI

Address: $FFDB (65499)

Description: This routine sets the system clock TI, which is defined at
address $A0. This clock is controlled by the kernal IRQ routine and is not
very accurate. If want an accurate clock, use the timers in the two CIAs (see
Chapter 3). The high-order byte of the 24-hour clock is passed in the

Y-register.

Input parameters: .A, .X, .Y

Example:

/Reset the system clock

LDA #$00 /RESET MEANS

TAY /SET TO 0,0,0

TAX /ALL THREE REGISTERS TO ZERO

JSR $FFDB /SETTIM

RDTIM

Purpose: Read the system clock

Address: $FFDE (65502)

Description: This routine reads from the 24-hour clock and passes the three
bytes in registers Y (highest-order), X, and the accumulator (lowest).

171

Abacus Software C-128 Internals

Output parameters: .A, .X, .Y

Example:

;Read the 24-hour clock

JSR $FFDE ;CALL RDTIM

STY $FC /STORE MSB

STX $FD /STORE MIDDLE BYTE

STA $FE /STORE LSB

STOP

Purpose: Poll the STOP key
Address: $FFE1 (65505)

Description: If the STOP key was pressed since the last IRQ call, the zero
flag will be set and a CLRCH will be executed. If the STOP key was not
pressed, the zero flag will be cleared.

Output parameters: zero flag

Example:

/Check for STOP

JSR $FFE1 /STOP KEY PRESSED

BEQ YES /PRESSED

GETIN

Purpose: Get a character from the keyboard buffer or RS-232
Address: $FFE4 (65508)

Description: Gets a character from the defined input file. If no character is
ready, the accumulator is returned with zero.

Output parameter: .A

172

Abacus Software C-128 Internals

CLALL

Purpose: Close all open files

Address: $FFE7 (65511)

Description: All of the files opened with OPEN are closed, actually CCALL
deletes the files by clearing the table index-no CLOSE is actually
performed. This can be particularly annoying for open disk files (WRITE

FILE OPEN ERROR results). After erasing the logical files, a CLRCH is

executed. CLALL should therefore be used with caution.

UDTIM

Purpose: Update system clock

Address: $FFEA (65514)

Description: This routine is usually called by the IRQ routine. The

three-byte 24-hour clock is incremented by one unit.

SCRORG

Purpose: Get the size of the current window

Address: $FFED (65117)

Description: The routine SCRORG gets the current window values in the

registers. After the call, the accumulator contains the maximum column

number, the number of lines in the window is found in the Y-register, and

the X-register contains the number of columns in the window.

Output parameters: .A, .X, .Y

PLOT

Purpose: Get/set cursor position

Address: $FFF0 (65120)

Description: The cursor position is either fetched or set based on the

condition of the carry flag. The X and Y registers are the communication

registers. The Y-register defines the line (the first line in the window is

173

Abacus Software C-128 Internals

zero) and the X-register the column of the cursor. If the carry flag is set, the
current cursor position in the window is returned in the X and Y registers.

Input parameters: .X, .Y, carry

Example:

/Set an asterisk in the middle of the window

JSR $FFED /CALL SCRORG

/COLUMN NUMBER TO ACC

/DIVISION BY TWO (MIDDLE)

/AND AS COLUMN BACK TO X

/LINE NUMBER TO ACC

/DIVISION BY TWO (MIDDLE)

/AND AS LINE TO Y

/CLEAR CARRY=SET CURSOR POSITION

/SET CURSOR POSITION

/LOAD ACC WITH ASTERISK

/AND OUTPUT

TXA

LSR

TAX

TYA

LSR

TAY

CLC

JSR

LDA

JSR

IOBASE

A

A

$FFF0

$FFD2

Purpose: Get the base address of the I/O area

Address: $FFF3 (65123)

Description: The address of the input/output area is returns in the X (low)

and Y (high) registers. This address is always $D000 for the 128. For later

expansions or movements, we advise you in order to maintain compatibility
to integrate this routine into the software and make reference to it

Output parameters: .X, .Y

Example:

/Start of the program

JSR $FFD3 /IOBASE

STX $FD /STORE LOW BYTE

STY $FE /STORE HIGH BYTE

This address is referenced in the program as follows:

STA ($FD),Y /IN I/O AREA

174

Abacus Software C-128 Internals

7.4.2 Other useful kernal routines

There are some other routines in the kernal which can help save time

and program memory. These routines are found particularly in the $C000

block of ROM and are used for input/output on the two screens. Here are

some of the routines we feel are useful.

CLRWIN

Purpose: Clear the window (screen)

Address: $C142 (49474)

Description: If no window is defined, the entire screen is cleared. If a

window is defined, only the screen area inside the boundaries of the

window is erased.

CURHOM

Purpose: Cursor to HOME position in window

Address: $C150 (49482)

Description: The cursor is positioned in the upper left-hand corner of the

window. If no window is defined, the cursor is placed in the upper

left-hand corner of the screen. Note that position 0/0 always defines the

upper left-hand corner of the window.

GETLIN

Purpose: Get an input character

Address: $C258 (49752)

Description: Characters are taken from the keyboard and displayed on the

screen at the current cursor position until the <RETURN> key is pressed.

175

Abacus Software C-128 Internals

BSOUT SCRN

Purpose: Output a character to the current screen

Address: $C72D (50989)

Description: This routine is the continuation of the BSOUT routine at

$FFD2. The routine is faster since it does not have all of the checks that are

built into BSOUT. The character is passed to the routine in the accumulator

and output to the currently active screen~at the current cursor position.

Input parameters: .A

CLQIR

Purpose: Clear the quote, insert, and reverse modes

Address: $C77D (51069)

Description: This routine clears the flags for the quote, insert, and reverse

modes. It works somewhat faster than outputting the necessary control

sequences via BSOUT.

Here is a list of other important routines and their address:

$C854 (51284) Cursor right in window

$C85A (51290) Cursor down in window

$C867 (51303) Cursor up in window

$C875 (51317) Cursor left in window

$C880 (51328) Enable second character set

$C8BF (51391) Clear RVS mode

$C8C1 (51393) Set RVS mode
$C8C7 (51399) Enable underlining

$C8CE (51406) Disable underlining

$C91B (51483) Delete character to the left of the cursor

$C93D (51517) Delete character under cursor

$C94F (51535) Jump to tab

$C980 (51584) Clear all tabs

$C98E (51598) BELL - create bell tone

$CA14 (51732) Cursor pos. defined left/top of window

$CA16 (51734) Cursor pos. defined right/top of window

$CA24 (51748) Define screen as window

$CA52 (51794) Clear current line

176

Abacus Software

$CA76
$CA8B

$CA9F

$CABC
$CAF2

$CAFE

$GB0B

$CB21

$CB3F

$CB48

$CC27
$CC2F

$CC4A

$CC6A

$CD2C

(51830)

(51851)

(51871)

(51900)

(51954)

(51966)

(51979)

(52001)

(52031)

(52040)

(52263)

(52271)

(52298)

(52330)

(52524)

C-128 Internals

Clear from cursor to end of line

Clear from start of line to cursor pos.

Clear from cursor pos. to end of screen

Scroll up

Enable block cursor

Enable underline cursor

Cursor flash off

Cursor flash on

Invert 80-column screen

80-column screen normal

<space> at current cursor position

Character <acc> at current cursor position

Output character <acc>, <X>:color, <Y>:column to

80-column screen (without moving the cursor)

Get/set cursor position

SWAPPER - switch 40/80-column

7.5 Tips & Tricks

Naturally, this section cannot replace our book Tips & Tricks, but we

want to explain to you the most important and/or useful things which we

have found out.

By use of these examples, you'll be able to see how to use the

documented zero-page and ROM listings—since the information ultimately

comes from these listings.

7.5.1 Disabling the STOP key

Frequently you may want to prevent the user from interrupting the

program by pressing the STOP key—in many situations this can be

dangerous if the STOP key is pressed accidentally.

To solve the problem, we look in zero page. Here, at address $0300 is

a table of jump commands for the most important kernal routines.

Practically speaking, this area is an interface between the programmer and

the operating system, because it allows the programmer to cause other

things to happen simply by redirecting the jump commands (usually to a

routine he writes).

177

Abacus Software C-128 Internals

The address for the kernal STOP routine is found at address $0328--it
points to $F66E. The current status of the STOP key is read from zero-page
address $91 at this address $F66E. Address $91 is always loaded with the
latest condition by the IRQ routine. If we skip this test, we achieve the

effect that pressing the STOP key is no longer recognized by the STOP test

routine. We need only modify the address at $0328. We write the low byte

of the address of the command following the STOP routine to this
address.We do this in BASIC with the following POKE:

POKE DEC("0328"),l 12 : REM DISABLE STOP KEY

The vector $0328/$0329 no longer points to $F66E but to $F670. The
operating system no longer recognizes the STOP key, not during a

program, nor while listing, or many other actions.

We have now done what we set out to do. There is a still a bug in the

system, however. If someone is clever enough to press the STOP and

RESTORE keys at the same time, our program will be interrupted anyway!

The STOP test routine at address $F66E is also called in the NMI routine,

though it does not use the vector $0328, so pressing the STOP key will be

recognized.

7.5.2 Disable STOP-RESTORE combination

If this combination is pressed on the keyboard, the NMI service routine

is called. NMI stands for Non-Maskable Interrupt-an interrupt is generated

which cannot be disabled with the SEI command.

But there is a vector for this routine also in the zero-page area. The

vector responsible for the NMI routine is found at address $0318 and points

to the NMI routine in the kernal at address $FAF0.

If you do not want a BASIC warm-start to be executed when the

STOP-RESTORE key combination is pressed, you must set the NMI vector

to the end of the NMI routine. It is advisable to set the vector to $FA62,

since this jumps to the IRQ return routine, reseting the registers and

executes an RTI.

The following BASIC command is necessary to redirect the NMI

routine:

178

Abacus Software C-128 Internals

POKE DEC("0318"),98 : REM REDIRECT NMI

After you have integrated this POKE command into your program
(together with the STOP-key disable) it is impossible for anyone to exit
your program unless they build a RESET switch on the user or expansion

port, but this too can be intercepted...

7.5J The IRQ vector

The IRQ routine in the kernal is called every 1/60 of a second. The CIA
is responsible for generating this interrupt with its timers. The vector for
the IRQ routine is found at address $0314 and normally points to the kernal
address $FA65. If you want to link into the IRQ routine, for your own
sprite control, or to change the border color every second, etc., in can be
done in this way.

Redirect the IRQ vector to your own routine and jump to the
"remaining" kernal IRQ routine after executing yours. But be careful when
you redirect the IRQ vector. The interrupts must be disabled when changing
the vector or the computer may crash.

Here is a short example program which changes the border color of the
40-column screen by one color code every 60th IRQ call.

;Disable interrupts

/Store low byte of new

/IRQ routine in vector

/Store high byte of new

/IRQ routine in vector

/Enable int. again

/Increment counter

/Get counter

/60 already?

/Not yet reached

/Increment border color

/And counter again

/Set to zero

/Remaining IRQ routine

This routine is enabled by calling the enable routine at address $2000.

This is done by:

179

02000

02001

02003

02006

02008

0200B

0200C

0200E

02010

02012

02014

02017

02019

0201B

78

A9

8D

A9

8D

58

E6

A5

C9

DO

EE

A9

85

4C

OC

14

20

15

FD

FD

3C

07

20

00

FD

65

03

03

DO

FA

SEI

LDA

STA

LDA

STA

CLI

INC

LDA

CMP

BNE

INC

LDA

STA

JMP

#$0C

$0314

#$20

$0315

$FD

$FD

#$3C

$201B

$D020

#$00

$FD

$FA65

Abacus Software C-128 Internals

SYSDEC("2000")

Now the color of the border is changed at regular intervals. This is one

example (even though trivial), of what you can do with the IRQ routine.

7.5.4 Disabling the BASIC interrupt

As we mentioned in the chapter on the VIC chip, it can be very

annoying when the interpreter is always getting in the way. There is a way

around this. The interrupts stop working if you tell the interpreter not to

jump to the BASIC IRQ routine. This can be done at address $0A04. If bit

0 is set, the BASIC IRQ routines for graphics and sound are executed. If

we clear this bit, these routines will no longer be executed and the sprites

will stop moving, etc.

This is a welcome option for all machine language programmers who

want to program the sprites themselves. The text/graphic mode is not

affected by all of this; it is still switched automatically. This is because this

switch occurs in the kernal IRQ routine. If, for example, you want to enable

the graphic mode, but don't want to use the BASIC commands, you must

either make corresponding changes in the zero-page addresses, or you must

sneak into the kernal routine.

To demonstrate the effect of this disabling, first define a sprite and

enable it:

SPRITE 1,1,2,0,1,1 : REM TURN SPRITE 1 ON

MOVSPR l,90#9 : REM MOVE SPRITE 1

Whatever your sprite may look like, it is now moving across the screen.

If you now try to write to the VIC registers and change the appearance or

the position of the sprite, you will see a brief flash on the screen and then

the sprite will do what it wants or what the operating system wants.

The sprites can be stopped once and for all by clearing bit 0 in address

$0A04. This is done with the following instruction:

POKE DEC("0A04"), PEEK(DEC("0A04")) AND 254

The sprite stops where it is and moves no further. Now the VIC chip

can be manipulated without interference.

180

Abacus Software C-128 Internals

7.5.5 Positioning the cursor

You will often want to position the cursor at a given location on the

screen/window from within BASIC. Unfortunately, there is no command

which does this. You can only set the graphic cursor at a position X,Y by

means of the LOCATE command. Of course this positioning is possible by

outputting cursor-movement codes, but this method is:

a) slow,

b) memory-consuming, and

c) cumbersome

We offer you a way of positioning the cursor by calling the kernal

routine that sets the cursor position. Normally the cursor line is passed in

the X-register and the column in the Y-register. You can also pass these

parameters as (optional) parameters in the SYS command.

As you can probably gather from the kernal listing, the routine for

setting the cursor position is found at address $CC6A. Since we want to set

the cursor position and not determine it, we can skip the carry-flag test at the

start of the routine. We will use address $CC6C as the entry point

The syntax for positioning the cursor looks like this:

BANK 15: SYS DEC(nCC6Cfl),,<line>,<column>

The first line and the first column in the window is line zero, column

zero. The two commas are required before the <line>.

As an example of how you can make use of this positioning routine,

take a look at the following program:

10 REM *** DEMO PROGRAM FOR CURSOR POSITIONING ***

30 CL=40-40*(PEEK(DEC("D7")):REM 40 OR 80 COL?

40 PRINT CHR$(147)/: REM CLEAR SCREEN

50 X=INT(RND(TI)*24): REM LINE

60 Y=INT(RND(TI)*CL): REM COLUMN

70 BANK 15: SYS DEC ("CC6C11) , , X, Y

75 PRINT "X"

80 GET G$: IF G$="" THEN 50

181

Abacus Software C-128 Internals

7.6 The Z-80

As you already know, there is a Z-80A built into your C-128. Most

Z-80 fans will be interested in finding out how to switch this processor on.

Here's a quick answer. The currently-active processor can be selected in bit

0 of the mode configuration register. If this bit 0 is set, the Z-80 is

activated. A set bit means that the 8502 is working. If one switches to the

Z-80 in this manner, the computer will never return from this mode.

In the C-128 there is a ROM containing 4K of Z-80 code. After

power-up or RESET this Z-80 code is executed, meaning that the Z-80 is

enabled. This ROM is located at $D000, but is mirrored down to $0000 for
the Z-80. After a RESET, the Z-80 begins its work at address $0000. This

ROM cannot be read by software.

In section 7.6.1 the first part of this ROM disassembled. We will not

present a complete listing. It should be noted that these 4K bytes do not

really have anything to do with CP/M itself, but only with booting CP/M.

After the configuration ($3E) has been selected, a test is made to see if

there is a cartridge (/GAME or /EXROM line set) in the expansion port. If

this is the case, control is passed to this cartridge. First, the 64 mode is

enabled and the 8502 is activated.

If there is no cartridge in the expansion port, the Commodore key is

tested. If you hold down the Commodore key during power-up or RESET,

the 64 mode is entered directly, without making a BOOT attempt and

without having to enter GO 64. If the Commodore key is not pressed, the

various memory areas are copied, in the common area at $FFD0. It should

be noted that the Z-80 as well as 8502 code is copied. After both routines

are copied, control is passed to the (just-copied) routine at $FFE0. In this
routine the 8502 is enabled and control is again passed to our "normal"

operating system. If the Z-80 is enabled by the programmer, processing

continues here (at address $FFEE). And it is precisely here that we find the

interface. If you replaces the RST 8 with a JMP command, the Z-80 can be

made to execute your own Z-80 program.

Let's go through a very simple example. We want to enable the Z-80

and change a memory location through Z-80 assembly language. This

machine language program is to be located at address $3000:

182

Abacus

3E

32

3E

32

C3

3F

00

IE

00

E0

Software

FF

22

FF

LD

LD

LD

LD

JMP

C-128 Internals

A,$3F /Select configuration

($FF00),A/Set configuration

A,$1E ;Any value

($2200),A/Write in mem loc $2200

$FFE0 /And enable the 8502 again

Well enter the Z-80 codes at address $3000 with the monitor. Use the

M command to do this.

M 3000

>03000: 3E 3F 32 00 FF 3E IE 32 00 22 C3 E0 FF

We must not forget to change the jump at $FFEE or otherwise the

(normal) RST 8 will be executed. A jump to our routine must be placed at

address $FFEE. We must insert the following three bytes at this address:

M FFEE

>FFEE: C3 00 30

Now we must write a routine in 8502 code which enables the Z-80 and

continues after the return from the Z-80 execution. The routine looks like

this:

SEI /Disable interrupts

LDA #$3E /Configuration byte

STA $FF00 /Store

LDA #$B0 /Enable Z-80 in the

STA $D505 /Mode configuration register

NOP /Delay (buffer)

BRK /End, return to monitor

Enter this routine with the assembler at address $2100. Set the memory

location $2200 to zero with the monitor and start the whole routine with:

G2100

The computer returns immediately to the monitor. Read memory

location $2200 and you will see that this address contains the value $1E.

183

Abacus Software C-128 Internals

7.6.1 The Z-80-ROM

Here is the first section of the Z-80 ROM, with comments:

** RST 00 (cold start)

0000: 3E 3E ld a, $3E Configuration byte(RAM,I/O)

0002: 32 00 ff ld ($ffoo),a In configuration register

0005: C3 3B 00 jp $003B Remainder of cold start

** RST 08

0008: 31 77 3C LD SP,$3C77

000B: 3E 3F LD A,$3F

oood: C3 8c oi jp $018C Remainder ofRST 08

** RST 10

Return address from stack

Low byte of the return address

Jump to RST 20 routine

Fill bytes

** RST 18

Return address from stack

Low byte of return address

Jump to RST 28 routine

Fill bytes

** RST 20

0020: 3A OF FD LD A,($FD0F)

0023: A7 AND A

184

0010:

0011:

0012:

0015:

0016:

0017:

El

6E

C3 20 00

00

00

00

POP

LD

JP

NOP

NOP

NOP

HL

L, (HL)

$0020

0018:

0019:

001A:

001D:

001E:

001F:

El

6E

C3 28 00

00

00

00

POP

LD

JP

NOP

NOP

NOP

HL

L,(HL)

$0028

Abacus

0024:

0026:

0027:

Software

28 02

2C

2C

JR

INC

INC

Z,$+4 >$0028

L

L

C-128 Internals

** RST 28

0028:

002A:

002B:

002C:

002D:

002E:

26 01

7E

23

66

6F

E9

LD

LD

INC

LD

LD

JP

H,$01

A, (HL)

HL

H, (HL)

L,A

(HL)

002F: 00 NOP

** RST 30

0030:

0032:

0033:

0036:

30

2F

31

38

35

32

35

2F

JR

CPL

LD

JR

NC

SP

c,

,$+55 >$0067

,$2F32

$+55 >$006D

** RST 38

0038: C3 fd fd jp $fdfd Continue RST 38 at $FDFD

** RST 0 Contn'd

Register 47 of VIC Chip

(keyboard)

Write $FF in the keyboard

No extension keys

Register 48=clock register

Set to $FC -> 1 MHz mode

Mode config. register

Test /EXROM and /GAME

Enable 128 mode

Mode config. register

Read again and negate

/EXROM or /GAME set?

z,$+7 >$0059 No, then no cartridge

003B:

003E:

0041:

0043:

0044:

0046:

0049:

004B:

004D:

004F:

0050:

0052:

01

11

ED

03

ED

01

3E

ED

ED

2F

E6

28

2F DO

FC FF

51

59

05 D5

B0

79

78

30

05

LD

Lp

OUT

INC

OUT

LD

LD

OUT

IN

CPL

AND

JR

BC,$D02F

DE,$FFFC

<C),D

BC

(C),E

BC,$D505

A, $B0

<C),A

A, (C)

$30

Z,$+7 >$

185

Abacus Software C-128 Internals

•a********************************* Enable 64 mode and pass

0054:

0056:

0058:

0059:

005C:

005E:

0060:

0061:

0063:

0065:

0066:

0068:

0069:

006A:

006C:

00 6D:

006E:

0070:

0072:

0073:

0075:

0077:

007A:

007C:

007F:

0082:

0084:

0085:

0087:

0088:

0089:

008A:

008C:

008F:

0092:

0095:

0097:

009A:

3E :

ED

C7

01

3E

ED

0D

ED

0E

AF

ED

0D

3D

ED

OD

OD

3E

ED

03

ED

E6

01

28

21

01

16

7E

ED

2B

OD

15

20

21

11

01

ED

21

11

Fl

79

OF 1

08

79

79

03

79

79

7F

79

78

20

05

D8

B4

OA

OB

79

F8

1A

00

08

BO

E5

DO

DC

D5

OF

D5

OD

11

00

OE

FF

LD

OUT

RST

LD

LD

OUT

DEC

OUT

LD

XOR

OUT

DEC

DEC

OUT

DEC

DEC

LD

OU

INC

IN

AND

LD

JR

LD

LD

LD

LD

OUT

DEC

DEC

DEC

JR

LD

LD

LD

A,$F1

(C),A

$00

BC,$DC0F

A, $08

(C),A

C

(C),A

C,$03

A

<C),A

C

A

<C),A

C

C

A,$7F

(C),A

BC

A, (C)

$20

BC,$D505

Control to the cartridge

Enable 8502 and select the

64 mode

And execute cold start

Select CRB reg. in CIA1

And then stop

Timer B as well as

Timer A of

CIA1

DDRB-data direction reg.

For port B: Set all bits

to Input

Pointer to DDRA and

Put all bits to

Output.

Decrementing BC causes it

to Point to port A

Write $7F to port A (See

also Keyboard matrix)

Pointer to port B (input)

And read

Mask out Commodore key

Pointer for mode config reg

z,$-38 >$0054 Key pressed> 64 mode

RL,$0FB4

BC,$D50A

D,$0B

A,(HL)

(C),A

HL

: c

: d

Load the MMU reg. with the

Values at

$0FAA

Note that the

11 MMU registers

Are loaded with the values

At $0FB4 downwards!

nz,$-6 >$0084 End of the loop

HL,$OD1A

DE,$1100

BC,$0008

LDIR

LD

LD

HL,$0EE5

DE,$FFD0

Copy the area from $OD1A

To $1100

Copy eight bytes

(8502 code!)

Also copy the area

From $0EE5 to the common

186

Abacus Software C-128 Internals

009D:

00A0:

00A2:

00A5:

00A8:

OOAB:

OOAE:

OOB1:

01 IF 00

ED BO

21 00 11

22 FA FF

22 FC FF

22 FE FF

22 DD FF

C3 EO FF

ld bc,$ooif Areaat$FFDO

ldir Copy 31 bytes

ld hl,$iioo $1100 as jump vector

($fffa) , hl Copy jump vector in

($fffc) , hl All four addresses

($fffe) , hl Including address

LD

LD

LD

LD

JP

($ffdd) , hl $FFDD (just copied!)

$FFE0 Andjump to the Z-80 part

The following section is copied to $FFD0 at the start and contains 8502
code to switch over to the Z-80 mode:

•a**************************

0EE5:

0EE6:

0EE8:

0EEB:

0EED:

0EF0:

0EF1:

0EF4:

78

A9

8D

A9

8D

EA

4C

EA

3E

00

B0

05

00

FF

D5

30

SEI

LDA

STA

LDA

STA

NOP

JMP

NOP

#$3E

$FF00

#$B0

$D505

$3000

also copy to $FFD0

Disable interrupts

Configuration index

Set configuration index

Enable Z-80

Write to mode config. register

Delay

Jump to continuation

The jump at address $0EFl is changed or replaced by a RETURN in
most cases.

The following section—again in Z-80 mnemonics-is also copied to

$FFE0. The RST 0 routine jumps to this address when it is done. Then the
computer is again in the 8502 mode. If the Z-80 is re-enabled, the Z-80

continues at precisely the same location (NOP).

***************************** This area is copied to $FFE0

di Disable interrupts

lda #$3E Configuration index

sta $ffoo Into configuration register

ld bc,$d505 Mode configuration register

ld a, $bi Enable 8502

out (c), a Into mode config. register

nop Delay

rst $08 Continuation

0EF5:

0EF6:

0EF8:

0EFB:

0EFE:

0F00:

0F02:

0F03:

F3

3E

32

01

3E

ED

00

CF

3E

00

05

Bl

79

FF

D5

187

Abacus Software C-128 Internals

The address $0F03 is found at address $FFEE after the copy. If you
want to run your own Z-80 program, you must define a jump to your

routine at this point. In our example, our Z-80 program is located at address

$3000. We must then branch to this routine at address $FFEE:

, FFEE: C3 00 30 JMP $3000 branch to routine

To enable the Z-80 in 8502 assembly language, you should call the

routine at address $FFD0. To enable the 8502 in Z-80 assembly

language,you should call the routine at $FFE0 to enable the 8502 when the

Z-80 is running.

7.7 Boot Sector and Boot Routine

Those of you who have worked with an IBM PC are well aware of the

advantage of a boot sector. The first thing to clarify is what a "boot" has to

do with a modern computer like the C-128. The answer is not a difficult

one. As an article of clothing, the boot is the "lowest part" of a person. It

has the actual contact to the ground on which we walk and stand. The boot

sector of a computer is similar. It is also the lowest part of a program, the

connection between the computer program and the machine.

When you turn your C-128 on, you will notice that the disk drive

(assuming you have one) makes some noises and then is quiet. Even when

you have inserted a disk, the disk drive always runs before the computer

responds.

The reason for this action is that the computer tries to load this so-called

"boot sector". This sector can be used to load a program as soon as the

computer is turned on, without the user having to press a single key. The

boot sector can also be a program of its own, which is then started

automatically. This sector has many uses, but in order to make full use of it,

it is important to be familiar with the internal structure of the sector and the

action of the boot routine.

Since the boot routine is controlled by the operating system and cannot

search the entire diskette for such a sector, there is only one pre-determined

place on the diskette that can be used as a boot sector. This is:

Side 1, track 01, sector 00

188

Abacus Software C-128 Internals

But be careful since this sector is also physically the first data block on

a diskette, it's possible that this space is already used by other files. Before
you install a boot sector on a diskette, you should always check to see if this

sector is already occupied

In order to be able to understand the makeup of the boot sector, you

should become familiar with the operation of the boot routine. This kernal

routine performs the following steps:

1) A block-read command to track 1, sector 0 is constructed in the DOS

buffer of the expanded zero page.

2) The command is executed and the block read (provided a formatted disk

is in the drive) is loaded into the cassette buffer.

3) The first three bytes of the block are checked to see if they contain the
required identification code for a boot sector. This identification code is
CBML If this code is not present, the boot routine is stopped.

4) The four bytes following the GBM code are loaded into four zero-page

pointers. Generally these 4 bytes are set to the value $00. The first two
bytes can contain a starting address, which has nothing to do with the
address at which the program is to be loaded. The third byte is the
corresponding configuration index of the start address. But all of the

first three entries are ignored if the fourth byte contains the value $00. It
contains the number of blocks, in addition to the boot sector, that are to

be loaded from the disk.

5) Independent from whether the block counter in the boot block is set or

not, the bytes following these four address and control bytes are read
and displayed on the screen via the BSOUT routine. Here the screen

can be cleared or an appropriate boot-up message can be displayed.

This character output continues until the computer comes across a byte

with the value $00.

6) Now the control bytes read in step 4 have a meaning. If the block
counter is set to zero, this routine is skipped. If this is not the case a
new command string is formed in the DOS buffer which instructs the

drive to load another boot block from the diskette. The determination of
this boot block is quite simple. The sector number is incremented by 1.

If the sector number is greater than 20 (there is a maximum of only 21

sectors per track, numbered 0-20), the track number is incremented by
1 and the sector number is reset to 0. A block-read command to read

189

Abacus Software C-128 Internals

this block is executed, whereby the block read is stored at the address

and configuration created by the first three bytes. The memory address

of the following boot blocks is incremented and the block counter is

decremented by 1. This is done until the block counter is counted down

to zero.

7) The boot routine then returns to the code following the text constants (if

present) in the original boot sector in the cassette buffer. A filename, as

indicated in the disk directory, may reside here. Except the fact that the

characters of the filename are not displayed on the screen, all of the

bytes here are read until the boot routine encounters the $00 terminating

code. The length of the filename is recorded in a counter.

8) Now we come to another option. If the length of the filename in the

counter is a value other than zero, the characters "0:" are prefixed to the

filename. Then the filename counter is incremented by 2, and a branch

is made to the kernal LOAD routine in order to read this program into

memory. If this happens, or if the length of the filename is zero, the

boot routine goes back to behind the code $00 indicating the end of the

filename.

9) The bytes following the filename are interpreted as a machine language

program and the boot routine passes control to this program. From this

point on, the programmer is responsible for starting the program

loaded, or for loading another program, or for branching to another of

the boot blocks.

If you make note of the above steps when creating your own boot

sectors, you will soon see that it is not difficult, provided you know what

the operating system expects. Here again are the most important points and

instructions:

Bytes 0,1,2 : CBM identification code

Bytes 3,4 : Memory address for the following boot sectors

Byte 5 : Configuration index for the following boot sectors

Byte 6: Block counter for the number of following boot sectors

Byte 7 to 1st terminating code ($00): boot message

Name of the program to load, followed by the second terminator ($00)
Your own machine language program entry

Address of the boot sector: Side 0, track 1, sector 0

190

CHAPTER 8

Abacus Software 128 Internals

Chapter 8: The ROM Listing

The ROM listing is probably the most important tool for the real

machine language programmer. For those of you who don't know what we

mean by the term "ROM listing," it is simply this; the operating system is

found in ROM. If this operating system is disassembled, the result is called

a ROM listing.

The real art is not in reading the operating system and disassembling

it, but in documenting it. The documentation should make it simpler for the

reader to make use of the individual routines. You can find more

information about the most important kernal routines in Chapter 7.

The entire operating system comprises a total of 44Kbytes in the

Commodore 128. 28K of this is for the BASIC and the other 16K is for the

kernal. This book documents the kernal. A complete documentation of the

whole 44K would far exceed the capacity of a single book.

The kernal contains the most important elementary routines which the

computer needs to display characters on the screen, decode the keyboard,

control the cassette recorder, etc.

Below are some of the abbrevations used in the the ROM listings.

pntr.

krnl.

w/

clr

ace.

char.

inc.

deer.

y-reg.

rout.

prgm

cmd.

crsr.

pointer

kernal

with

clear

accumulator

character

increment

decrement

y-register

routine

program

command

cursor

disp.

addr.

f/

dev.

sys.

subt.

dec.

Z-P

x-reg.

#

Ctrl.

max.

bnk.

display

address

from

device

system

subtract

decimal

zero page

x-register

number

control

maximum

bank

193

Abacus Software 128 Internals

8.1 ROM Listings \f £

BOOO:

B003:

B006:

B009:

4C

4C

4C

20

21

09

B2

7D

BO

BO

BO

FF

JMP

JMP

JMP

JSR

$B021

$B009

$B0B2

$FF7D

BOOC: OD 42 52 45 41 4B 07 00

B014:

B015:

B017:

B019:

B01A:

B01C:

B0 ID:

B01F:

******r\ f\ r\ r\ #\ r

B021:

B023:

B026:

B028:

B02C:

B02E:

B030:

B0 32:

B034:

B036:

B038:

B03A:

68

85

A2

68

95

CA

10

30

A9

8D

85

85

85

A9

A0

85

84

A9

85

20

02

05

03

FA

25

00

00 FF

06

07

05

00

B0

04

03

OF

02

7D FF

PLA

STA

LDX

PLA

STA

DEX

BPL

BMI

LDA

STA

STA

STA

STA

LDA

LDY

STA

STY

LDA

STA

JSR

* $02

$05

* $03

$B019

$B046

******:

$00

$FF00

* $06

* $07

* $05

$00

$B0

* $04

* $03

$0F

* $02

$FF7D

Monitor entry vectors

Regular monitor entry

Monitor BREAK entry

Exmon monitor entry

Kernal PRINT: string output

Initial monitor message

produced by BREAK entry

<C/R> BREAK <Bell>

Monitor initalization after

BREAK entry

Place BANK no, on stack in

appropriate zero-page byte

Get the contents of x-reg, y-reg,

accumulator, processor status

& program counter from stack &

put in corresponding zero-page

bytes.

Jump to general initialization

Initialization for regular entry

Load configuraton register with

$00 and enable all system ROMs

Clear zero-page memory for ace.

Clear Z-P memory for x-reg

Clr memory for processor status

Load Ace- lo-addr for monitor

Load Y-reg with hi-addr monitor

Ace in memory: prgm counter lo

Y-reg in memory: prgm cntr hi

Set Z-P memory for BANK# at

$0F-Krnl+BASIC,RAM 0, I/O

Kernal PRINT: string output

194

Abacus Software 128 Internals

B046:

B047:

B048:

B04A:

B04C:

B04F:

D8

BA

86

A9

20

58

09

CO

90 FF

CLD

TSX

STX

IDA

JSR

CLI

* $09

$C0

$FF90

B050: 20 7D FF JSR $FF7D

****************************** Text constants for initial monitor

message

B03D: 0D 4D 4F 4E 49 54 4F 52 <C/R> MONITOR

B045: 00

****************************** General monitor initalization

Reset decimal mode

Store stack pntr in X-reg

and in memory for stack pointer

Sys/control messages enabled

Kernal SETMSG:Sys/ctrl-messages

All system interrupts enabled

Monitor command: R

(Register contents)

Kernal PRINT: output string

Text constants for processor

memory

C/R PC SR AC XR YR SP C/R

; <Esc-Q>

Output contents of registers, st

stacks, & prgm cntr status

Get current BANK # in ace.

Acc.= 2-byte ASCII: hi=A,lo=X

ASCII for lower nibble in Accu

Kernal BSOUT: output a char

Z-P memory for PC hi in accu

Ace in 2-byte ASCII and output

Displ. points to ZP byte - PC Lo

PC Lo, P, A, X, Y, S in Accu

Ace output as 2-byte

ASCII+<BLANK>

Increment displ.

B053:

B05B:

B063:

B0 6B:

0D 20 20 20 20 50 43 20

20 53 52 20 41 43 20 58

52 20 59 52 20 53 50 0D

3B 20 IB 51 00

B070:

B072:

B075:

B076:

B079:

B07B:

B07E:

B080:

B083:

A5

20

8A

20

A5

20

A0

B9

20

02

D2

D2

03

C2

02

02

A5

B8

FF

B8

00

B8

LDA

JSR

TXA

JSR

LDA

JSR

LDY

LDA

JSR

* $02

$B8D2

$FFD2

* $03

$B8C2

$02

$0002,Y

$B8A5

B086: C8 INY

195

Abacus

B087:

B089:

B08B:

B08E:

B090:

BO 92:

B095:

B098:

B099:

B09B:

B09D:

B09F:

B0A1:

B0A3:

B0A6:

B0A9:

BOAB:

BOAD:

BOAF:

BOB2:

B0B4:

B0B7:

B0B9:

BOBA:

BOBC:

Software

CO

90

20

A2

86

20

9D

E8

EO

BO

C9

DO

A9

9D

20

FO

C9

FO

6C

A2

DD

FO

CA

10

20

08

F5

B4

00

7A

CF

00

Al

IF

OD

Fl

00

FF

E9

EO

20

F7

2E

15

E6

OC

F8

7D

B8

FF

02

01

B8

03

BO

FF

CPY

BCC

JSR

LDX

STX

JSR

STA

INX

CPX

BCS

CMP

BNE

LDA

STA

JSR

BEQ

CMP

BEQ

JMP

LDX

CMP

BEQ

DEX

BPL

JSR

$08

$B080

$B8B4

$00

* $7A

$FFCF

$0200,X

$A1

$B0BC

$0D

$B0 92

$00

$O1FF,X

$B8E9

$B08B

$20

$B0A6

($032E)

$15

$B0E6,X

$B0C5

$B0B4

$FF7D

BOBF: ID 3F 00

128 Internals

Bytes $04-$09 already output?

no, then read next byte

Linefeed + clear rest of line

Displacement pntr, input buffer

reset to 0

Kernal BASIN: read out char

& put in monitor input buffer

Displ. increment to input buffer

Have 160 chars been printed?

yes, then output error message

<RETURN> entered?

no, then wait for next character

When <RETURN> entered,mark

command-string end with $00,

Test input buffer for cmdend,

If <:>,<?>, cmd end, wait input.

Was character a <SPACE> ?

Read next character.

Vector to MONITOR routine

Number of keywords in X-reg

compared with keyword table.

If found, go to keyword table

pointer — decrement by 1, until

entire table is searched

Kernal PRINT: output

? constant for monitor error

messages

<CrsrRight>?

B0C2: 4C 8B B0 JMP $B08B

B0C5: E0 13

B0C7: B0 12

B0C9: E0 OF

CPX # $13

BCS $B0DB

CPX # $0F

Return to input wait loop

jump to input wait loop

Establish monitor command

addresses

Is keyword <L>, <S>, <V>?

yes, then perform task

Is keyword a conversion char?

196

Abacus

BOCB:

BOCD:

BOCE:

BOCF:

BODO:

B0D3:

B0D4:

B0D7:

B0D8:

Software

BO

8A

OA

AA

BD

48

BD

48

4C

13

FD

FC

A7

BO

BO

B7

BCS

TXA

ASL

TAX

LDA

PHA

LDA

PHA

JMP

$B0E0

A

$B0FDfX

$B0FC,X

$B7A7

128 Internals

BODB: 85 93 STA * $93

BODD: 4C 37 B3 JMP $B337

BOEO: 4C Bl B9 JMP $B9B1

B0E3: 6C 00 OA JMP ($0A00)

B0E6: 41 43 44 46 47 48 4A 4D

BOEE: 52 54 58 40 2E 3E 3B 24

B0F6: 2B 26 25 4C 53 56

BOFC:

BOFE:

B100:

B102:

B104:

B106:

B108:

B10A:

B10C:

B10E:

B110:

05

30

98

DA

D5

CD

DE

51

4F

33

E2

B4

B2

B5

B3

Bl

B2

Bl

Bl

BO

B2

BO

($B406)

($B231)

($B599)

($B3DB)

($B1D6)

($B2CE)

($B1DF)

($B152)

($B050)

($B234)

($B0E3)

($,+,&,%) YES-then do task.

Keyword number to accu and

multiplied by 2

This value as offset in X-reg

Monitor routine (hi) addr. got

& treated as quasi-RTS on stack.

Monitor routine (hi) addr. got

& treated as quasi RTS on stack.

Command parameter utilization.

Release LSV and conversions

Store char of command keyword

Execution of L,S,V commands

Execution of conversion chars.

Monitor command: X (Exit)

Vector: BASIC warm-start

($4003)

Monitor keywords

ACDFGHJM

RTX@.>;$

+ & % L S V

Addresses of monitor

commands (-1)

A = Assemble

C = Compare

D = Disassemble

F = Fill

G = Go to

H = Hunt

J = Jump

M = Monitor

R = Register

T = Transfer

X = Exit

197

Abacus Software 128 Internals

B112:

B114:

B116:

B118:

8F BA

05 B4

AA Bl

93 Bl

($BA90)

($B406)

($B1AB)

($B194)

•a****************************

B11A:

BUD:

B11F:

B121:

B122:

B125:

B126:

B129:

8E

A6

A9

78

20

58

AE

60

B2

68

66

74

B2

0A

FF

0A

STX

LDX

LDA

SEI

JSR

CLI

LDX

RTS

$0AB2

* $68

$66

$FF74

$0AB2

B12A:

B12D:

B12F:

B132:

B134:

B135:

B138:

B139:

B13C:

8E

A2

8E

A6

78

20

58

AE

60

B2

66

B9

68

77

B2

0A

02

FF

OA

STX

LDX

STX

LDX

SEI

JSR

CLI

LDX

RTS

$0AB2

$66

$02B9

* $68

$FF77

$0AB2

B13D: 8E B2 OA STX $0AB2

@ = Disc Command

. = Assemble

> = Modify Memory

; = Modify Register

LDA routine for ace from any

bank FETVEC=bank byte of the

OP3 operand

X-reg temporary storage

Bank no. taken from OP3

FETVEC addr. for indfet in A

All system interrupts disabled

Kernal INDFET:LDA(fetvec), Y

any bank

All system interrupts enabled

X-reg loaded with saved value

Return from subroutine

STA routine places ace contents

in any bank.

STAVEC=OP3 bank byte

X-reg temporary storage

Load STAVEC (lo addr) into

X-reg and put Indsta routine in

STAVEC

Get bank # from 'from1 OP3

All system interrupts disabled

Kernal XNDSTA:STA(stavec), Y

bank

All system interrupts enabled

X-Reg loaded with stored value

Return from subprogram

CMP routine-acc contents w/

specified bank.

CMPVEC=OP3 bank byte

X-reg temp, storage

198

Abacus

B140:

B142:

B145:

B147:

B148:

B14B:

B14C:

B14D:

B150:

B151:

Software

A2

8E

A6

78

20

58

08

AE

28

60

66

C8 02

68

7A FF

B2 OA

LDX

STX

LDX

SEI

JSR

CLI

PHP

LDX

PLP

RTS

$66

$02C8

* $68

$FF7A

$0AB2

125 internals

Load CMPVEC addr in Y-reg &

CMPVEC mem for Indcmp

Get bank #!from'OP3

All system interrupts disabled

Kernal INDCMP:

CMP(CMPVEC), Y bank

All system interrupts enabled

Secure result of CMP

X-Reg loaded w/ secured value

Set back comparison result

Return from subprogram

B152:

B154:

B157:

B15A:

B15C:

B15E:

B160:

B162:

B165:

B167:

B169:

B16B:

B16D:

B16E:

B170:

B172:

B174:

B175:

B177:

B17A:

B17C:

B17F:

B181:

B183:

B185:

BO 08

20 01 B9

20 A7 B7

90 06

A9 0B

85 60

DO 15

20 0E B9

90 2A

A2 03

24 D7

10 01

E8

46 62

66 61

66 60

CA

DO F7

20 El FF

F0 12

20 E8 Bl

A9 08

24 D7

10 01

0A

BCS

JSR

JSR

BCC

LDA

STA

BNE

JSR

BCC

LDX

BIT

BPL

INX

LSR

ROR

ROR

DEX

BNE

JSR

BEQ

JSR

LDA

BIT

BPL

ASL

$B15C

$B901

$B7A7

$B162

$0B

$60

$B177

$B90E

$B191

$03

$D7

$B16E

$62

$61

$60

$B16E

$FFE1

$B18E

$B1E8

$08

$D7

$B186

A

Monitor command: M

(Memory display)

No parameter, then set default

Copy contents of OP1 into OP3

Get !tof in OP1

Convey from-to step number

Load OP1 (lo) with default

load step count 12

Goto exec, of memory display

Difference: OP1-OP3 in OP1

If 'fromVto' then ERROR

Step # divided by 2 three times

Check for 40/80-col. mode

40-col, to step division

80-col, to step number

Div. of OP1 (3-byte operand)

by 2, for memory display values

of 8 or 16.

Division # for step #-1

OP1 divided by 8/16

Kernal STOP: test for STOP key

STOP pressed, go EXIT routine

Display a line of memory

+ constant from 'from1 operand

Check for 40/80-col. mode

40-col, add constant of 8 OK

80-col, add constant *2 (=16)

199

Abacus

B186:

B189:

B18C:

B18E:

B191:

Software

20 52

20 22

BO E9

4C 8B

4C BC

B9

B9

BO

BO

JSR

JSR

BCS

JMP

JMP

$B952

$B922

$B177

$B08B

$B0BC

B194:

B197:

B199:

B19C:

B19E:

B1A0:

B1A3:

B1A4:

B1A6:

B1A8:

20 74

AO 00

20 A7

BO OA

A5 60

99 05

C8

CO 05

90 Fl

4C 8B

B9

B7

00

BO

JSR

LDY

JSR

BCS

LDA

STA

INY

CPY

BCC

JMP

$B974

$00

$B7A7

$B1A8

* $60

$0005,Y

$05

$B199

$B08B

B1AB:

B1AD:

B1BO:

B1B2:

B1B5:

B1B7:

B1B9:

B1BC:

B1BD:

B1BF:

B1C1:

B1C3:

B1C5:

B1C7:

B1C9:

BO 1C

20 01

AO 00

20 A7

BO 12

A5 60

20 2A

C8

24 D7

10 04

CO 10

90 ED

CO 08

90 E9

20 7D

B9

B7

Bl

FF

BCS

JSR

LDY

JSR

BCS

LDA

JSR

INY

BIT

BPL

CPY

BCC

CPY

BCC

JSR

$B1C9

$B901

$00

$B7A7

$B1C9

* $60

$B12A

* $D7

$B1C5

$10

$B1B2

$08

$B1B2

$FF7D

128 Internals

Addition: Ace contents + OP3

Subtraction: OP1 - constant <1>

Loop, 'til OP1 < 0

Jump to input wait loop

<?> Output and go to input wait

loop

Monitor command:;

(Modify reg)

C=0--OP1 in ZP

bank/PCHi/PCLo

Set displacement for zero page

Get OPl!s modifier

Carry set=identifier for exit rout.

Get lo-add from OP1 as modifer

Modify status;B,A,X,Y stat ptr.

Display Z-P CPU memory +1

All CPU memory changed?

no, then jump to next routine

Jump to input wait loop

Monitor command:

> (Modify mem)

No parameter, then no change

Copy contents of OP1 into OP3

Set modify display ptr, to 0

Get modify value in OP1

No other value=print line

Get value from OP1 (low)

STA routine in any bank

Display pntr for modify byte+1

Test for 40/80-col. mode

Max. param reading of 40 chars.

16 chars, read/changed?

no, goto next parameter

8 chars read/changed?

no, get next parameter

Kernal PRINT: output string

200

Abacus Software 128 Internals

•a****************************

B1CC: IB 4F 91 00

B1D0: 20 E8 Bl JSR $B1E8

B1D3: 4C 8B BO JMP $B08B

B1D6: 20 74 B9 JSR $B974

B1D9: A6 09 LDX * $09

B1DB: 9A TXS

B1DC: 4C 71 FF JMP $FF71

B1DF: 20 74 B9 JSR $B974

B1E2: 20 6E FF JSR $FF6E

B1E5: 4C 8B BO JMP $B08B

B1E8:

B1EB:

B1ED:

B1F0:

B1F3:

B1F5:

B1F7:

B1FA:

B1FD:

B200:

B201:

20

A9

20

20

AO

FO

20

20

20

C8

CO

B4

3E

D2

92

00

03

A8

1A

C2

08

B8

FF

B8

B8

Bl

B8

JSR

LDA

JSR

JSR

LDY

BEQ

JSR

JSR

JSR

INY

CPY

$B8B4

$3E

$FFD2

$B892

$00

$B1FA

$B8A8

$B11A

$B8C2

$08

Clear insert, RVS, quote modes

<Esc-O> <CrsrUp>

Display changed memory line

Outputs:<8/16 hex values, 8/16

asch

Jump to input wait loop

Monitor command: G (Go to)

C=0 OP1 in zeropage

bank/PCHi/PCLo

Load X w/ Z-P byte for stack ptr

Modify stack ptr. w/ X-reg.

Krnl JMPFAR: JMP to any bank

Monitor command : J (Jump to)

C=0 DPI in zero page

bank/PCHi/PCLo

Kernal JSRFAR:JSR

Jump to input wait loop

Display f<\8/16 hex values &

8/16 ASCII characters for

memory display

Line feed + clear rest of line

Load ace with V char.

Kernal BSOUT: output one char

Output OP3 in 5-byte ASCII

Loop # set to 0

1 hex value skip space

Output <SPACE> <CR>

<Crsr-up> .LDA from any bank

A displayed as 2-byte ASCII

Loop+displacement #+1 r

8,hex values printed?

201

Abacus

B203:

B205:

B207:

B209:

B20B:

Software

24 D7

10 02

CO 10

90 EC

20 7D FF

BIT

BPL

CPY

BCC

JSR

* $D7

$B209

$10

$B1F7

$FF7D

128 Internals

Test for 40/80-col. screen

Output to 40-coL

16 hex values printed?

Get next hex value

Kernal PRINT: output string

B20E: 3A 12 00

B211:

B213:

B216:

B217:

B219:

B21B:

B21C:

B21E:

B220:

B223:

B224:

B22 6:

B228:

B22A:

B22C:

B22E:

B230:

A0 00

20 1A Bl

48

29 7F

C9 20

68

B0 02

A9 2E

20 D2 FF

C8

24 D7

10 04

CO 10

90 E7

CO 08

90 E3

60

LDY

JSR

PHA

AND

CMP

PLA

BCS

LDA

JSR

INY

BIT

BPL

CPY

BCC

CPY

BCC

RTS

$00

$B11A

$7F

$20

$B220

$2E

$FFD2

$D7

$B22C

$10

$B213

$08

$B213

•a****************************

B231: A9 00

B233: 2C

LDA # $00

.Byte $2C

B234: A9 80 LDA # $80

Constant: colon, RVS-on

: <RvsOn>

Output 8/16 bytes in ASCII

Loop and display counter to 0

LDA from any bank

Put char, on stack

Mask bit 7 (no RVS char.)

Check for Ctrl char.

Get char, from stack again

Not Ctrl char, then normal output

Load accumulator with <.>

Kernal BSOUT: outpt character

Loop & displacement counter +1

Check for 40/80-col. screen

Continue display if 40-col.

16 characters printed?(80-col)

no, output next char.

8 characters printed? (40-col)

no, print next char.

Return to subroutine

Monitor command: C

(Compare)

Set char, for COMPARE

skip to $B236

Monitor command: T

(Transform)

Set TRANSFORM marker

202

Abacus

B236:

B238:

B23A:

B23D:

B240:

B242:

B245:

B247:

B24A:

B24C:

B24E:

B24F:

B251:

B253:

B255:

B257:

B259:

B25B:

B25D:

B25F:

B261:

B263:

B265:

B267:

B269:

B26B:

B26D:

B270:

B272:

B273:

B275:

B277:

B27A:

B27D:

B27F:

B282:

B284:

B287:

B289:

B28C:

Software

85

A9

8D

20

BO

20

90

4C

24

10

38

A5

E5

A5

E5

BO

A5

65

85

A5

65

85

A5

65

85

A2

BD

95

CA

10

A9

8D

20

A0

20

FO

20

A2

8E

8E

93

00

B3

83

05

A7

03

BC

93

2C

66

60

67

61

21

63

60

60

64

61

61

65

62

62

02

B7

66

F8

80

B3

B4

00

El

47

1A

60

B9

C8

OA

B9

B7

BO

OA

OA

B8

FF

Bl

02

02

STA

LDA

STA

JSR

BCS

JSR

BCC

JMP

BIT

BPL

SEC

LDA

SBC

LDA

SBC

BCS

LDA

ADC

STA

LDA

ADC

STA

LDA

ADC

STA

LDX

LDA

STA

DEX

BPL

LDA

STA

JSR

LDY

JSR

BEQ

JSR

LDX

STX

STX

* $93

$00

$0AB3

$B983

$B247

$B7A7

$B24A

$B0BC

* $93

$B27A

* $66

* $60

* $67

* $61

$B27A

* $63

* $60

* $60

* $64

* $61

* $61

* $65

* $62

* $62

$02

$0AB7,X

* $66,X

$B26D

$80

$0AB3

$B8B4

$00

$FFE1

$B2CB

$B11A

$60

$02B9

$02C8

128 Internals

and put into cmd byte memory

Direction ptr for C/T cmd to $00

(=forward) set ($80=backward)

Get 'til' & step cnt in OPH,OP2

Carry set= error marker found

Get'to7'with'(inOPl)

To'/'with' operand is OK

<?> displayed go input wait loop

Was it transferred (-) or com

pared (+) in CMP routine?

Set carry for subtraction

Test whether contents of both

bytes (addr lo), (addr hi) are

larger than operand OP3, or the

address bytes of OP1.

fTo'<'from'=direction OK

Add the contents of the 3-byte

operand OP2 in locations

$65-$64-$63 to the contents of

the 3-byte operand OP1

in locations $62-$61-$60.

Put any addition overflow

results in OP1.

Store addition result

inOPl

Copy the contents of the

3-byte help operands

in memory locations

$0AB9-$0AB8-$0AB7 into the

operand OP3 ($68-$67-$66)

When 'til' is greater than 'from'

set direction marker to backward

<CR> & clear rest of line

Set displacement ptr. to 0

Kernal STOP: check STOP key.

If STOPkey goto Exit routine,

LDA from any bank

$60 is lo-addr. 'with' 'til'-OPl

Set STAVEC at this addr.

Set CMPVEC at this addr.

203

Abacus Software 128 Internals

B28F:

B2 91:

B2 92:

B294:

B296:

B299:

B29B:

B29E:

B29F:

B2A1:

B2A4:

B2A7:

B2AA:

B2AD:

B2AF:

B2B1:

B2B3:

B2B5:

B2B7:

B2BA:

B2BD:

B2C0:

A6 62

78

24 93

10 03

20 77 FF

A6 62

20 7A FF

58

F0 09

20 92 B8

20 A8 B8

20 A8 B8

2C B3 0A

30 OB

E6 60

DO 10

E6 61

DO OC

4C BC BO

20 22 B9

20 60 B9

4C C6 B2

LDX

SEI

BIT

BPL

JSR

LDX

JSR

CLI

BEQ

JSR

JSR

JSR

BIT

BMI

INC

BNE

INC

BNE

JMP

JSR

JSR

JMP

* $62

* $93

$B299

$FF77

* $62

$FF7A

$B2AA

$B892

$B8A8

$B8A8

$0AB3

$B2BA

* $60

$B2C3

* $61

$B2C3

$B0BC

$B922

$B960

$B2C6

B2C3:

B2C6:

B2C9:

B2CB:

20 50 B9

20 3C B9

BO B4

4C 8B BO

JSR

JSR

BCS

JMP

$B950

$B93C

$B27F

$B08B

B2CE:

B2D1:

B2D3:

B2D5:

B2D8:

B2DA:

20 83 B9

BO 61

AO 00

20 E9 B8

C9 27

DO 16

JSR $B983

BCS $B334

LDY # $00

JSR $B8E9

CMP # $27

BNE $B2F2

Load X-reg w/ bank byte ftilf

All system interrupts disabled

Was it transfer or comparison?

Compare in appropriate routine
Kernal DSfDSTA:

STA(STAVEC), Y any bank

Load X w/ bank byte fwith!

Kernal INDCMP:

CMP(CMPVEC),Y any bank

All system interrupts enabled

"Equal1 not given, and

OP3 output as 5-byte ASCII

<SPACE>,<C/R>,<crsr-up>
output

Test for transfer direction

Send new return address

Fwd. transfer of ftilf address

raised by 1 and monitored

for overflow

If hi-addr. overflow, then error

<?> output - to input wait loop

Subtraction: OP1 - constant <1>

Subtraction: OP3 - constant <1>

Jump to subtraction OP2 - <1>

Set step number & 'from*

Addition: constant <1> to OP3

Subtraction: OP2 - constant <1>

Loop until all steps done

Jump to input wait loop

Monitor command : H (Hunt)

Get 'til1 step value in OP1

Carry set=identifier - found error

Display hunt char in CMP buffer

Read a char from input buffer

Was character read a <.> ?

no, donft look for string

204

Abacus

B2DC:

B2DF:

B2E1:

B2E3:

B2E6:

B2E7:

B2EA:

B2EC:

B2EE:

B2F0:

B2F2:

B2F5:

B2F8:

B2FA:

B2FD:

B2FE:

B301:

B303:

B305:

B307:

B309:

B30C:

B30E:

B311:

B314:

B316:

B317:

B319:

B31B:

B31E:

B321:

B324:

B327:

B329:

B32C:

B32F:

B331:

B334:

Software

20

C9

F0

99

C8

20

F0

CO

DO

FO

8C

20

A5

99

C8

20

BO

CO

DO

84

20

AO

20

D9

DO

C8

C4

DO

20

20

20

20

FO

20

20

BO

4C

4C

E9

00

51

80

E9

IB

20

F3

15

00

A5

60

80

A7

04

20

Fl

93

B4

00

1A

80

OE

93

F3

92

A8

A8

El

08

50

3C

DB

8B

BC

B8

OA

B8

01

B7

OA

B7

B8

Bl

OA

B8

B8

B8

FF

B9

B9

BO

BO

JSR

CMP

BEQ

STA

INY

JSR

BEQ

CPY

BNE

BEQ

STY

JSR

LDA

STA

INY

JSR

BCS

CPY

BNE

STY

JSR

LDY

JSR

CMP

BNE

INY

CPY

BNE

JSR

JSR

JSR

JSR

BEQ

JSR

JSR

BCS

JMP

JMP

$B8E9

$00

$B334

$0A80,Y

$B8E9

$B307

$20

$B2E3

$B307

$0100

$B7A5

* $60

$0A80,Y

$B7A7

$B307

$20

$B2F8

* $93

$B8B4

$00

$B11A

$0A80,Y

$B324

* $93

$B30E

$B892

$B8A8

$B8A8

$FFE1

$B331

$B950

$B93C

$B30C

$B08B

$B0BC

128 Internals

Read a character to input buffer

Has command-end been found?

yes, then output error <?>

Put char in CMP buffer

Displace CMP buffer +1

Test input buffer for cmd-end,

<:>, <?>; if so, execute HUNT

32 in CMP buffer?

no, get next CMP value for

hunt routine

Store displ. in CMP buffer

Put CMP operand in OP1

(likeCHRGOT)

Transmit OP1 byte into

CMP buffer

Displace CMP buffer +1

Get more CMP values in OP1

NONE FOUND-execute HUNT

32 values in CMP buffer?

No, get next CMP value

Store cnt of CMP buffer values

<CR> & clear rest of line

Display 1st char in CMP buffer

LDA from any bank

CMP w/ char from CMP buffer

Unequal-on to next step

Display next CMP buffer value

All individual comps run?

No, next step of comparison

Contents of OP3, 5-byte ASCII

<SPACE>, <CR>, <crsr-up>

<SPACE>, <CR>, <crsr-up>

Kernal STOP: check STOP key

If STOP, goto Exit routine.

Addition: constant <1> to OP3

Subtraction: OP2 - constant <1>

Loop until all steps done

Jump to input wait loop

Output <?> -to input wait loop

205

Abacus Software 128 Internals

B337:

B339:

B33B:

B33D:

B33E:

B340:

B342:

B344:

B346:

B348:

B34A:

B34C:

B34E:

B351:

B353:

B355:

B357:

B359:

B35B:

B35D:

B360:

B362:

B363:

B365:

B367:

B369:

B36B:

B36C:

B36E:

B370:

AO

84

84

88

84

84

84

84

A9

85

A9

85

20

FO

C9

FO

C9

DO

A6

BD

FO

E8

C9

FO

91

E6

C8

CO

90

4C

01

BA

B9

C6

B7

C7

90

OA

BC

80

BB

E9 B8

58

20

F7

22

15

7A

00 02

49

22

OC

BB

B7

11

ED

BC BO

LDY

STY

STY

DEY

STY

STY

STY

STY

LDA

STA

LDA

STA

JSR

BEQ

CMP

BEQ

CMP

BNE

LDX

LDA

BEQ

INX

CMP

BEQ

STA

INC

INY

CPY

BCC

JMP

$01

* $BA

* $B9

* $C6

* $B7

* $C7

* $90

$0A

* $BC

$80

* $BB

$B8E9

$B3AB

$20

$B34E

$22

$B370

* $7A

$0200,X

$B3AB

$22

$B373

($BB),Y

* $B7

$11

$B35D

$B0BC

B373:

B375:

86 7A

20 E9 B8

STX

JSR

* $7A

$B8E9

Jumps to monitor commands:

L = Load, S = Save, V = Verify

Load Y-reg with $01

Set device number (l=Datasette)

Set secondary address (l=write)

Y-reg counts down to $00

Set BANK no. for LSV call

Length of filename set to 0

Set BANK for addr. of filename

Clear status byte (0 = all OK)

Zero-page memory for hi addr.

of filename loaded w/ $0A

Zero-page memory for lo addr.

of Filename w/ $80 (= $0A80)

Test input buffer;

If cmd-end; go to input loop

Was char, read a <SPACE>?

Yes, continue, read next char.

Was char, a <">?

No, error in command string

X-reg loaded w/ display from

input buffer

Read 1st" in-buffer(=filename)

$00 = End of command string

Input buffer pointer to next char.

Has 2nd <"> been found?

Yes, further evaluation

Filename placed at $0A80

Counter for filename length + 1

Filename memory pntr increment

Filename longer than 16 chars ?

No, read next character

Display <?> &go input wait loop

LSV parameter evaluation after

2nd <">

Input buffer pointer after 2nd "

Check buffer cmd-end, <:><?>

206

Abacus

B378:

B37A:

B37D:

B37F:

B381:

B383:

B386:

B388:

B38B:

B38D:

B390:

B392:

B395:

B397:

B399:

B39B:

B39D:

B39F:

B3A1:

B3A3:

B3A5:

B3A8:

JL JL JL JL JL .
^% r\ ^ ^\ n 4

B3AB:

B3AD:

B3AF:

B3B1:

B3B3:

B3B5:

B3B7:

B3BA:

B3BC:

B3BE:

B3C0:

B3C2:

B3C4:

Software

FO

20

BO

A5

85

20

BO

20

85

20

BO

20

A6

A4

A5

C9

DO

A9

85

A9

20

4C

JL JL JL JL •
r\ ^ ^ ^ 4

A5

C9

FO

C9

DO

• A9

20

A5

29

FO

A5

FO

20

31

A7

2C

60

BA

A7

23

01

C6

A7

3F

B4

60

61

93

53

Dl

00

B9

66

D8

8B

JL JL JL J
^ ^ ^ *

93

56

06

4C

BB

00

D5

90

10

E8

93

AC

7D

B7

B7

B9

B7

B8

FF

BO

L JL JL JL .
\ K ^ ^ 4

FF

FF

BEQ

JSR

BCS

LDA

STA

JSR

BCS

JSR

STA

JSR

BCS

JSR

LDX

LDY

LDA

CMP

BNE

LDA

STA

LDA

JSR

JMP

JL JL JL JL JL JL
^ 7\ 7\ ^ ^ ^

LDA

CMP

BEQ

CMP

BNE

LDA

JSR

LDA

AND

BEQ

LDA

BEQ

JSR

$B3AB

$B7A7

$B3AB

* $60

* $BA

$B7A7

$B3AB

$B901

* $C6

$B7A7

$B3D1

$B8B4

* $60

* $61

* $93

$53

$B370

$00

* $B9

$66

$FFD8

$B08B

JL JL JL JL JL JL .
^ ^ ^ ^ 7% ^ i

* $93

$56

$B3B7

$4C

$B370

$00

$FFD5

* $90

$10

$B3A8

* $93

$B370

$FF7D

128 Internals

LV can run w/o parameters

Get parameter from OPl (dev #)

No param, goto LV expression

Get OPl (lo)(dev address)

and put in zero page

Get OPl parameters (start addr.)

No param, goto LV expression

Copy OPl contents into OP3

Get bank# in zeropage bank B

LSV parameters (end addr.)

No parameter, to LV expression

Line feed & clear rest of line

OPl(low) is 'til' value for SAVE

OPl(hi) is 'til1 value for SAVE

Get command-/keyword

Was there an <S> for Save ?

No=error, no ftil! for SAVE

Load ace with 0, to zero page

for secondary addr.

Bank# Trom* operand (OP3)

Kernal SAVESP: Save data

Jump to input wait loop

Execute valid LV commands

Get command-/keyword

<V> for Verify ?

Accu <> 0, verify in LOADSP

<L> for Load

no, then was it Save <S>?

u = 0 is load marker in LOADSP

Kernal LOADSP: Load data

Load system STATUS in ace

Mask bit for read error

No LV error -go input wait loop

Get char for command/keyword

No cmd/keyword-then ERROR

Kernal PRINT: output string

207

Abacus Software 128 Internals

B3C7: 20 45 52 52 4F 52 00

B3CE: 4C 8B BO JMP $B08B

B3D1:

B3D3:

B3D5:

B3D7:

B3D9:

*****?

B3DB:

B3DE:

B3E0:

B3E2:

B3E5:

B3E7:

B3EA:

B3EC:

B3EE:

B3F0:

B3F3:

B3F6:

B3F8:

B3FB:

B3FE:

B400:

B403:

A6

A4

A9

85

FO

20

BO

A5

CD

DO

20

BO

AO

A5

20

20

FO

20

20

BO

4C

4C

66

67

00

B9

DO

t* * i

83

23

68

B9

1C

A7

17

00

60

2A

El

08

50

3C

EE

8B

BC

B9

OA

B7

Bl

FF

B9

B9

BO

BO

LDX

LDY

LDA

STA

BEQ

t* ** •*■ *\ ^ ^ ^ 7v a

JSR

BCS

LDA

CMP

BNE

JSR

BCS

LDY

LDA

JSR

JSR

BEQ

JSR

JSR

BCS

JMP

JMP

* $66

* $67

$00

* $B9

$B3AB

JL JL JL JL JL JL ,
/\ ^ n ^ 7C rC

$B983

$B403

* $68

$0AB9

$B403

$B7A7

$B403

$00

* $60

$B12A

$FFE1

$B400

$B950

$B93C

$B3EE

$B08B

$B0BC

Monitor constant for <ERROR>

ERROR

Goto input wait loop after

Jump to input wait loop

Extension of LV commands

w/ device & starting addrs.

lo-addr. (start addr. in X-reg)

hi-addr. (start addr. in Y-reg)

Write sec, address $00 = read

in zero page mem. for sec. addr.

to execute LV commands

Monitor command: F (Fill)

Get 'til1 and stepsize in

OPH,OP2

Carry set=error output identifier

Get bank no. from 'from1 (OP3)

Cmp w/ bank # of ftilf operand

Unequal =error output identifier

Get cmd parameter (fill value)

Carry set=error output identifier

Set display for fill command, 0

intoOPl(lo)

STA routine (accu in any bank)

Kernal STOP: check STOP key

If pressed, then input wait loop

Addition: constant <1> to OP3

Subtraction: OP2 - constant <1>

Kernal STOP:Test for STOP key

Jump to input wait loop

Display <?> &go input wait loop

208

Abacus Software C-128 Internals

a*****************************

B406:

B408:

B40B:

B40D:

B410:

B413:

B416:

B418:

B41A:

B41C:

B41F:

B421:

B423:

B426:

B427:

B429:

B42B:

B42C:

B42E:

B431:

B432:

B434:

B436:

B437:

B43A:

B43D:

B43E:

B440:

B442:

B445:

B447:

B44A:

B44C:

B44F:

B451:

B453:

BO 3A

20 01 B9

A2 00

8E Al OA

8E B4 OA

20 E9 B8

DO 07

EO 00

DO 03

4C 8B BO

C9 20

FO E8

9D AC OA

E8

EO 03

DO E8

CA

30 17

BD AC OA

38

E9 3F

AO 05

4A

6E Al OA

6E AO OA

88

DO F6

FO E9

4C BC BO

A2 02

AD B4 OA

DO 30

20 CE B7

FO 29

BO EF

A9 24

BCS $B442

JSR $B901

LDX # $00

STX $0AAl

STX $0AB4

JSR $B8E9

BNE

CPX

BNE

JMP

CMP

BEQ

STA

INX

CPX

BNE

DEX

BMI

LDA

SEC

SBC

LDY

LSR

ROR

ROR

DEY

BNE

BEQ

JMP

LDX

LDA

BNE

JSR

BEQ

BCS

LDA

$B41F

$00

$B41F

$B08B

$20

$B40B

$0AAC,X

$03

$B413

$B445

$0AACfX

$3F

$05

A

$0AAl

$0AA0

$B436

$B42B

$B0BC

$02

$0AB4

$B47C

$B7CE

$B47A

$B442

$24

Monitor command: A

(Assemble)

Carry set=error output identifier

CopyOPltoOP3

Clear mnemonic buffer display

Bit 0 for compressed cmd code 0

Set loop counter to 0

Test input buffer for cmd-end,

Not cmd-end, then go on

Display still 0, no commands

No, continue

Jump to input wait loop

Is char, read a <space>?

Yes, read and initialize

Put char, in mnemonic buffer

Mnem. buffer display ptr. +1

3 mnemonic chars, given?

No, get next char.

Displ. pointer to last character

3 characters processed, continue

Read 3 mnem. chars backward

Set cany for subtraction

Alpha char values; A=l,B=2,etc

Counter shifted 5x for 1 bit

Shift 1 bit of the letter value out

of ace into byte pair $AAl-$AA0

The three mnemonic chars, will

be shifted into the byte pair

mentioned above and occupy 3

sets of 5 bits in these bytes

Display <?>; go input wait loop

Set displacemnt of output buffer

Load loop counter into ace

If not equal to 0, then skip

Get cmd parameters in OP1

If 0, then test for cmd-end

Carry set=char. for error output

Load <$> into ace and bring to

209

Abacus

B455:

B458:

B459:

B45B:

B45D:

B45F:

B462:

B464:

B466:

B469:

B46B:

B46D:

B46F:

B471:

B473:

B476:

B477:

B478:

B47A:

B47C:

B47F:

B481:

B483:

B485:

B488:

B489:

B48B:

B48D:

B48F:

B491:

B493:

B496:

B498:

B49A:

B49D:

B4A0:

B4A3:

B4A5:

B4A6:

B4A9:

Software

9D

E8

A5

DO

AO

AD

*C9
90

CC

FO

A5

DO

AO

A9

9D

E8

88

DO

C6

20

FO

C9

FO

9D

E8

EO

90

BO

86

A2

8E

A2

86

AD

20

AE

86

AA

BD

20

AO

62

E5

04

B6

08

05

B4

06

61

02

02

30

AO

F9

7A

E9

OE

20

C2

AO

OA

BA

B3

63

00

Bl

00

9F

Bl

59

AA

64

61

7F

OA

OA

OA

OA

B8

OA

OA

OA

B6

OA

B7

B5

STA

INX

LDA

BNE

LDY

LDA

CMP

BCC

CPY

BEQ

LDA

BNE

LDY

LDA

STA

INX

DEY

BNE

DEC

JSR

BEQ

CMP

BEQ

STA

INX

CPX

BCC

BCS

STX

LDX

STX

LDX

STX

LDA

JSR

LDX

STX

TAX

LDA

JSR

$0AA0,X

* $62

$E>442

$04

$0AB6

$08

$B46B

$0AB4

$B471

* $61

$B471

$02

$30

$0AA0,X

$B473

* $7A

$B8E9

$B48F

$20

$B447

$0AA0,X

$0A

$B447

$B442

* $63

$00

$OAB1

$00

* $9F

$OAB1

$B659

$0AAA

* $64

$B761,X

$B57F

C-128 Internals

output buffer

Displace output buffer +1

Get OPl!s bank byte

>0=error output indicator

Hex division factor

Get number base of operand

Compare w/ <8>

<8--get high addr. (OP1)

Cmp. with loop counter

Equal, then skip

Get high addr. byte of OP1

If not equal to 0, then skip

Set loop counter for null bytes

Load ASCII <0> into ace and

store in assem-cmd temp storage

Incr. assem-cmd length counter

Loop count for OP nullbytes -1

Loop till counter=0

Display pntr on previous char.

Test input buffer for cmd-end,

If cmd-end, then to expression

Char a <SPACE>?

Yes, new parameter expression

in asmblr-cmd temp, storage

Command >9 chars?

No, then get next char.

Yes, then display <?> error

Asmblr-cmd OP2 (low) is length

Byte length of cmd in OP2 (low)

Load X-reg w/ 0 and bring up

Cmd-comparison loop counter

Load X-reg w/ 0 and use as

display for asmblr-cmd buffer

Get cmd-comp. counter

Addr. & length for cmd counter

Get cmd length pointer (0,1,2)

and store in OP2 (high)

Test result for mnem. compare

Byte at mnemonic keyword tab 2

Compare w/ byte in asm buffer

210

Abacus

B4AC:

B4AF:

B4B2:

B4B4:

B4B6:

B4B8:

B4BB:

B4BD:

B4C0:

B4C2:

B4C4:

B4C6:

B4C9:

B4CA:

B4CC:

B4CF:

B4D1:

B4D4:

B4D7:

B4DA:

B4DC:

B4DF:

B4E0:

B4E2 :

B4E4:

B4E7:

B4EA:

B4EC:

B4EE:

B4F0:

B4F3:

B4F6:

B4F8:

B4FA:

B4FC:

B4FE:

B500:

B502:

B503:

Software

BD

20

A2

E0

DO

AC

FO

AD

C9

A9

BO

20

88

DO

OE

90

BD

20

BD

FO

20

CA

DO

FO

20

20

A5

C5

FO

4C

AC

FO

A5

C9

DO

A5

E5

AA

A5

21

7F

06

03

14

AB

OF

AA

E8

30

IE

7C

Fl

AA

OE

14

7F

1A

03

7F

D2

06

7C

7C

63

9F

03

8B

AB

32

64

9D

23

60

66

61

B7

B5

OA

OA

B5

OA

B7

B5

B7

B5

B5

B5

B5

OA

LDA

JSR

LDX

CPX

BNE

LDY

BEQ

LDA

CMP

LDA

BCS

JSR

DEY

BNE

ASL

BCC

LDA

JSR

LDA

BEQ

JSR

DEX

BNE

BEQ

JSR

JSR

LDA

CMP

BEQ

JMP

LDY

BEQ

LDA

CMP

BNE

LDA

SBC

TAX

LDA

$B721,X

$B57F

$06

$03

$B4CC

$0AAB

$B4CC

$0AAA

$E8

$30

$B4E4

$B57C

$B4BD

$0AAA

$B4DF

$B714,X

$B57F

$B71A,X

$B4DF

$B57F

$B4B4

$B4EA

$B57C

$B57C

* $63

* $9F

$B4F3

$B58B

$0AAB

$B52A

* $64

$9D

$B521

* $60

* $6*6

* $61

C-128 Internals

Byte at mnemonic keyword tab 1

Compare w/ byte in asm buffer

Loop counter for address cmp.

3 loops completed?

No, then only addressing cmp.

Get cmd length pointer (0,1,2)

Handle as a 1-byte cmd

Get addressing key

Compare w/ $E8

ASCII for <0> in ace

carry set, in corresponding eval.

Compare w/ byte in asm buffer

Decrement cmd length cnt by 1

If not equal to 0, then skip

Shift addressing key

Bit=O, then skip cmp.

Get addressing char 1 at tab

Compare w/ byte in asm buffer

Get addressing char 2 at tab

If $00, then no comp.

Compare w/ byte in asm buffer

Addressing loop counter -1

Not equal to 0, continue loop

0, continue evaluation

Compare w/ byte in asm buffer

Compare w/ byte in asm buffer

Get stored length of asmblr cmd

Compare w/ display

(asmblr-cmd buffer)

If equal then skip

Increment cmd-loop counter

Get cmd length pointer

If 0, then a 1-byte cmd

Get hi-addr. byte from OP2

and compare it with $9D

Not equal, then skip

Get low operand addr. and

subtract low-cmd addr.

Put result in X-reg

Get high operand addr. and

211

Abacus

B505:

B507:

B509:

B50B:

B50D:

B50F:

B511:

B512:

B513:

B515:

B517:

B519:

B51A:

B51B:

B51C:

B51F:

B521:

B524:

B527:

B528:

B52A:

B52D:

B530:

B533:

Software

E5 67

90 08

DO 6E

E0 82

BO 6A

90 08

A8

C8

DO 64

EO 82

90 60

CA

CA

8A

AC AB

DO 03

B9 5F

20 2A

88

DO F7

AD Bl

20 2A

20 AD

20 7D

OA

00

Bl

OA

Bl

B8

FF

SBC

BCC

BNE

CPX

BCS

BCC

TAY

INY

BNE

CPX

BCC

DEX

DEX

TXA

LDY

BNE

LDA

JSR

DEY

BNE

LDA

JSR

JSR

JSR

* $67

$B511

$B579

$82

$B57 9

$B519

$B579

$82

$B579

$0AAB

$B524

$005F,Y

$B12A

$B521

$0ABl

$B12A

$B8AD

$FF7D

C-128 Internals

subtract high-cmd addr.

To evaluate of backward branch

"BRANCH OUT OF RANGE",<?>

Check whether branch is valid

If off by more than $82 give <?>

In corresponding expression

Copy accu into y-reg and

increment from 0 to 1

Unequal to 0, output <?> error

Compare to $02

Less than 2, then output <?>

Addr. balance: decrement X-reg

Addr. balance: decrement X-reg

Bring value to accumulator

Get cmd-length counter in Y-reg

<>0, then skip

Get value from operand OP1

STA routine for ace in any bank

Decrement cmd length pntr by 1

<>0--skip

Get value from OP1

STA routine for ace in any bank

<CRxcrsr-up>

Kernal PRINT: output string

Monitor constant:

assemble output

B536: 41 20 IB 51 00

B53B:

B53E:

B541:

B544:

B547:

B549:

20 DC B5

EE AB 0A

AD AB 0A

20 52 B9

A9 41

8D 4A 03

JSR $B5DC

INC $0AAB

LDA $0AAB

JSR $B952

LDA # $41

STA $034A

A <SPACE> <Esc-Q>

Generate chars, and address

stagger for next assembly

procedure

Output address and get byte

Increment opcode lngth ptr. by 1

Add length to 'from1 operand

Addition: ace contents + OP3

Load accu with <A> (assemble)

in procedure buffer for next line

212

Abacus

B54C:

B54E:

B551:

B554:

B556:

B559:

B55C:

B55E:

B561:

B564:

B567:

B569:

B56C:

B56F:

B572:

B574:

B576:

B579:

Software

A9

8D

8D

A5

20

8E

A5

20

8D

8E

A5

20

8D

8E

A9

85

4C

4C

20

4B

51

68

D2

4C

67

D2

4D

4E

66

D2

4F

50

08

DO

8B

BC

03

03

B8

03

B8

03

03

B8

03

03

BO

BO

LDA

STA

STA

LDA

JSR

STX

LDA

JSR

STA

STX

LDA

JSR

STA

STX

LDA

STA

JMP

JMP

$20

$034B

$0351

* $68

$B8D2

$034C

* $67

$B8D2

$034D

$034E

* $66

$B8D2

$034F

$0350

$08

* $D0

$B08B

$B0BC

C-128 Internals

B57C:

B57F:

B582:

B584:

B587:

B589:

B58A:

B58B:

B58E:

B590:

B593:

B595:

B598:

20

8E

A6

DD

FO

68

68

EE

FO

4C

E6

AE

60

7F

AF

9F

AO

OA

Bl

E9

96

9F

AF

B5

OA

OA

OA

B4

OA

JSR

STX

LDX

CMP

BEQ

PLA

PLA

INC

BEQ

JMP

INC

LDX

RTS

$B57F

$0AAF

* $9F

$0AA0,X

$B593

$0ABl

$B579

$B496

* $9F

$0AAF

Load accu with <SPACE>

in procedure buffer for next line

in procedure buffer for next line

Bank byte of 'from1 addr. in ace

Ace in 2-byte ASCII: hi=A,lo=X

In procedure buffer for next line

hi-addr byte(OP3)of 'from1 addr

Ace in 2-byte ASCII: hi=A,lo=X

In proc. buffer for next line

In proc. buffer for next line

lo-addr byte(OP3)of 'from' addr

Ace in 2-byte ASCII: hi=A,lo=X

in proc. buffer for next line

in proc. buffer for next line

Keyboard buffer set for

8 chars (=length of proc. line)

Jump to input wait loop

Display <?> , go input wait loop

Compare ace contents w/ a char,

from asmblr-cmd temp, storage

Execute following routine twice

Store x-reg contents

Load asmbr-cmd display pointer

Cmp w/ char from asmblr buffer

If equal, then exit

Get RTS addr. from stack

Get RTS addr. from stack

Increment cmd-comparison loop

>255-output errors

Jump to correspond expression

Asmblr-cmd display pointer +1

Return old X-reg contents

Return to subroutine

213

Abacus Software

B599:

B59B:

B59E:

B5A1:

B5A3:

B5A5:

B5A7:

B5A9:

B5AC:

B5AE:

BO

20

20

90

A9

85

DO

20

90

20

08

01

A7

06

14

60

05

OE

23

7D

B9

B7

B9

FF

BCS

JSR

JSR

BCC

LDA

STA

BNE

JSR

BCC

JSR

$B5A3

$B901

$B7A7

$B5A9

$14

* $60

$B5AE

$B90E

$B5D1

$FF7D

B5B1: OD IB 51 00

C-128 Internals

Monitor command: D

(Disassemble)

No valid 'from1 operand

CopyOPltoOP3

Get OP1 operand

If valid, then send step number

Standard step value $14

(=20 bytes to disassemble)

in low step counter

Uncond jump to disasmblr.

Store diff of OP1-OP3 in OP1

Carry clear=marker for error out

Kernal PRINT: string output

Monitor constant: Clear 1 line

<Cr> <Esc-Q>

B5B5:

B5B8:

B5BA:

B5BD:

B5C0:

B5C3:

B5C6:

B5C9:

B5CC:

B5CE:

B5D1:

B5D4:

B5D6:

B5D9:

B5DC:

B5DF:

B5E2:

20 El FF

F0 14

20 D4 B5

EE AB 0A

AD AB 0A

20 52 B9

AD AB 0A

20 24 B9

B0 E0

4C 8B B0

4C BC B0

A9 2E

20 D2 FF

20 A8 B8

20 92 B8

20 A8 B8

A0 00

JSR

BEQ

JSR

INC

LDA

JSR

LDA

JSR

BCS

JMP

JMP

LDA

JSR

JSR

JSR

$FFE1

$B5CE

$B5D4

$0AAB

$0AAB

$B952

$0AAB

$B924

$B5AE

$B08B

$B0BC

$2E

$FFD2

$B8A8

$B892

JSR $B8A8

LDY # $00

Disassembly dependent on

■from1 operand & step size

Kernal STOP: test for STOP key

If pressed, goto input wait loop

Prep, and output disasmbld line

Increment opcode Igth pntr by 1

and for !from! addr. calc in ace

Addition: ace contents + OP3

Lgth ptr. for step size calc in ace

Subtraction: OP1 - ace contents

Continue disassem. if necessary

Jump to input wait loop

Display <?>; go input wait loop

Load accu with <.>

Kernal BSOUT: char, output

<SPACExCRxcrsr-up>

Output 'from! addr.(OP3) as

5-byte ASCII

<SPACExCRxcrsr-up>

Load displacement for FETCH

214

Abacus

B5E4:

B5E7:

B5EA:

B5EB:

B5EE:

B5EF:

B5F0:

B5F2:

Software

20

20

48

AE

E8

CA

10

20

1A

59

AB

0A

7D

Bl

B6

0A

FF

JSR

JSR

PHA

LDX

INX

DEX

BPL

JSR

$B11A

$B659

$0AAB

$B5FC

$FF7D

128 Internals

B5F5: 20 20 20 00

B5F9:

B5FC:

B5FF:

B602:

B603:

B605:

B607:

B608:

B60A:

B60D:

B60F:

B611:

B613:

B616:

B618:

B61B:

B61D:

B61E:

B621:

B622:

B624:

B627:

B628:

B62A:

4C

20

20

C8

CO

90

68

A2

20

A2

EO

DO

AC

FO

AD

C9

08

20

28

BO

20

88

DO

OE

02

1A

A5

03

E8

03

Al

06

03

17

AB

12

AA

E8

1A

ID

C2

EE

AA

B6

Bl

B8

B6

OA

OA

Bl

B8

OA

JMP

JSR

JSR

INY

CPY

BCC

PLA

LDX

JSR

LDX

CPX

BNE

LDY

BEQ

LDA

CMP

PHP

JSR

PLP

BCS

JSR

DEY

BNE

ASL

$B602

$B11A

$B8A5

$03

$B5EF

$03

$B6A1

$06

$03

$B62A

$0AAB

$B62A

$0AAA

$E8

$B11A

$B641

$B8C2

$B618

$0AAA

LDA routine from any bank

Validity check of opcode bytes

Put result on stack

Get command length loop

Increment length key by 1

Decrement length key by 1

Output cmd value < 0 constant

Kernal PRINT: output string

Monitor constants: 3 spaces

<SPACExSPACExSPACE>

Assembly/disassembly sub.

Skip LDA for routine

LDA routine for ace - any bank

Output ace as 2-byte ASCII

+<SPACE>

Increment Y-reg contents by 1

Compare to $03

<3, then continue loop

Get result from stack

Put 3 chars for mnem. output in

X-reg, and to char, output

Initialize loop count with 6

After 3 loops, the actual address

value will be output

Number of cmd operand bytes

No operand bytes, then skip

Command addr. key

Check for branch

Put carry flag on stack

LDA routine for any bank

Reset carry flag

If carry set, then BRANCH

Ace conveyed as 2-byte ASCII

If cmd has two operand bytes,

then expression of the second bit

is masked by addressing key

215

Abacus

B62D:

B62F:

B632:

B635:

B638:

B63A:

B63D:

B63E:

B640:

Software

90

BD

20

BD

F0

20

CA

DO

60

OE

14

D2

1A

03

D2

CF

B7

FF

B7

FF

BCC

LDA

JSR

LDA

BEQ

JSR

DEX

BNE

RTS

$B63D

$B714,X

$FFD2

$B71A,X

$B63D

$FFD2

$B60F

a*****************************

B641:

B644:

B645:

B647:

B649:

B64A:

B64D:

B64F:

B650:

B652:

B653:

B655:

B657:

B658:

20

18

69

DO

E8

4C

A6

A8

10

CA

65

90

E8

60

4D

01

01

9F

67

01

66

01

B6

B8

JSR

CLC

ADC

BNE

INX

JMP

LDX

TAY

BPL

DEX

ADC

BCC

INX

RTS

$B64D

$01

$B64A

$B89F

* $67

$B653

* $66

$B658

128 Internals

Bit not set, skip

Get char, for addr. type

Kernal BSOUT: output one char

Get char, for addr. type

Not equal to 0—then output

Kernal BSOUT: output one char

Address output loop -1

All 6 loops out

Return to subroutine

Address from BRANCH cmd

Addr. calc. X=high, A=low

Clear carry for addition

Add 1 for low-addr. correction

No overflow skip hi-correction

Add 1 for high correction

Give ace + X-reg. as 4-bytes

Get high addr. of 'from'

operand (OP3)

Bring BRANCH offset in x-reg

BRANCH 'forward1 continues

Decrement high addr. for

'backward'-1

-hbranch offest to low addr(OP3)

No overflow skip hi correction

Overflow correction for hi-addr.

Return from subroutine

B659:

B65A:

B65B:

B65D:

B65E:

B660:

A8

4A

90

4A

B0

C9

0B

17

22

TAY

LSR

BCC

LSR

BCS

CMP

A

$B668

A

$B677

$22

Determine addressing and length

of the test code passed in A

Put test code in Y-reg

Shift bit 0 out & test

If bit 0=0 then OK

Shift & test bit 1

If bit 1=1 then no good

Test whether exit code $89 used

216

Abacus

B664:

B666:

B668:

B669:

B66A:

B66D:

B66F:

B670:

B671:

B672:

B673:

B675:

B677:

B679:

B67B:

B67C:

B67F:

B682:

B684:

B687:

B688:

B68A:

B68B:

B68C:

B68E:

B690:

B692:

B693:

B695:

B696:

B697:

B699:

B69A:

B69C:

B69D:

B69E:

B6A0:

Software

29

09

4A

AA

BD

BO

4A

4A

4A

4A

29

DO

A0

A9

AA

BD

8D

29

8D

98

29

AA

98

A0

EO

FO

4A

90

4A

4A

09

88

DO

C8

88

DO

60

07

80

C3 B6

04

OF

04

80

00

07 B7

AA OA

03

AB OA

8F

03

8A

OB

08

20

FA

F2

AND

ORA

LSR

TAX

LDA

BCS

LSR

LSR

LSR

LSR

AND

BNE

LDY

LDA

TAX

LDA

STA

AND

STA

TYA

AND

TAX

TYA

LDY

CPX

BEQ

LSR

BCC

LSR

LSR

ORA

DEY

BNE

INY

DEY

BNE

RTS

$07

$80

A

$B6C3,X

$B673

A

A

A

A

$0F

$B67B

$80

$00

$B707,X

$0AAA

$03

$0AAB

$8F

$03

$8A

$B69D

A

$B69D

A

A

$20

$B696

$B692

128 Internals

Mask bits 3-7

Mask bit 7 in

Divide ace contents by 2

and display in X-reg

Load byte as addressing ref. tab

If remainder left from div,, skip

Copy contents of the

upper nibble

(bits 4-7) into

lower nibble (bits 4-3)

Mask out upper nibble (Bit 4-7)

Not equal 0 is valid

If code is invalid, load Y w/ $80

and ace with $00

Displacement not transfer to X

Get addressing key from tab

and put in $0AAA

Mask out bits 2-7

Store bits 0,1 (cmd. length)

Copy test code in ace

Mask out bits 4,5,6

Store masked out value in X

Copy test code in ace

Initialize loop counter with 3

Cmp masked-out value w/ $8A

Equal, then skip

Divide ace contents by 2

If no remainder, then skip

Divide ace contents by 2

Divide ace contents by 2

Set bit 5 in ace

Decrement loop counter by 1

Not equal to 0, continue loop

Loop number incremented by 1

Decrement loop counter by 1

Not equal to 0, divide further

Return from subroutine

217

Abacus Software 128 Internals

B6A1:

B6A2:

B6A5:

B6A7:

B6AA:

B6AC:

B6AE:

B6B0:

B6B2:

B6B4:

B6B5:

B6B6:

B6B8:

B6BA:

B6BD:

B6BE:

B6C0:

A8

B9

85

B9

85

A9

AO

06

26

2A

88

DO

69

20

CA

DO

4C

21

63

61

64

00

05

64

63

F8

3F

D2

EC

A8

B7

B7

FF

B8

TAY

LDA

STA

LDA

STA

LDA

LDY

ASL

ROL

ROL

DEY

BNE

ADC

JSR

DEX

BNE

JMP

$B721,

* $63

$B761,

* $64

$00

$05

* $64

* $63

A

$B6B0

$3F

$FFD2

$B6AC

$B8A8

Y

Y

B6C3:

B6CB:

B6D3:

B6DB:

B6E3:

B6EB:

B6F3:

B6FB:

B703:

40

30

40

40

00

11

10

10

62

02

22

02

02

22

22

22

22

13

45

45

45

45

44

44

44

44

78

03 DO

33 DO

33 DO

B3 DO

33 DO

33 DO

33 DO

33 DO

A9

08 40

08 40

08 40

08 40

8C 44

8C 44

08 40

08 40

09

09

09

09

00

9A

09

09

B707:

B70B:

B70F:

B713:

B714:

00

00

91

85

9D

21

00

92

81

59

86

82

4D

4A

.Byte $9D

Prepare and send a char, for

mnemonic display

Cmd code as display to Y-reg

Get byte from mnemonic table 1

and put in OP2 (low)

Get byte from mnemonic table 2

and put into OP2 (high)

Load accu w/ 0

Shift 5 bits of OP2 2-byte addr.

to the left; put bits into accu

Loop until all five

bits are shifted. The

addition of

the number $3F gives a valid

char or a <?>

Kernal BSOUT: output one char

3 loops for the 3 letters from the

16-bit value in addr lo/hi in OP2

<SPACExCRxcrsr-up>:RTS

Address reference table

Address types & length key

-l/#$ -2/*$ -2/$ -3

-1/ -l/($,X)-2/($),Y-2

*$,X-2/$,X-3/$,Y-3/($) -3

*$,Y-2

Backspace control code

218

Abacus Software 128 Internals

B715: 2C 29 2C 23 28 24

B71B: 59 00 58 24 24 00

B721:

B729:

B731:

B739:

B741:

B749:

B751:

B759:

1C

9D

00

24

00

AE

15

84

8A

8A

29

53

1A

AE

9C

13

1C

ID

19

IB

5B

A8

6D

34

23

23

AE

23

5B

AD

9C

11

5D

9D

69

24

A5

29

A5

A5

8B

8B

A8

53

69

00

69

69

IB

ID

19

19

24

7C

29

23

Al

Al

23

Al

24

00

53

A0

B761:

B769:

B771:

B779:

B781:

B789:

B791:

B799:

D8

54

00

74

00

44

1A

C4

62

44

B4

F4

AA

68

1A

CA

5A

C8

08

CC

A2

B2

26

26

48

54

84

4A

A2

32

26

48

26

68

74

72

74

B2

72

44

62

44

B4

F2

74

00

72

44

94

E8

28

A4

74

22

88

A2

88

94

6E

8A

72

00

C8

C8

B7A1: 0D 20 20 20

B7A5:

B7A7:

B7AA:

B7AC:

B7AF:

B7B1:

B7B3:

C6

20

BO

20

DO

C6

AD

7A

CE

16

E7

09

7A

B4

B7

B8

OA

DEC

JSR

BCS

JSR

BNE

DEC

LDA

* $7A

$B7CE

$B7C2

$B8E7

$B7BA

* $7A

$0AB4

Display addressing modes

<,><)><,><#><(> <$>

<Y>< ><X><$ ><$><>

Mnemonic keyword table 1

BRK PHP BPL CLC JSR PLP BMI SEC

RTIPHA BVC CLIRTS PLA BVS SEI

??? DEY BCC TYA LDY TAY BCS CLV

CPYINY BNE CLD CPXINX BEQ SED

??? BIT JMP JMP STY LDY CPY CPX

TXA TXS TAX TSX DEX ??? NOP ???

ASL ROL LSR ROR STX LDX DEC INC

ORAANDEOR ADC STA LDA CMP SBC

Mnemonic keyword table 2

A byte in table 1 returns,

with the corresponding

value in table 2, a

16-bit value coded as a 3-

character mnemonic. The 16-

bit argument is divided into

three sections of 5 bits.

Bit 0 is unused in coding.

Monitor constant: 3 spaces

<CRxSPACExSPACExSPACE>

Test for valid separator between

the command's operands

Input buff pntr to previous char.

Get OP1 operand

Carry set=error signal

Renew last-read char.

If cmd-end, then continue

Input buff pntr to previous char.

Get error-recognition flag

219

Abacus

B7B6:

B7B8:

B7BA:

B7BC:

B7BE:

B7C0:

B7C2:

B7C3:

B7C4:

Software

DO 11

FO OD

C9 20

FO OB

C9 2C

FO 07

68

68

4C BC BO

BNE

BEQ

CMP

BEQ

CMP

BEQ

PLA

PLA

JMP

$B7C9

$B7C7

$20

$B7C9

$2C

$B7C9

$B0BC

B7C7:

B7C8:

38

24

SEC

.Byte $24

128 Internals

If not equal to 0, then OK exit

No valid operand, then error exit

Was char, read a <SPACE>?

Valid separator, OK exit

Was the char, a comma?

Valid separator, OK exit

The addresses on the stack are

cleared, <?> is displayed, and

prg goes to the input wait loop

Exit for error in cmd-operands

Set carry=error signal

skip to $B7CA

B7C9: 18 CLC

B7CA: AD B4 OA LDA

B7CD: 60 RTS

$0AB4

B7CE:

B7D0:

B7D2:

B7D4:

B7D6:

B7D9:

B7DA:

B7DB:

B7DC:

B7DD:

B7E0:

B7E2:

B7E5:

B7E7:

B7E9:

A9

85

85

85

8D

8A

48

98

48

20

DO

4C

C9

F0

A2

00

60

61

62

B4 0A

E9 B8

03

7E B8

20

F4

03

LDA

STA

STA

STA

STA

TXA

PHA

TYA

PHA

JSR

BNE

JMP

CMP

BEQ

LDX

$00

* $60

* $61

* $62

$0AB4

$B8E9

$B7E5

$B87E

$20

$B7DD

$03

Command operand/separator OK

Carry clear=signal for OK

Load error-recognition help flag

What appears to be RTS is the

command entry

Init. & evaluation of a command

parameter in OP1

Load ace w/ $0 for param. init.

Clear the 3-byte cmd parameter

No. 1 (OP1), in zero page from

$62 (highest) to $60 (lowest)

Temp, memory for error control

Put X-reg in accumulator

and save on stack

Put Y-reg in accumulator

and save on stack

Test input buffer for cmd-end,

<:>,<?> .No end marker, go on

Exit routine w/ clear-carry

marker. Was it a <SPACE> ?

Yes, then read next char.

Get display for 4 conver chars.

220

Abacus

B7EB:

B7EE:

B7F0:

B7F1:

B7F3:

B7F4:

B7F6:

B7F9:

B7FC:

B7FF:

B802:

B804:

B805:

B807:

B809:

B80B:

B80D:

B80F:

B811:

B813:

B816:

B819:

B81B:

B81D:

B820:

B822:

B824:

B826:

B828:

B82B:

B82C:

B82E:

B831:

B833:

B835:

B837:

B839:

B83A:

B83C:

B83E:

Software

DD

FO

CA

10

E8

C6

BC

BD

8D

20

FO

38

E9

90

C9

90

E9

C9

BO

8D

CC

90

FO

EE

CO

DO

A2

B5

9D

CA

10

AE

06

26

26

BO

CA

DO

CO

DO

F5

06

F8

7A

8A

8E

B6

E9

7A

30

75

OA

06

07

10

6B

B5

B5

61

5F

B4

OA

OA

02

60

B7

F8

B6

60

61

62

43

F5

OA

22

BO

B8

B8

OA

B8

OA

OA

OA

OA

OA

CMP

BEQ

DEX

BPL

INX

DEC

LDY

LDA

STA

JSR

BEQ

SEC

SBC

BCC

CMP

BCC

SBC

CMP

BCS

STA

CPY

BCC

BEQ

INC

CPY

BNE

LDX

LDA

STA

DEX

BPL

LDX

ASL

ROL

ROL

BCS

DEX

BNE

CPY

BNE

$B0F5,

$B7F6

$B7EB

* $7A

$B88A,

$B88E,

$0AB6

$B8E9

$B87E

$30

$B87E

$0A

$B813

$07

$10

$B87E

$0AB5

$0AB5

$B87C

$B87C

$0AB4

$0A

$B82E

$02

* $60,

$0AB7,

$B826

$0AB6

* $60

* $61

* $62

$B87C

$B831

$0A

$B862

X

X

X

rX

,X

128 Internals

Check for conversion (%&+$)

until conversion char, is found

Display calc. table - 1

Loop till table through

X-reg set to $0 (= HEX)

Displacement ptr to input buff -1

Load Y-reg w/ num system base

Load accu w/ multip. factor

for the num. system, & store it

Testinp. buf cmd-end, <:>, <?>

Exit from operand determination

Set carry for subtraction

Convert to fixed-point values

If char <0 then exit

Was char, a no. between 0 - 9 ?

Yes, jump to hex adaptation

Adaptation of hex numbers A - F

If value isn't between 0 - F, then

Exit from operand determ't rtne.

Store established hex numbers

Compare base w/ hex value

If base < char, then error

If base = char, then error

Byte for error recognition +1

Was decimal input chosen ?

No, then jump to decimal init.

Set loop counter to 2

Copy the 3-byte operand (OP1)

in the 3-byte temp operand for

decimal address input

($0AB9=highest, $0AB7= lowest)

get counter for multip. factor

3-byte

operand (OP1)

multiplied by 2

If overflow present, then error

Loop counter mult by 2 -1

Loop to OP1 multiplication

Is number base the dec. system?

No, jump to decimal conversion

221

Abacus

B840:

B843:

B846:

B849:

B84B:

B84E:

B850:

B852:

B855:

B857:

B859:

B85C:

B85E:

B860:

B862:

B863:

B866:

B868:

B8 6A:

B86B:

B8 6D:

B86F:

B870:

B872:

B874:

B876:

B878:

°B87A:

Software

OE B7

2E B8

2E B9

BO 31

AD B7

65 60

85 60

AD B8

65 61

85 61

AD B9

65 62

85 62

BO 1A

18

AD B5

65 60

85 60

8A

65 61

85 61

8A

65 62

85 62

BO 06

29 FO

DO 02

FO 83

OA

OA

OA

OA

OA

OA

OA

ASL

ROL

ROL

BCS

LDA

ADC

STA

LDA

ADC

STA

LDA

ADC

STA

BCS

CLC

LDA

ADC

STA

TXA

ADC

STA

TXA

ADC

STA

BCS

AND

BNE

BEQ

$0AB7

$0AB8

$0AB9

$B87C

$0AB7

* $60

* $60

$0AB8

* $61

* $61

$0AB9

* $62

* $62

$B87C

$0AB5

* $60

* $60

* $61

* $61

* $62

* $62

$B87C

$F0

$B87C

$B7FF

B87C:

B87D:

38

24

SEC

.Byte $24

B87E:

B87F:

B882:

B883:

18

8C B6

68

A8

OA

CLC

STY

PLA

TAY

$0AB6

128 Internals

Decimal conversion: the 3-byte

temp operand in $AB9 - $AB7

is multiplied by 2

If overflow occurs, then error

Addition of 3-byte

temp operand in

memory locations

$0AB9-$0AB8-$0AB7

to contents of 3-byte

operand OP1 under observation

for possible overflow.

Result of the addition will be

put into OP1.

If overflow occurs, then error

Clear w/ carry (for bin,oct,hex)

Get determined char, value

Add values of least significant

OP1 place

Load accumulator with 0

Check for overflow by adding of

least significant OP1 place

Load accu with 0

Check for overflow at

place of OP1 addition

If overflow occurs, then error

Mask out lower nibble (B. 0-3)

If top nibble <> 0, then error

evaluate next operand position

Exit param. evaluate w/ error

Set carry = error-found marker

Skip to $B87F

Exit parameter evaluation if OK

Clear carry = param-OK marker

Store base of number system

Restore old Y contents from

stack

222

Abacus Software 128 Internals

B884:

B885:

B886:

B889:

68

AA

AD B4 OA

60

PLA

TAX

LDA $0AB4

RTS

B88A: 10 OA 08 02

B88E: 04 03 03 01

B892:

B894:

B897:

B898:

B89B:

B89D:

B89F:

B8A0:

B8A1:

B8A4:

A5 68

20 D2 B8

8A

20 D2 FF

A5 66

A6 67

48

8A

20 C2 B8

68

LDA * $68

JSR $B8D2

TXA

JSR $FFD2

LDA * $66

LDX * $67

PHA

TXA

JSR $B8C2

PLA

B8A5:

B8A8:

B8AA:

B8AD:

20

A9

4C

20

C2

20

D2

7D

B8

FF

FF

JSR

LDA

JMP

JSR

$B8C2

$20

$FFD2

$FF7D

Restore old X contents from

stack

Load ace with error help pointer

Return from subroutine

Number system bases

Hex, decimal, octal, binary

Number of multiplications with

the factor 2 for number systems

Hex, decimal, octal, binary

OP3 contents displayed as

5-byte ASCII

Load A w/ hi (bank) byte (OP3)

Ace in 2-byte ASCII: hi=A,lo=X

ASCII code of low value in ace

Kernal BSOUT: print a character

Load A w/ lo(Addr-lo)byte(OP3)

Load Xmid(Addr-hi)byte(OP3)

Store ace on stack

Addr-hi value from OP3 in ace

Display ace in 2-char ASCII

Load ace again w/ addr-lo (OP3)

Prepare ace in ASCII, output,

output <Blank>, for start-of-Une

Ace displayed as 2-char ASCII

Put <Blank> in accumulator

Kernal BSOUT: output a char

Kernal PRIMM: output string

223

Abacus Software 128 Internals

B8B0: OD 91 00

B8B3: 60 RTS

B8B4: A9 OD LDA # $0D

B8B6: 4C D2 FF JMP $FFD2

B8B9: 20 7D FF JSR $FF7D

B8BC: OD IB 51 20 00

B8C1: 60 RTS

B8C2:

B8C5:

B8C8:

B8CB:

B8CC:

B8CF:

8E

20

20

8A

AE

4C

AF

D2

D2

AF

D2

0A

B8

FF

OA

FF

STX

JSR

JSR

TXA

LDX

JMP

$0AAF

$B8D2

$FFD2

$0AAF

$FFD2

B8D2:

B8D3:

B8D6:

48

20

AA

DC B8

PHA

JSR

TAX

$B8DC

Monitor output constants

<Cr> <CrsrUp>

End of output routine

Return from subroutine

<Cr> <Cr> <Esc-Q> blank

output

Load <Cr> code into accu.

Kernal BSOUT: output a char

Kernal PRIMM: output string

Monitor constants for carriage

return and clear next line, blank

<Cr> <Esc-Q> Blank

End of output routine

Return to subroutine

Convert ace contents contents to

2-byte char, and output via

BSOUT

Store old X-reg contents

Ace in 2-byte ASCII: hi=A,lo=X

Kernal BSOUT: output a char

Load char, from X into accu.

Restore X-register

Kernal BSOUT: output a char

Split ace contents and convert to

2-byte ASCII code (X=lo, A=hi)

Store ace contents temporarily

Convert low nibble to ASCII

ASCII for low nibble in X-reg

224

Abacus

B8D7:

B8D8:

B8D9:

B8DA:

B8DB:

Software

68

4A

4A

4A

4A

PLA

LSR

LSR

LSR

LSR

A

A

A

A

128 Internals

Restore ace contents

Shift right 4 times so that

the highest nibble (bits 4-7) is

shifted into the lower nibble

(bits 0-3) position

B8DC:

B8DE:

B8E0:

B8E2:

B8E4:

B8E6:

29

C9

90

69

69

60

OF

OA

02

06

30

AND

CMP

BCC

ADC

ADC

RTS

$0F

$0A

$B8E4

$06

$30

B8E7: C6 7A DEC * $7A

B8E9:

B8EC:

B8EE:

B8F1:

B8F3:

B8F5:

B8F7:

B8F9:

B8FA:

B8FC:

B8FF:

B900:

8E

A6

BD

F0

C9

F0

C9

08

E6

AE

28

60

AF 0A

7A

00' 02

06

3A

02

3F

7A

AF 0A

STX

LDX

LDA

BEQ

CMP

BEQ

CMP

PHP

INC

LDX

PLP

RTS

$0AAF

* $7A

$0200,X

$B8F9

$3A

$B8F9

$3F

* $7A

$0AAF

Convert the lower nibble in the

ace to ASCII code

Mask high nibble out (bits 4-7)

Is it a number from 0-9?

Yes, create ASCII code

Character adaptation for A-F

Generate ASCII for ace contents

Return from subroutine

Get 1 char, from input buffer

and check for cmd-end,<:>,<?>

equal flag.

Display to input buffer -1 (like

CHRGOT)

Store X-reg contents

Load X-reg w/ display to in. buf

Get char, from cmd input buffer

Has $00 (cmd-end) been found?

Is char, read a <:> ?

Yes, exit with set equal flag

Is char, read a <?> ?

Store status of equal flag

Displ. to input buffer* 1 (next

char.). Restore X-register

Restore equal flag status

Return from subroutine

225

Abacus Software 128 Internals

B901:

B903:

B905:

B907:

B909:

B90B:

B90D:

A5

85

A5

85

A5

85

60

60

66

61

67

62

68

LDA

STA

LDA

STA

LDA

STA

RTS

* $60

* $66

* $61

* $67

* $62

* $68

B90E:

B90F:

B911:

B913:

B915:

B917:

B919:

B91B:

B91D:

B91F:

B921:

38

A5

E5

85

A5

E5

85

A5

E5

85

60

60

66

60

61

67

61

62

68

62

SEC

LDA

SBC

STA

LDA

SBC

STA

LDA

SBC

STA

RTS

* $60

* $66

* $60

* $61

* $67

* $61

* $62

* $68

* $62

B922:

B924:

B927:

B928:

B92A:

B92D:

B92F:

B931:

B933:

B935:

B937:

A9 01

8D AF 0A

38

A5 60

ED AF 0A

85 60

A5 61

E9 00

85 61

A5 62

E9 00

LDA

STA

SEC

LDA

SBC

STA

LDA

SBC

STA

LDA

SBC

* $01

$0AAF

* $60

$0AAF

* $60

* $61

* $00

* $61

* $62

* $00

Copy contents of OPl

($62-$61-$60)

intoOP3($68-$67-$66)

Get OPl lo(addr-lo) and copy

into OP3 lowest (addr-lo)

Get OPl middle (addr-hi) and

copy into OP3 middle (addr-hi)

OPl highest (bank-byte) copies

into OP3 highest (bank-byte)

Return to subroutine

Store diff. OP1-OP3 in OPl

Set carry for subtraction

Load accu with OPl lowest

Subtract OP3 lowest from it

Store result in OPl lowest

Load ace w/ OPl middle

Subtr OP3 middle (+ underflow)

Store result in OP3 middle

Load ace w/ OPl highest

Subtr OP3 highest (+underflow)

Store result in OPl highest

Return from subroutine

Subtraction: OPl - Minuend in

$0AAF

Load ace w/1 and store as

Minuend in $0AAF

Set carry for subtraction

Load accu w/ OPl Lowest

Subtr minuend from OPl lowest

Write result of subtr, back

Load ace w/ OPl middle

Note underflow of lowest subtr.

Write result of subtr. back

Load ace w/ OPl highest

Note underlow of middle subtr.

226

Abacus Software 128 Internals

B939: 85 62 STA

B93B: 60 RTS

$62

B93C:

B93D:

B93F:

B941:

B943:

B945:

B947:

B949:

B94B:

B94D:

B94F:

38

A5

E9

85

A5

E9

85

A5

E9

85

60

63

01

63

64

00

64

65

00

65

SEC

LDA

SBC

STA

LDA

SBC

STA

LDA

SBC

STA

RTS

#

#

*

#

*

$63

$01

$63

$64

$00

$64

$65

$00

$65

Write result of subtr. back

Return from subroutine

Subtraction of constant 1 from

operand 2 (OP2) in $65-$64-$63

Set cany for subtraction

Load ace w/ OP2 lowest

Subtract 1 from it

Write result of subtr, back

Load ace w/ OP2 middle

Note undeflow of lowest subtr.

Write result of subtr. back

Load ace w/ OP3 highest

Note underflow of middle subtr.

Write result of subtr. back

Return from subroutine

B950:

B952:

B953:

B955:

B957:

B959:

B95B:

B95D:

B95F:

A9

18

65

85

90

E6

DO

E6

60

01

66

66

06

67

02

68

LDA

CLC

ADC

STA

BCC

INC

BNE

INC

RTS

$01

* $66

* $66

$B95F

* $67

$B95F

* $68

Addition of ace contents to OP3

Load ace w/ addition constant 1

Clear carry for addition

Add contents of OP3 lowest

Write result of addition back

If no overflow, then return

Incr.. OP3 middle if overflow

If no overflow, then return

Incr. OP3 highest for overflow

Return from subroutine

Subtr. of constant 1 from OP3

B960:

B961:

B963:

B965:

B967:

B969:

B96B:

38

A5

E9

85

A5

E9

85

66

01

66

67

00

67

SEC

LDA

SBC

STA

LDA

SBC

STA

* $66

$01

* $66

* $67

$00

* $67

Set carry for subtraction

Load ace w/ OP3 lowest

Subtract constant 1

Write result

Load ace w/ OP3 middle

Take underflow into account

Write result

227

Abacus Software 128 Internals

B96D:

B96F:

B971:

B973:

A5 68

E9 00

85 68

60

LDA *■$68

SBC # $00

STA * $68

RTS

B974:

B976:

B978:

B97A:

B97C:

B97E:

B980:

B982:

BO 0C

A5 60

A4 61

A6 62

85 04

84 03

86 02

60

BCS

LDA

LDY

LDX

STA

STY

STX

RTS

$B982

* $60

* $61

* $62

* $04

* $03

*' $02

B983:

B985:

B988:

B98B:

B98D:

B98F:

B992:

B994:

B997:

B999:

B99C:

B99F:

B9A1:

B9A3:

BO

20

20

BO

A5

8D

A5

8D

A5

8D

20

A5

85

A5

2A

01

A7

22

60

B7

61

B8

62

B9

OE

60

63

61

B9

B7

OA

OA

OA

B9

BCS

JSR

JSR

BCS

LDA

STA

LDA

STA

LDA

STA

JSR

LDA

STA

LDA

$B9AF

$B901

$B7A7

$B9AF

* $60

$0AB7

* $61

$0AB8

* $62

$0AB9

$B90E

* $60

'* $63

*" $61

Load ace w/ OP3 highest

Account for underflow

Write result

Return from subroutine

Copy (for carry clear) the

contents of OPl into zero page

memory for Bank-no, PC-hi,

PC-lo

Return if cany set

Load ace w/OPl lo (addr-lo)

Load Y-reg w/OPl mid (addr-hi)

Load X-reg w/OPl hi (bnk-byte)

Bring in Z-P byte for PC-Lo

Bring in Z-P byte for PC-Hi

Bring in Z-P byte for bank-no

Return from subroutine

Put "from" operand in OP3

Get "to" operand in OPl

Copy "to" operand in OPH

Form difference of OP1-OP3

& store "step number" in OPl

Copy "step number" in OP2

Exit if error in command param

Copy contents of OPl into OP3

Get "to" operand in OPl

"to" operand invalid, error exit

Copy the contents

of the 3-byt^ operand

OPl into the 3-byte

temp operand in

memory locations

$0AB9-$0AB8-$0AB7

Difference:OPl-OP3 in OPl

Copy the

contents of

3-byte OPl

228

Abacus

B9A5:

B9A7:

B9A9:

B9AB:

B9AD:

B9AE:

Software

85

A5

85

90

18

24

64

62

65

02

STA

LDA

STA

BCC

CLC

.Byte

* $64

* $62

* $65

$B9AF

$24

B9AF:

B9B0:

38

60

SEC

RTS

128 Internals

operand

in the OP2

operand

If OP1 > OP3, then error exit

Clear carry as marker for OK

Skip to $B9B0 (RTS)

Routine exit for error

encountered

Set carry = error-found marker

Return from the subroutine

B9B1:

B9B4:

B9B7:

B9B9:

B9BC:

B9BE:

B9C0:

B9C3:

B9C4:

B9C7:

B9C9:

B9CB:

B9CE:

B9D1:

B9D3:

B9D6:

B9D9:

B9DB:

B9DD:

B9DF:

B9E2:

B9E5:

B9E7:

B9EA:

20

20

A9

20

A5

F0

20

8A

20

A5

A6

20

20

A9

20

20

A9

A2

A0

20

20

A9

20

A9

A5

B9

24

D2

62

07

D2

D2

60

61

9F

B9

2B

D2

07

00

08

03

5D

B9

26

D2

00

B7

B8

FF

B8

FF

B8

B8

FF

BA

BA

B8

FF

JSR

JSR

LDA

JSR

LDA

BEQ

JSR

TXA

JSR

LDA

LDX

JSR

JSR

LDA

JSR

JSR

LDA

LDX

LDY

JSR

JSR

LDA

JSR

LDA

$B7A5

$B8B9

$24

$FFD2

* $62

$B9C7

$B8D2

$FFD2

* $60

* $61

$B89F

$B8B9

$2B

$FFD2

$BA07

$00

$08

$03

$BA5D

$B8B9

$26

$FFD2

$00

Output for conversion command

(&%+$)

Get the conversion value in OP1

output <Cr> <Esc-Q> <space>

Load accu with <$>

Kernal BSOUT: output a char.

Load hi of the 3-byte conv.value

If $00, suppress leading zeros

Ace in 2-byte ASCII: hi=A,lo=X

ASCII for low nibble in ace

Kernal BSOUT: output a char

Load lo of the 3-byte conv.value

Load mid of 3-byte conv value

Output theses as 4 ASCII chars

output <Cr> <Esc-Q> <space>

Load ace with <+>

Kernal BSOUT: output a char

Convert OP1 to decimal

Marker for leading-zero suppres

Output 8 characters

Every 4 bits is an output digit

Output AA0-AA3 as a decimal #

Output <Cr> <Esc-Q) <space>

Load ace with <&>

Kernal BSOUT: output a char

Marker for leading-zero suppres

229

Abacus

B9EC:

B9EE:

B9F0:

B9F3:

B9F6:

B9F8:

B9FB:

B9FD:

B9FF:

BA01:

BA04:

Software

A2

AO

20

20

A9

20

A9

A2

AO

20

4C

08

02

47

B9

25

D2

00

18

00

47

8B

BA

B8

FF

BA

BO

LDX

LDY

JSR

JSR

LDA

JSR

LDA

LDX

LDY

JSR

JMP

$08

$02

$BA47

$B8B9

$25

$FFD2

$00

$18

$00

$BA47

$B08B

C-128 Internals

BA07:

BAOA:

BAOC:

BAOE:

BAH:

BA12:

BA14:

BA17:

BA19:

BA1A:

BA1B:

BA1C:

BA1E:

BA20:

BA22:

BA24:

BA25:

BA27:

BA2A:

BA2D:

BA30:

BA31:

BA33:

BA34:

20

A9

A2

9D

CA

10

EE

AO

08

78

F8

46

66

66

90

18

A2

BD

7D

9D

CA

10

18

A2

01

00

07

AO

FA

A7

17

68

67

66

OF

03

A4

AO

AO

F4

03

B9

OA

OA

OA

OA

OA

JSR

LDA

LDX

STA

DEX

BPL

INC

LDY

PHP

SEI

SED

LSR

ROR

ROR

BCC

CLC

LDX

LDA

ADC

STA

DEX

BPL

CLC

LDX

$B901

$00

$07

$0AA0,X

$BA0E

$0AA7

$17

* $68

$67

$66

$BA33

$03

$0AA4,X

$0AA0,X

$0AA0,X

$BA27

$03

Output 8 characters

Every 3 bits is an output digit

Output AA0-AA3 as an octal #

Output <Cr> <Esc-q> <space>

Load accumulator with <%>

Kernal BSOUT: output a char

Marker leading-zero suppression

Output 18 characters

Every bit is an output digit

Output AA0-AA3 in binary

Jump to input wait loop

Convert contents of OP1 to an

8-place decimal number in

AA0-AA4

Copy contents of OP1 into OP3

Clear AAO-AA3 for

decimal number

Clear AA4-AA7 as temp counter

for decimal conversion

Init onefs place of temp counter

with <1>

Loop cntr for conversion steps

Store dec. and interrupt status

Disable all system interrupts

Decimal mode ON

Divide 3-byte value

inOP3

by<2>

NO REMAINDER-skip dec, add

Clear carry for decimal addition

If a remainder is left from the

division, add the contents

of the four-byte temp counter

which is held (as power of 2)

in output memory

(4 bytes=8 digits)

Clear carry for decimal addition

Multiply contents of 4-byte

230

Abacus

BA36:

BA39:

BA3C:

BA3F:

BA40:

BA42:

BA43:

BA45:

BA46:

Software

BD

7D

9D

CA

10

88

10

28

60

A4

A4

A4

F4

D7

OA

OA

OA

LDA

ADC

STA

DEX

BPL

DEY

BPL

PLP

RTS

$0AA4,X

$0AA4,X

$0AA4,X

$BA36

$BA1C

C-128 Internals

BA47:

BA48:

BA4A:

BA4D:

BA4F:

BA52:

BA54:

BA57:

BA59:

BA5C:

48

A5

8D

A5

8D

A5

8D

A9

8D

68

60

A2

61

Al

62

AO

00

A3

OA

OA

OA

OA

PHA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

PLA

* $60

$0AA2

* $61

$0AAl

* $62

$0AA0

$00

$0AA3

BA5D:

BA60:

BA63:

BA66:

BA68:

BA6B:

BA6E:

BA71:

BA74:

BA75:

BA7 6:

BA78:

BA79:

8D

8C

AC

A9

OE

2E

2E

2E

2A

88

10

A8

DO

B4

B6

B6

00

A3

A2

Al

AO

FO

09

OA

OA

OA

OA

OA

OA

OA

STA

STY

LDY

LDA

ASL

ROL

ROL

ROL

ROL

DEY

BPL

TAY

BNE

$0AB4

$0AB6

$0AB6

$00

$0AA3

$0AA2

$0AAl

$0AA0

A

$B&68

$BA84

counter by <2>

The contents of the temp counter

are always the power-of-two of

the bit being processed in OP3

Decrement loop counter by 1

until all steps are processed

amounts to an SED &CLI cmd

Return from subroutine

Convert 3-byte OP1 operand to

4-byte output operand OPA

Put ace contents on stack

Copy OP1 (low-byte) into

OPA (middle-low-byte)

Copy OP1 (middle) into

OPA (middle-high)

Copy OP1 (high) into

OPA (high)

Load ace with 00 and

copy into OPA (low)

Restore ace contents from stack

Output of the OPA operand

corresponds to X & Y registers

Set flag for zero-suppression

Store bit # for 1 output digit

Get bit # for 1 output digit

Initialize ace as output storage

Shift contents of

4-byte output operand

one bit position to

the left. Store

MSB in accu

Bit counter for 1 output digit -1

Loop until a digit is in ace

Secure output digit in Y

If not equal to 0, then output

231

Abacus

BA7B:

BA7D:

BA7F:

BA82:

BA84:

BA87:

BA89:

BA8C:

BA8D:

BA8F:

Software

EO 01

F0 05

AC B4 OA

FO 08

EE B4 OA

09 30

20 D2 FF

CA

DO D4

60

CPX

BEQ

LDY

BEQ

INC

ORA

JSR

DEX

BNE

RTS

$01

$BA84

$0AB4

$BA8C

$0AB4

$30

$FFD2

$BA63

••a***************************

BA90:

BA92:

BA94:

DO 03

A2 08

2C

BNE

LDX

$BA95

$08

.Byte $2C

C-128 Internals

Test for 1st place

Yes, output digit in any case

Load zero-suppression flag

Still active, don't output zero

Turn off zero suppression

Load ace with <space> char.

Kernal BSOUT: output a char

Loop counter for num. of digits

Not equal 0-output next digit

Return from subroutine

Monitor command: @

(Disk command)

Device addree identifier present

Set standard device address (8)

skip to $BA97

BA95:

BA97:

BA99:

BA9B:

BA9D :

BA9F:

BAA1:

BAA3:

BAA5:

BAA7:

BAA8:

BAAB:

BAAE:

BAB0:

BAB2:

BAB4:

BAB6:

A6

E0

90

E0

B0

86

A9

85

85

AA

20

20

C6

C9

F0

A9

A6

60

04

65

IF

61

60

00

62

B7

68 FF

E9 B8

7A

24

4F

00

60

LDX

CPX

BCC

CPX

BCS

STX

LDA

STA

STA

TAX

JSR

JSR

DEC

CMP

BEQ

LDA

LDX

* $60

$04

$BB00

$1F

$BB00

* $60

$00

* $62

* $B7

$FF68

$B8E9

* $7A

$24

$BB03

$00

* $60

Disk command routine with

parameter for device address

Get device # from OP1 (low)

Device number <4 is invalid

Display <?>~go input wait loop

Device address >30 is invalid

Display <?>~go input wait loop

Store device # in OP1 (low)

Load bank # for LSV & filename

Store in OP1 bank byte

Set filename length to 0

Clear ace + X-reg for SETBNK

Kernal SETBNK: Bank # for

LSV+filename

Read a char, from input buffer

Displ. pointer input buf -1 (like

CHRGOT)

Is char, read a <$> ?

Yes, then output directory

Logical file number (0) in ace

Get device # from OP1 (low)

232

Abacus

BAB8:

BABA:

BABD:

BACO:

BAC2 :

BAC4:

BAC7:

BAC9:

BACB:

BACD:

BADO:

BAD2:

BAD5:

BAD7:

BADA:

BADD:

BADF:

BAE2:

BAE4:

BAE7:

BAEA:

BAEC:

BAEE:

BAFO:

BAF2:

BAF4:

BAF7:

BAF9:

BAFA:

BAFD:

BBOO:

•*■* * * *^ 7V « ^ A

BB03:

BB05:

BB07:

BB08:

BB09:

BBOA:

Software

AO

20

20

BO

A2

20

BO

A6

E6

BD

FO

20

90

20

20

A2

20

BO

20

20

C9

FO

A5

29

FO

20

A9

38

20

4C

4C

AO

A6

CA

C8

E8

BD

OF

BA

CO

32

00

C9

2B

7A

7A

00

05

D2

F2

CC

B4

00

C6

10

CF

D2

OD

06

90

BF

FO

CC

00

C3

8B

BC

it 1c jc

FF

7A

00

FF

FF

FF

02

FF

FF

B8

FF

FF

FF

FF

FF

BO

BO

** * *

02

LDY

JSR

JSR

BCS

LDX

JSR

BCS

LDX

INC

LDA

BEQ

JSR

BCC

JSR

JSR

LDX

JSR

BCS

JSR

JSR

CMP

BEQ

LDA

AND

BEQ

JSR

LDA

SEC

JSR

JMP

JMP

LDY

LDX

DEX

INY

INX

LDA

$0F

$FFBA

$FFC0

$BAF4

$00

$FFC9

$BAF4

.* $7A

* $7A

$0200,X

$BAD7

$FFD2

$BAC9

$FFCC

$B8B4

$00

$FFC6

$BAF4

$FFCF

$FFD2

$0D

$BAF4

* $90

$BF

$BAE4

$FFCC

$00

$FFC3

$B08B

$B0BC

:*******

$FF

* $7A

$0200,X

C-128 Internals

Set secondary addr. (15)

Kernal SETLFS: Set file param.

Kernal OPEN: Open file

OPEN error-CLRCH & exit

Logical file (0) set as output

Kernal CKOUT: Set out channel

If error occurs, then exit

Set display ptr. to input buffer

and set to next char.

Read char, -input buffer, display

Cmd-end--close cmd channel

Kernal BSOUT: output a char

OK, output next character

Kernal CLRCH: I/O chnl reset

<C/R> + clear rest of line

Set logical file (0) as input

Kernal CHKIN: Set input chnl

If error occurs, then exit

Kernal BASIN: read a character

Kernal BSOUT: output a char

Has <CR> been printed ?

Yes, CLRCH and exit routine

Load system status in ace

Mask out bit 6 (= end-of-file)

No error? Continue...

Kernal CLRCH: I/O chnl reset

Completely close logical file (0)

Set carry for CLOSE routine

Kernal CLOSE: Close file

Jump to input wait loop

Display <?>~go input wait loop

Routine for disk directory

Set filename length counter to -1

Get display pntr to input buffer

and set to preceding char.

Increment filename counter

Display pointer to next char.

Read char, -input buf., display

233

Abacus

BBOD:

BBOF:

BB1O:

BB12:

BB14:

BB17:

BB19:

BB1B:

BB1D:

BB20:

BB23:

BB25:

BB27:

BB2A:

BB2D:

BB2F:

BB31:

BB34:

BB36:

BB38:

BB3A:

BB3D:

BB3F:

BB41:

BB43:

BB45:

BB47:

BB4A:

BB4C:

BB4E:

BB50:

BB53:

BB55:

BB58:

BB5B:

BB5D:

BB5F:

BB61:

BB64:

BB66:

Software

DO

98

A6

AO

20

A9

A6

AO

20

20

BO

A2

20

20

AO

84

20

85

A5

DO

20

85

A5

DO

C6

DO

20

A9

A2

AO

20

A9

20

20

FO

A6

DO

20

90

20

F9

7A

02

BD

00

60

60

BA

CO

CF

00

C6

B4

03

63

CF

60

90

BA

CF

61

90

Bl

63

EA

07

00

08

03

5D

20

D2

CF

09

90

93

D2

F2

B4

FF

FF

FF

FF

B8

FF

FF

BA

BA

FF

FF

FF

B8

BNE

TYA

LDX

LDY

JSR

LDA

LDX

LDY

JSR

JSR

BCS

LDX

JSR

JSR

LDY

STY

JSR

STA

LDA

BNE

JSR

STA

LDA

BNE

DEC

BNE

JSR

LDA

LDX

LDY

JSR

LDA

JSR

JSR

BEQ

LDX

BNE

JSR

BCC

JSR

$BB08

* $7A

$02

$FFBD

$00

* $60

$60

$FFBA

$FFC0

$BAF4

$00

$FFC6

$B8B4

$03

* $63

$FFCF

* $60

* $90

$BAF4

$FFCF

* $61

* $90

$BAF4

* $63

$BB31

$BA07

$00

$08

$03

$BA5D

$20

$FFD2

$FFCF

$BB66

* $90

$BAF4

$FFD2

$BB58

$B8B4

C-128 Internals

No cmd-end, then next char.

Copy filename length into A

Load filename addr.(low) X-reg

Load filename addr.(hi) Y-reg

Kernal SETNAM: Set filename

Logical file (0) in ace

Get dvc # from OPl (low)

Get secondary address (96)

Kernal SETLFS: Set file param.

Kernal OPEN: Open file

If error occurs, then exit

Set log. file (0) as input

Kernal CHKIN: Set input chnl

<C/R>+clear rest of line

Counter reads first

six directory bytes

Kernal BASIN: read a character

Store dir char, in OPl (low)

Load system status in ace

If error occurs, then exit

Kernal BASIN: read a character

Store directory char, in OPl (hi)

Load system status in ace

If error occurs, then exit

Decrement dir. bytes skip cntr

Not equal to 0, read more bytes

Prep. & display OPl contents

in decimal form: Output the

length of a directory entry

and number

of blocks free

Load ace with a <space> char.

Kernal BSOUT: Char, output

Kernal BASIN: Read a character

$0 is signal - end of 1st dir. line

Load system STATUS in X-reg

If error occurs, then exit

Kernal BSOUT: print a character

Output next char, in dir. line

<C/R>+clear rest of line

234

Abacus Software C-128 Internals

BB69: 20 El ff jsr $ffei Kernal STOP: test for STOP key
BB6C: fo 86 beq $baf4 If STOP, goto exit routine

BB6E: ao 02 ldy # $02 Read counter for 4 dir. bytes

BB70: do bd bne $bb2f Unconditional jump to dir. read

****************************** END OF ROM monitor

BB72: ff ff ff . . . Fill characters

BFFB: . . . FF FF FF

BFFE: 00 3A

235

Abacus Software C-128 Internals

C000:

C003:

COO 6:

C009:

COOC:

COOF:

C012:

C015:

C018:

C01B:

C01E:

C021:

C024:

CO27:

C02A:

C02D:

C030:

4C

4C

4C

4C

4C

4C

4C

4C

4C

4C

4C

4C

4C

4C

4C

4C

4C

FF

7B

34

34

9B

2D

5B

5D

87

51

6A

57

Cl

A2

94

OC

2E

IB

FF

CO

CC

C2

C2

C7

CC

C5

FC

C6

CC

CD

C9

CC

Cl

CE

CD

CA

FF

JMP

JMP

JMP

JMP

JMP

JMP

JMP

JMP

JMP

JMP

JMP

JMP

JMP

JMP

JMP

JMP

JMP

$C07B

$CC34

$C234

$C29B

$C72D

$CC5B

$C55D

$FC87

$C651

$CC6A

$CD57

$C9C1

$CCA2

$C194

$CE0C

$CD2E

$CA1B

C033:

C03B:

C043:

C04B:

00

40

80

CO

28

68

A8

50

90

DO

78

B8

F8

AO

EO

20

C8

08

48

FO

30

70

18

58

98

C04C:

C054:

C05C:

C064:

04

05

06

07

04

05

06

04

05

06

04

05

06

04

05

07

04

06

07

04

06

07

05

06

07

CO 65:

C067:

B9 C7

05 C8

($C7B9)

($C805)

Jump table for editor routines

CINT initializes editor & screen

DISPLAY char in A, color in X

LP2 gets a char from IRQ buffer

LOOP5 a char from the screen

PRINT vector for screen output

SCRORG returns screen width

KEY read key

(International versions only)

REPEAT the keyboard logic

PLOT sets/reads cursor position

CURSOR moves 80-cln cursor

ESCAPE outputs ESC sequence

PFKEY defines a function key

IRQ jumps to editor IRQ routine

INIT80 initializes 80-column

SWAPPER exch. 40/80 column

WINDOW sets left/top or

right/lower corner of window

Free for future extensions

Line starts, low bytes

$0400, $0428, $0450

$0478, $04A0, $04C8

$04F0, $0518, $0540

$0568, $0590, $05B8

Line starts, high bytes

$05E0, $0608, $0630

$0658, $0680, $06A8

$06D0, $06F8, $0720

$0748, $0770, $0798, $07C0

Character output and keyboard

vectors

Entry: char output with CTRL

Entry: char output with SHIFT

236

Abacus Software C-128 Internals

C069: Cl C9

C06B: El C5

C06D: AD C6

($C9C1)

($C5E1)

($C6AD)

C06F:

C071:

C073:

C075:

C077:

C079:

80

D9

32

8B

80

E4

FA

FA

FB

FB

FA

FB

($FA80)

($FAD9)

($FB32)

($FB8B)

($FA80)

($FBE4)

C07B:

C07D:

C080:

C083:

C085:

C087:

C089:

C08B:

C08E:

C090:

C093:

C095:

C097:

C099:

C09B:

C09D:

C0A0:

C0A3:

C0A5:

C0A8:

COAA:

COAD:

COAF:

A9

OD

8D

A9

25

09

85

20

A9

20

85

85

85

85

85

8D

8D

85

8D

A9

8D

A9

8D

03

00

00

FB

01

02

01

CC

00

80

D8

D7

DO

Dl

D6

21

26

D9

2E

14

2C

78

2D

DD

DD

FF

FC

OA

OA

OA

OA

OA

LDA

ORA

STA

LDA

AND

ORA

STA

JSR

LDA

JSR

STA

STA

STA

STA

STA

STA

STA

STA

STA

LDA

STA

LDA

STA

$03

$DD00

$DD00

$FB

* $01

$02

* $01

$FFCC

$00

$FC80

* $D8

* $D7

* $D0

* $D1

* $D6

$0A21

$0A26

* $D9

$0A2E

$14

$0A2C

$78

$0A2D

Entry: character output with ESC

Entry: evaluate keyboard

Entry: Store keypress

Pointer to keyboard decoder

table

Keyboard decoder table la

Keyboard decoder table 2a

Keyboard decoder table 3a

Keyboard decoder table 4a

Keyboard decoder table la

Keyboard decoder table 5a

Kernal routine: CINT

Initialize editor and screen

Two highest-order bits of base

Set video because active-low

And save again

Clear bit 2 of the data-direction

Register and then set bit 1 of the

Data direction register and

Save again

Kernal CLRCH: reset I/O chnls

Reset filter, volume, and entry in

Table for logged in cards

Set text screen flag to "text"

Set 40/80 column flag to "40"

Clear keyboard buffer queue

Clear function key flag

Reset keyboard input/get flag

Reset pause (Ctrl-S) flag

Reset cursor-flash flag

Pointer - char set in RAM/ROM

Base address - screen text RAM

Init. value for base pointer

Text screen/char base pointer

Initialization value bit-map base

Initialize bit-map base

237

Abacus

C0B2:

C0B4:

C0B7:

COBA:

COBD:

COBF:

COC2:

C0C5:

C0C8:

COCB:

COCD:

CODO:

C0D3:

C0D6:

C0D9:

CODC:

CODE:

COE1:

C0E3:

C0E6:

C0E8:

COEB:

COED:

COFO:

C0F3:

C0F4:

C0F6:

C0F8:

COFB:

COFE:

COFF:

C1O1:

C104:

C106:

C108:

C10B:

C1OE:

C1OF:

Clll:

C113:

Software

A9

8D

AD

8D

A9

8D

8D

8D

8D

A9

8D

20

8D

OD

8D

A9

8D

A9

8D

A2

BD

95

BD

9D

CA

10

A2

BD

9D

CA

10

2C

70

A2

BD

9D

CA

10

A2

BD

08

2F

4C

3B

OA

20

28

27

24

04

23

83

22

05

05

60

2B

DO

34

1A

74

EO

8E

40

F2

09

65

34

F7

04

IE

OB

6F

3E

F7

4C

A8

OA

CO

OA

OA

OA

OA

OA

OA

C9

OA

D5

D5

OA

OA

CE

CE

OA

CO

03

OA

CO

03

CE

LDA

STA

LDA

STA

LDA

STA

STA

STA

STA

LDA

STA

JSR

STA

ORA

STA

LDA

STA

LDA

STA

LDX

LDA

STA

LDA

STA

DEX

BPL

LDX

LDA

STA

DEX

BPL

BIT

BVS

LDX

LDA

STA

DEX

BPL

LDX

LDA

$08

$0A2F

$C04C

$0A3B

$0A

$0A20

$0A28

$0A27

$0A24

$04

$0A23

$C983

$0A22

$D505

$D505

$60

$0A2B

$D0

$0A34

$1A

$CE74,X

* $E0,X

$CE8E,X

$0A40,X

$C0E8

$09

$co65,x

$0334,X

$C0F8

$0A04

$C124

$0B

$C06F,X

$033E,X

$C108

$4C

$CEA8,X

C-128 Internals

Initialization value attribute RAM

Initialize attribute RAM base

Load initialization value ($04)

Initialize PAL system pointer

Start value-keyboard buffer size

Init. flag - keyboard buffer size

Count pointer for flashing cursor

Flag for cursor flash mode

Hag: keyboard repeat delay

Start value for count speed

Flag: repeat speed

Initialize TAB positions

Rag for keyboard repeat pointer

Set the fast serial control bit in

the MCRof theMMU

Start value current cursor mode

Hag for current cursor mode

Initialization value for the system

pointers: clear/move line

Loop counter for z-page init.

ROM copy of the 40-clm screen

Copy start values in zero page

ROM copy of the 80-clm screen

Copy start values into RAM

Decrement loop counter by 1

Loop until all values transferred

Loop counter for page 3 init.

ROM copy of the character and

Keyboard vectors into RAM area

Decrement loop counter by 1

Loop until all values transferred

Check bit 6 of the init. flag

Bit set, then skip

Loop counter for page 3 init.

ROM copy of the keyboard de

coder. Table vectors RAM area

Decrement loop counter by 1

Loop until all values transferred

Loop cntr for function key init.

Copy ROM copy of the f-key

238

Abacus

C116:

C119:

C11A:

C11C:

CUE:

C121:

C124:

C127:

C12A:

C12D:

C130:

C133:

C136:

C139:

C13C:

C13E:

C141:

Software

9D

CA

10

A9

0D

8D

20

20

20

20

20

20

20

2C

30

20

60

00

F7

40

04

04

2E

83

24

42

2E

24

42

05

03

2E

10

0A

0A

CD

C9

CA

Cl

CD

CA

Cl

D5

CD

STA

DEX

BPL

LDA

ORA

STA

JSR

JSR

JSR

JSR

JSR

JSR

JSR

BIT

BMI

JSR

RTS

$1000,X

$C113

$40

$0A04

$0A04

$CD2E

$C983

$CA24

$C142

$CD2E

$CA24

$C142

$D505

$C141

$CD2E

C142:

C145:

C148:

C1-4B:

C14D:

C14E:

20

20

20

E4

E8

90

50

5E

A5

E4

F5

Cl

Cl

C4

JSR

JSR

JSR

CPX

INX

BCC

$C150

$C15E

$C4A5

* $E4

$C145

C150:

C152:

C154:

C156:

C158:

C15A:

A6

86

86

A4

84

84

E5

EB

E8

E6

EC

E9

LDX

STX

STX

LDY

STY

STY

* $E5

* $EB

* $E8

* $E6

* $EC

* $E9

C-128 Internals

lengths and strings into RAM <C
Decrement loop counter by 1

Loop until all values transferred

Set bit 6 to !lONfl and combine

with initialization flag

Place result in init flag

Switch 40/80 column mode

Reset the tabs

Window=whole screen

CLR/HOME

Switch 40/80-column mode

Window=whole screen

CLR/HOME

Test if 40/80-column mode

Jump if 80

Switch 40/80-column mode

Return from subroutine

Clear window (CLR/HOME)

Cursor home

Calculate start address of line X

Clear line X

Compare lower window border

Increment line pointer

If lower border not reached

Cursor home in window

Load upper window border into

X-reg. Write curent cursor line

Store as start input line

Load left window border Y-reg

Store the current cursor column

And as start input column

239

Abacus Software C-128 Internals

C15C:

C15E:

C161:

C163:

C165:

C166:

C168:

C16B:

C16D:

C16F:

C171:

C172:

C175:

C177:

C17A:

A6

BD

24

10

0A

85

BD

29

24

10

2A

0D

90

OD

85

EB

33

D7

01

EO

4C

03

D7

06

2E

03

3B

El

CO

CO

OA

OA

LDX

LDA

BIT

BPL

ASL

STA

LDA

AND

BIT

BPL

ROL

ORA

BCC

ORA

STA

* $EB

$C033,X

* $D7

$C166

A

* $E0

$C04C,X

$03

* $D7

$C177

A

$0A2E

$C17A

$0A3B

* $E1

C17C:

C17E:

C180:

C182:

C184:

C186:

C188:

C18B:

C18D:

C18F:

C191:

C193:

A5

85

A5

24

10

29

OD

DO

29

09

85

60

EO

E2

El

D7

07

07

2F

04

03

D8

E3

OA

LDA

STA

LDA

BIT

BPL

AND

ORA

BNE

AND

ORA

STA

RTS

* $E0

* $E2

* $E1

* $D7

$C18D

$07

$0A2F

$C191

$03

$D8

* $E3

C194:

C195:

C198:

C19A:

C19C:

38

AD

29

FO

8D

19

01

07

19

DO

DO

SEC

LDA

AND

BEQ

STA

$D019

$01

$C1A3

$D019

Set address of current line

Get current cursor line in X-reg

Get low-byte of start line

Test 40/80-column mode

Jump if 40-column mode

Otherwise address times two

Store low byte

Get high byte of the start line

Mask out bits 2-7=X MOD 4

Test 40/80-column mode

Jump if 40-column mode

Else shift carry into high byte

And add to video start address

Unconditional jump to $C17A

Video start address 40-column

Store high byte

Adapt attribute RAM address

Current screen line, low byte

To low byte of attrbute address

Get high byte current screen line

Test for 40/80-column mode

40-column mode is active

Mask out bits 3-7

Add attrbute RAM base

Unconditional jump

Mask out bits 2-7

Add base of color RAM

Store the attribute high byte

Return from the subroutine

IRQ routine

Set carry flag as FLAG

Load IRR from VIC

Test raster-line interrupt bit

If not set then jump

Clear the register

240

Abacus

C19F:

C1A1:

C1A3:

C1A5:

C1A8:

C1AA:

C1AC:

C1AE:

C1AF:

C1B1:

C1B3:

C1B5:

C1B7:

C1BA:

C1BD:

C1BF:

C1C1:

C1C3:

C1C4:

C1C7:

C1C8:

C1CB:

C1CD:

C1CF:

C1D0:

C1D3:

C1D5:

C1D7:

C1D9:

C1DA:

C1DC:

C1DD:

Software

A5

C9

FO

2C

30

29

DO

38

A5

FO

24

50

AD

8D

A5

29

09

48

AD

48

AD

29

09

A8

AD

24

30

29

2C

09

AA

DO

D8

FF

6F

11

04

40

31

D8

2C

D8

06

34

12

01

FD

04

2D

11

7F

20

16

D8

03

EF

10

28

DO

OA

DO

OA

DO

DO

LDA

CMP

BEQ

BIT

BMI

AND

BNE

SEC

LDA

BEQ

BIT

BVC

LDA

STA

LDA

AND

ORA

PHA

LDA

PHA

LDA

AND

ORA

TAY

LDA

BIT

BMI

AND

* $D8

$FF

$C214

$D011

$C1AE

$40

$C1DF

* $D8

$C1DF

* $D8

$C1BD

$0A34

$D012

* $01

$FD

$04

$0A2D

$D011

$7F

$20

$D016

* $D8

$C1DA

$EF

.Byte $2C

ORA

TAX

BNE

$10

$C207

C1DF:

C1E1:

C1E4:

C1E6:

C1E8:

A9

8D

A5

09

29

FF

12

01

02

FB

DO

LDA

STA

LDA

ORA

AND

$FF

$D012

* $01

$02

$FB

C-128 Internals

Test text/graphics

If graphics screen enabled

Then to appropriate routine

Test VIC control register 1

High byte of rester line is set

Test extended-color mode

Is set

Setset carry as FLAG

Get text/graphic mode

Text mode - jump

Test text/graphic mode

Bit 6=0 means no raster line

IRQ. Else get raster line

and refresh storage

Get data-direction register and

Mask out bits 0-1

Set bit 2 of the register

And save configuration on stack

Base address of the graphics

Save base address on stack

Get control register 1 of the VIC

Clear raster line 1 carry and

Set standard bit-map mode

Control register to Y

Get VIC control register 2

Test text/graphic register

Multi-color mode set

Clear multi-color bit

Skip to $CIDC

Set multi-color bit

Control register 2 to X

Unconditional jump

Text mode

Raster line is last line

Store as raster line

Get data direction register

Set bit 1 of the register

And clear bit 2

241

Abacus

C1EA:

C1EC:

C1ED:

C1F0:

C1F1:

C1F4:

C1F6:

C1F7:

C1FA:

C1FC:

C1FD:

C1FF:

C201:

C202:

C204:

C205:

C206:

******r% r\ r\ r\ r\ r\

C207:

C208:

C2OB:

C20C:

C20E:

C211:

C214:

C216:

C219:

C21B:

C21D:

C21F:

C221:

C223:

C22 6:

C228:

C229:

C22A:

C22C:

C22F:

Software

05

48

AD

48

AD

29

A8

AD

29

AA

BO

A2

CA

DO

EA

EA

AA

•k-k-ki

68

8D

68

85

8C

8E

BO

AD

29

F0

A5

29

F0

AD

10

38

58

90

20

20

D9

2C

11

5F

16

EF

08

07

FD

t***

18

01

11

16

13

30

01

OC

D8

40

06

11

01

07

87

E7

OA

DO

DO

"k ** i

DO

DO

DO

DO

DO

FC

C6

ORA

PHA

LDA

PHA

LDA

AND

TAY

LDA

AND

TAX

BCS

LDX

DEX

BNE

NOP

NOP

TAX

t * ** * *\ ^\ ^\ ^\ rt ^\

PLA

STA

PLA

STA

STY

STX

BCS

LDA

AND

BEQ

LDA

AND

BEQ

LDA

BPL

SEC

CLI

BCC

JSR

JSR

* $D9

$0A2C

$D011

$5F

$D016

$EF

$C207

$07

$C201

******^\ ^S ^% ^\ ^\ ^K

$D018

* $01

$D011

$D016

$C229

$D030

$01

$C229

* $D8

$40

$C229

$D011

$C229

$C233

$FC87

$C6E7

C-128 Internals

Bit 2 is then cleared

IfCHARROM in RAM. Also

storebase address of text/graphic

On the stack

Get VIC control register

Clear carry and graphics

Control register 1 to Y

Get VIC control register 2

Clear multi-color bit

Control register 2 to X

Carry set=don!t wait

X is counter for delay loop

Decrement the counter

Andjump if not done

Two NOPs in the delay loop

To perfect it

Control register 2 back to X

Set the IRQ register

Get base address back

And base address to VIC

Get data direction register from

Stack and save

Control register 1 to VIC

And control register 2 to VIC

If carry set then skip

Get 1/2 MHz clock register

Mask out relevant bit

Jump if 1 MHz

Get text/graphic mode

Test raster-line interrupt bit

No raster-line interrupt

Get control register 1
No carry - jump

Set carry as FLAG

Enable all system interrupts

Done if FLAG not set

Call the kernal routine KEY

Let VIC cursor flash

242

Abacus

C232:

C233:

Software

38

60

SEC

RTS

C234:

C236:

C238:

C23A:

C23D:

C23F:

C241:

C242:

C243:

A6 Dl

FO OC

A4 D2

B9 OA 10

C6 Dl

E6 D2

58

18

60

LDX

BEQ

LDY

LDA

DEC

INC

CLI

CLC

RTS

* $D1

$C244

• $D2

$100A,Y

* $D1

* $D2

C-128 Internal

Set carry for OK

Return from subroutine

Get character from KEY

Must characters be fetched from

keyboard buffer? NO

Get pointer to KEY buffer

Get character from KEY table

Decrement the character counter

Increment the pointer

Enable all system interrupts

Clear carry for "char, fetched"

Return from subroutine

a*****************************

C244:

C247:

C24A:

C24D:

C24E:

C250:

C252:

C254:

C255:

C256:

C257:

AC

BD

9D

E8

E4

DO

C6

98

58

18

60

4A

4B

4A

DO

F5

DO

03

03

03

LDY

LDA

STA

INX

CPX

BNE

DEC

TYA

CLI

CLC

RTS

$034A

$034B,X

$034A,X

* $D0

$C247

* $D0

C258:

C25B:

C25E:

C260:

C2 62:

C264:

C267:

C26A:

C2 6C:

20

20

A5

05

F0

20

20

C9

DO

2D

6F

DO

Dl

FA

9F

34

0D

EA

C7

CD

CD

C2

JSR

JSR

LDA

ORA

BEQ

JSR

JSR

CMP

BNE

$C72D

$CD6F

* $D0

* $D1

$C25E

$CD9F

$C234

$0D

$C258

Get character from buffer

How many chars in the queue?

Get character from queue

And shift forward

Increment the counter and move

Characters until all characters in

the queue are moved forward

Offset of the keyboard queue -1

Character to ace.

Enable all system interrupts

Clear carry for "char, fetched"

Return from subroutine

Get input line (w/<CR>) LOOP4

Output character

Move cursor

of chars in the keyboard buffer

Plus # of chars in KEY buffer

If empty then wait

Set cursor

Get character from buffer

Is character <CR>

No, then get next char.

243

Abacus

C26E:

C270:

C272:

C274:

C277:

C27A:

C27D:

C27F:

C281:

C283:

C285:

C287:

C289:

C28C:

C28E:

C290:

C292:

C294:

C296:

C298:

Software

85

A9

85

20

8E

20

A4

A5

30

C5

90

A4

CD

DO

C4

F0

BO

85

84

4C

D6

00

F4

C3 CB

30 OA

B5 CB

E6

E8

13

EB

OF

E9

30 OA

04

EA

02

11

EB

EC

BC C2

STA

LDA

STA

JSR

STX

JSR

LDY

LDA

BMI

CMP

BCC

LDY

CMP

BNE

CPY

BEQ

BCS

STA

STY

JMP

* $D6

$00

* $F4

$CBC3

$0A30

$CBB5

*" $E6

* $E8

$C296

* $EB

$C296

* $E9

$0A30

$C292

* $EA

$C294

$C2A5

* $EB

* $EC

$C2BC

C29B:

C29C:

C2 9D:

C29E:

C29F:

C2A1:

C2A3:

C2A5:

C2A7:

C2A9:

C2AB:

C2AD:

C2AF:

C2B1:

C2B3:

C2B5:

C2B8:

98

48

8A

48

A5

FO

10

A9

85

A9

A2

E4

FO

E4

FO

20

A9

D6

B8

17

00

D6

OD

03

99

04

9A

03

2D C7

OD

TYA

PHA

TXA

PHA

LDA

BEQ

BPL

LDA

STA

LDA

LDX

CPX

BEQ

CPX

BEQ

JSR

LDA

* $D6

$C25B

$C2BC

$00

* $D6

$0D

$03

* $99

$C2B5

* $9A

$C2B8

$C72D

$0D

C-128 Internals

Set input flag

Clear cursor mode flag

Determine end of input line

Save last column position

Set line start

Load left window-border, Y-reg

Start of running input line

Input line is following line

Compare with current cursor line

Border not reached

Start of running input column

Compare with last input column

Is not the same column

Compare with end of running in

line is reached

Set input/get flag to get

Write current cursor line

Store the current cursor column

Get character at cursor pos./

Get character from screen

Y-register (column) via ace

Save on stack

X-register (line) via

Store on stack

Get input/get flag

To delay loop for GET

No <CR> necessary yet

The input/get flag is set via

The accumulator

ASCII code for <CR>

Compare code for screen with

Standard input device

Input device is screen

compare with standard output d

device. Output to screen

BSOUT entry screen

ASCII code for <CR>

244

Abacus Software C-128 Internals

C2BA: DO 39 BNE $C2F5

C2BC:

C2BF:

C2C2:

C2C4:

C2C6:

C2C8:

C2CA:

C2CC:

C2CE:

C2D0 :

C2D2:

C2D4:

C2D6:

C2D8:

C2DB:

C2DD:

C2E0:

C2E2:

C2E4:

C2E6:

C2E8:

C2EA:

C2EC:

C2EF:

C2F1:

C2F3:

C2F5:

C2F7:

C2F8:

C2F9:

C2FA:

C2FB:

C2FD:

C2FE:

20

20

85

29

06

24

10

09

90

A6

DO

70

09

20

A4

CC

90

A4

C4

90

66

30

20

C9

DO

A9

85

68

AA

68

A8

A5

18

60

5C

58

EF

3F

EF

EF

02

80

04

F4

04

02

40

FF

EB

30

OA

EC

EA

04

D6

03

ED

DE

02

FF

EF

EF

Cl

CB

C2

OA

CB

JSR

JSR

STA

AND

ASL

BIT

BPL

ORA

BCC

LDX

BNE

BVS

ORA

JSR

LDY

CPY

BCC

LDY

CPY

BCC

ROR

BMI

JSR

CMP

BNE

LDA

STA

PLA

TAX

PLA

TAY

LDA

CLC

RTS

$C15C

$CB58

* $EF

$3F

*. $EF

* $EF

$C2CE

$80

$C2D4

* $F4

$C2D8

$C2D8

$40

$C2FF

* $EB

$0A30

$C2EC

* $EC

* $EA

$C2EC

$D6

$C2EF

$CBED

$DE

$C2F5

$FF

* $EF

* $EF

Unconditional jump to end

Character at cursor pos in ASCII

Get address of current line

Character and color at cursor pos

Temp storage for print character

Mask out bits 6/7

The character is then converted

to Ascn

Not a reverse character

Set bit 7

Test former bit 7

Rag for quote mode active

Is active, then jump

Test former bit 6

Setbit6forASCII

Test for " and set flags

Get current cursor line in Y-reg

Last column already reached?

No, not yet

Get current cursor column X-reg

Compare with end

End line not yet reached

Shift carry into bit 7 of $D6

If set then new line

Cursor one position right

Compare to ASCII "PI"

Is not pi

Else load adapted pi code

Store as print character

Get X-register (line) via

Ace from stack

Get Y-register (column)

Via ac from stack

Print char from temp storage

Flag for OK

Return from the subroutine

245

Abacus Software C-128 Internals

C2FF:

C301:

C303:

C305:

C307:

C309:

C30B:

C9

DO

A5

49

85

A9

60

22

08

F4

01

F4

22

CMP

BNE

LDA

EOR

STA

LDA

RTS

$22

$C30B

* $F4

$01

* $F4

$22

C30C:

C30E:

C310:

C313:

C315:

C317:

C319:

C31A:

C31B:

C31C:

C31D:

C31E:

C31F:

A5

85

20

A5

FO

46

68

A8

68

AA

68

18

60

EF

FO

57 CD

F5

02

F4

LDA

STA

JSR

LDA

BEQ

LSR

PLA

TAY

PLA

TAX

PLA

CLC

RTS

* $EF

* $F0

$CD57

* $F5

$C319

* $F4

Test for (ff)and set flags

Compare to quote

Other character, then end

Get current quote mode

Reverse mode

And store again

Reload ace with ASCII value

Return from subroutine

BSOUT continuation

Save current print character as

Last-printed character

Set cursor to current column

Get insert mode flag

Insert mode is not active

Shift quote mode flag

Get first value from stack

And into Y-register

Get second value from stack

And into X-register

Get ace from stack

Clear carry for OK

Return from subroutine

C320:

C322:

C324:

C326:

C328:

C32A:

C32C:

C32E:

C330:

C332:

C333:

09

A6

F0

09

A6

F0

C6

24

10

48

20

40

F3

02

80

F5

02

F5

F6

09

E3 C8

ORA

LDX

BEQ

ORA

LDX

BEQ

DEC

BIT

BPL

PHA

JSR

$40

* $F3

$C328

$80

* $F5

$C32E

* $F5

* $F6

$C33B

$C8E3

Convert from ASCII to

POKE-Code

Set bit 2 of the ace

Get flag for RVS mode active

on/off Not reverse character

Set high-rder bit (reverse)

Insert-mode flag

No insert mode

Decrement the counter

Test auto-insert flag

Jump if not active

Save ace on the stack

Screen mode behind cursor

246

Abacus

C336:

C338:

C33A:

C33B:

Software

A2

86

68

20

00

F5

2F CC

LDX

STX

PLA

JSR

$00

* $F5

$CC2F

C33E:

C340:

C342:

C344:

C346:

C348:

C34A:

C34C:

C34F:

C352:

C354:

C357:

C359:

C35A:

C35C:

C35E:

C361:

C362:

C4

90

A6

E4

90

24

30

20

20

90

20

BO

38

24

70

20

18

60

E7

OA

EB

E4

04

F8

16

5C

ED

OE

74

08

F8

04

7C

Cl

CB

CB

C3

CPY

BCC

LDX

CPX

BCC

BIT

BMI

JSR

JSR

BCC

JSR

BCS

SEC

BIT

BVS

JSR

CLC

RTS

* $E7

$C34C

* $EB

* $E4

$C34C

* $F8

$C362

$C15C

$CBED

$C362

$CB74

$C361

* $F8

$C362

$C37C

C363:

C365:

C367:

C369:

C36B:

C36D:

C36F:

C371:

C373:

C37 6:

C377:

A6

E4

90

24

10

A5

85

BO

20

18

E6

EB

E4

OE

F8

06

E5

EB

06

A6

EB

C3

LDX

CPX

BCC

BIT

BPL

LDA

STA

BCS

JSR

CLC

INC

* $EB

* $E4

$C377

* $F8

$C373

* $E5

* $EB

$C379

$C3A6

* $EB

C-128 Internals

Set insert-mode flag

Back to zero

Get ace from stack again

Output character at current pos

Cursor at line end

Compare, right window-border

Right edge not yet reached

Get current cursor line in X-reg

Compare, lower window border

Lower border not yet reached

Test scroll flag

No scrolling then end

Determine start addr of curnt line

Cursor one character to the right

No new line

Test line overflow bit

Line overflow bit is set

Set carry bit for no scrolling

Test scroll bit

Jump if no scrolling

Insert line at X

Clear carry for scrolled

Return from the subroutine

Perform linefeed

Get current cursor line in X-reg

Compare, lower window border

Lower border not yet reached

Test scroll bit

Scrolling possible

Load upper window border, ace

Write current cursor line

Unconditional jump to $C379

Scrolling

Carry clear for OK, scrolled

Increment curent cursor line by]

247

Abacus Software C-128 Internals

C37 9: 4C 5C Cl JMP $C15C

C37C:

C37E:

C380:

C382:

C384:

C386:

C388:

C38B:

C38D:

C38F:

C391:

C392:

C395:

C396:

C399:

C39A:

C39D:

C3A0:

C3A3:

A6

30

E4

90

E6

A6

20

A4

E4

F0

CA

20

E8

20

CA

20

4C

20

4C

E8

06

EB

02

E8

E4

5E

E6

EB

OF

76

83

0D

88

A5

93

Cl

CB

CB

C4

C3

C4

CB

LDX

BMI

CPX

BCC

INC

LDX

JSR

LDY

CPX

BEQ

DEX

JSR

INX

JSR

DEX

JSR

JMP

JSR

JMP

* $E8

$C386

* $EB

$C386

* $E8

* $E4

$C15E

* $E6

* $EB

$C3A0

$CB7 6

$CB83

$C40D

$C388

$C4A5

$CB93

C3A6:

C3A8:

C3A9:

C3AC:

C3AE:

C3B0:

C3B2:

C3B4:

C3B5:

C3B8:

C3BA:

C3BC:

C3BE:

C3C0:

A6

E8

20

90

E4

90

A6

E8

20

C6

24

30

C6

A6

E5

76 CB

0A

E4

F6

E5

85 CB

EB

E8

02

E8

E5

LDX

INX

JSR

BCC

CPX

BCC

LDX

INX

JSR

DEC

BIT

BMI

DEC

LDX

* $E5

$CB7 6

$C3B8

* $E4

$C3A8

* $E5

$CB85

* $EB

* $E8

$C3C0

* $E8

* $E5

Determ. start addr of current line

Insert line (at line X)

Start of the running input line

Line is a following-line

Compare with current cursor line

Cursorline reached?

Incr the start of running inp line

Load low window-border X-reg

Set address of the current line

Load left window-border, Y-reg

Compare with current cursor line

Cursor line is lower border

Decrement line by 1 and then

Test the line overflow bit

Back to the current line

Set/clear line overflow bit

Back to previous line

MOVLIN: copy a window line

Back to the loop

Clear line X

Set the line carry bit

Scroll up

Load upper window-border in

X-reg & increment by 1 line

Test the line overflow bit

No overflow in line

Compare lower window-border

Border not yet reached

Load upper window-border in

X-reg &increment by 1

Set line overflow bit

Decrement crnt cursor line by 1

Test bit 7 of the input start line

And jump if set

Else decrement the input line

Load upper window-border in

248

Abacus

C3C2:

C3C4:

C3C6:

C3C8:

C3CB:

C3CD:

C3D0:

C3D1:

C3D4:

C3D5:

C3D7:

C3D9:

C3DB:

Software

E4

BO

C6

20

A6

20

08

20

28

90

24

30

60

DF

02

DF

DC C3

E5

7 6 CB

85 CB

04

F8

CB

CPX

BCS

DEC

JSR

LDX

JSR

PHP

JSR

PLP

BCC

BIT

BMI

RTS

* $DF

$C3C8

* $DF

$C3DC

* $E5

$CB76

$CB85

$C3DB

* $F8

$C3A6

C-128 Internals

X-reg. Compare with cursor line

If >= upper border, then jump

Decrement cursor line

Move remaining screen

Load upper window-border into

X-reg. Test line overflow bit

Save flags on stack

Clear overflow bit of current line

And get flags back

If carry clear then end

Else test scroll flag

Bit 7 set then scroll

Return from subroutine

C3DC:

C3DF :

C3E1:

C3E3:

C3E5:

C3E6:

C3E9:

C3EA:

C3ED:

C3EE:

C3F1:

** * **-i/\ ^ ^ ^ ^ 7

C3F4:

C3F7:

C3F9:

C3FC:

C3FF:

C401:

C403:

C405:

C406:

C407:

20

A4

E4

B0

E8

20

CA

20

E8

20

4C

^ £ £ £ j

20

A9

8D

AD

C9

DO

A0

EA

CA

DO

5E

E6

E4

OF

76

83

0D

DC

r * * i

A5

7F

00

01

DF

09

00

FC

Cl

CB

CB

C4

C3

^ ^ ^ £. ^

C4

DC

DC

JSR

LDY

CPX

BCS

INX

JSR

DEX

JSR

INX

JSR

JMP

k * -k-k-k *r\ ^ ^ ^ ^ 7\

JSR

LDA

STA

LDA

CMP

BNE

LDY

NOP

DEX

BNE

$C15E

* $E6

* $E4

$C3F4

$CB76

$CB83

$C40D

$C3DC

******^ ^ ^ ^ ^ ^

$C4A5

* $7F

$DC00

$DC01

$DF

$C40C

$00

$C405

Clear line X (with move)

Announce line X

Load left window-border, Y-reg

Compare lower window border

Border is reached

Pointer points to following-line

Test line overflow bit

Point to current line again

Set/clear line overflow bit

Point back to following-line

MOVLIN: copy window line

Copy next line

Poll Commodore key - wait

Clear line X

Rag or run/direct mode

In PRA inCIA for keyboard read

Get keybaord matrix

Commodore key pressed?

If not pressed then end

Commodore key is pressed

A delay loop is executed when

Scrolling in order to delay the

Output somewhat

249

Abacus

C409:

C40A:

C40C:

Software

88

DO F9

60

DEY

BNE

RTS

$C405

C40D:

C40F:

C411:

C414:

C416:

C418:

C41B:

C41D:

C420:

C422:

C424:

C426:

C428:

C42A:

C42C:

C42E:

C430:

C432:

C433:

C435:

24 D7

30 25

BD 33 CO

85 DC

85 DA

BD 4C CO

29 03

OD 3B OA

85 DB

29 03

09 D8

85 DD

Bl DA

91 EO

Bl DC

91 E2

C4 E7

C8

90 F3

60

BIT

BMI

LDA

STA

STA

LDA

AND

ORA

STA

AND

ORA

STA

LDA

STA

LDA

STA

CPY

INY

BCC

RTS

* $D7

$C436

$C033,

* $DC

* $DA

$C04C,

$03

$0A3B

* $DB

$03

$D8

* $DD

($DA),

($E0),

($DC),

($E2),

* $E7

$C428

X

X

Y

Y

Y

-Y

C-128 Internals

The loop counts from 0 to

65536 and then stops

Return from the subroutine

MOVLIN: Copy a window line

Test 40/80-column mode

Jump if 80-column mode

Get low byte of the current line

Store low byte in $DA & $DC

Get high byte of the current addr

Mask out bits 2-7

And OR with video base address

And save

Combine bits 0 & 1 with base

Address of the color RAM

And store as high byte

Get source character and save it

at the destination address. Then

Get the source color &store it at

The source address too

Compare, right window-border

Increment the column pointer

Jump if not the end

Return from the subroutine

C436:

C439:

C43C:

C43E:

C441:

C443:

C446:

C449:

C44C:

C44F:

C450:

8E

8C

A2

20

09

20

20

AE

BD

0A

85

31

32

18

DA

80

CC

E6

31

33

DA

0A

0A

CD

CD

CD

0A

CO

STX

STY

LDX

JSR

ORA

JSR

JSR

LDX

LDA

ASL

STA

$0A31

$0A32

$18

$CDDA

$80

$CDCC

$CDE6

$0A31

$C033,X

A

* $DA

Copy a line in 80-column

Store line number temporarily

Store column

Register 24 contains COPY bit

And get register value

Set COPY bit and store

Register back in VDC

Set update address to current pos

Get the line to copy

Low byte of the line to copy

Times two because 80-column

And store low byte

250

Abacus

C452:

C455:

C457:

C458:

C45B:

C45D:

C45F:

C460:

C461:

C463:

C465:

C467:

C469:

C46B:

C46E:

C46F:

C471:

C474:

C475:

C477:

C478:

C479:

C47C:

C47F:

C481:

C484:

C486:

C488:

C48A:

C48D:

C490:

C491:

C493:

C496:

C499:

C49C:

C49E:

C4A1:

C4A4:

Software

BD

29

2A

OD

85

A2

18

98

65

85

A9

65

85

20

E8

A5

20

38

A6

E8

8A

ED

8D

A2

20

A2

A5

29

OD

20

E8

A5

20

20

AD

A2

20

AE

60

4C

03

2E

DB

20

DA

DA

00

DB

DB

CC

DA

CC

E7

32

32

IE

CC

20

DB

07

2F

CC

DA

CC

F9

32

IE

CC

31

CO

0A

CD

CD

0A

OA

CD

OA

CD

CD

CD

OA

CD

OA

LDA

AND

ROL

ORA

STA

LDX

CLC

TYA

ADC

STA

LDA

ADC

STA

JSR

INX

LDA

JSR

SEC

LDX

INX

TXA

SBC

STA

LDX

JSR

LDX

LDA

AND

ORA

JSR

INX

LDA

JSR

JSR

LDA

LDX

JSR

LDX

RTS

$C04C,X

$03

A

$0A2E

* $DB

$20

* $DA

* $DA

$00

* $DB

* $DB

$CDCC

* $DA

$CDCC

* $E7

$0A32

$0A32

$1E

$CDCC

$20

* $DB

$07

$0A2F

$CDCC

* $DA

$CDCC

$CDF9

$0A32

$1E

$CDCC

$0A31

C-128 Internals

Get high byte of the line to copy

And mask out bits 3-7

Get carry in (*2)

Add video RAM base

And save as high byte

Block-start address high

Clear carry for addition

Get column in ace and

Add low byte

Start addr.+column to low byte

Load ace with zero in order to

Add to the high byte

And save as the new high byte

And as the block-start address

Pointer to block-start addr low

Get the low byte of the dest

address and inform VDC

Set carry for subtraction

Load right window-border into

X-reg. Plus one

And then into ace

Subtract the current column

And save as number

VDC word-count register

Start copying

Block-start address high

Get high byte of source address

Mask bits 3-7 out

And add attribute RAM

Set the registers

Pointer to block-start address

Low. Get source address low

And set

Set update address for attribute

Get number of chars to copy

Reg. 31 is word-count register

Copy

Get current line back

Return from the subroutine

251

Abacus Software

C4A5:

C4A7:

C4AA:

C4AD:

C4AF:

C4B1:

C4B2:

C4B3:

C4B5:

C4B7:

C4B9:

C4BB:

C4BD:

C4BF:

A4

20

20

24

30

88

C8

A9

91

A5

91

C4

DO

60

E6

85 CB

5E Cl

D7

OF

20

EO

Fl

E2

E7

F3

LDY

JSR

JSR

BIT

BMI

DEY

INY

LDA

STA

LDA

STA

CPY

BNE

RTS

* $E6

$CB85

$C15E

* $D7

$C4C0

$20

<$E0),Y

* $F1

<$E2),Y

* $E7

$C4B2

C-128 Internals

Clear (line X) 40 column

Load left window-border, Y-reg

Clear line overflow bit

Get start address of line X

Test 40/80 column mode

Jump if 80-column mode

Dummy decrement, is

incremented again

Increment column pointer

Load ace with <space>

Store space in video RAM

Color code for char output in ace

Store color in color RAM

Compare right window-border

Jump if not done

Return from the subroutine

C4C0:

C4C3:

C4C6:

C4C8:

C4CB:

C4CD:

C4D0:

C4D2:

C4D3:

C4D4:

C4D6:

C4D7:

C4DA:

C4DC:

C4DE:

C4E1:

C4E4:

C4E5:

C4E6:

C4E9:

8E

8C

A2

20

29

20

A2

18

98

65

48

8D

A9

65

8D

20

E8

68

20

A9

31

32

18

DA

7F

CC

12

E0

3C

00

El

3D

CC

CC

20

0A

0A

CD

CD

0A

0A

CD

CD

STX

STY

LDX

JSR

AND

JSR

LDX

CLC

TYA

ADC

PHA

STA

LDA

ADC

STA

JSR

INX

PLA

JSR

LDA

$0A31

$0A32

$18

$CDDA

$7F

$CDCC

$12

* $E0

$0A3C

$00

* $E1

$0A3D

$CDCC

$CDCC

$20

Clear line - 80 column

Save X-register

Save Y-register

Select register 24

Get current value

Clear copy bit

And save new value

Update address high

Clear carry for addition

Get column in ace

Add start address low

Store low address on stack

Store the low byte

Load ace with zero in order to

Add the carry to the high byte

Store the high byte

And put in the register

Update address low

Get low byte from stack

Low byte to VDC

Load ace with space

252

Abacus

C4EB:

C4EE:

C4EF:

C4F1:

C4F4:

C4F5:

C4F7:

C4F8:

C4F9:

C4FC:

C4FF:

C501:

C504:

C507:

C508:

C50B:

C50D:

C50E:

C50F:

C511:

C512:

C514:

C516:

C519:

C51A:

C51B:

C51E:

C521:

C523:

C526:

C52 9:

C52B:

C52D:

C530:

C531:

C533:

C536:

C539:

C53B:

Software

20 CA

38

A5 E7

ED 32

48

FO 14

AA

38

6D 3C

8D 3C

A9 00

6D 3D

8D 3D

8A

20 3E

A2 12

18

98

65 E2

48

A9 00

65 E3

20 CC

E8

68

20 CC

AD 3D

29 07

0D 2F

8D 3D

A5 Fl

29 8F

20 CA

68

FO 03

20 3E

AE 31

A4 E7

60

CD

0A

OA

OA

OA

OA

C5

CD

CD

OA

OA

OA

CD

C5

OA

JSR

SEC

LDA

SBC

PHA

BEQ

TAX

SEC

ADC

STA

LDA

ADC

STA

TXA

JSR

LDX

CLC

TYA

ADC

PHA

LDA

ADC

JSR

INX

PLA

JSR

LDA

AND

ORA

STA

LDA

AND

JSR

PLA

BEQ

JSR

LDX

LDY

RTS

$CDCA

* $E7

$0A32

$C50B

$0A3C

$0A3C

$00

$0A3D

$0A3D

$C53E

$12

* $E2

$00

* $E3

$CDCC

$CDCC

$0A3D

$07

$0A2F

$0A3D

* $F1

$8F

$CDCA

$C536

$C53E

$0A31

* $E7

C-128 Internals

And into VDC data register

Set carry for subtraction

Load right window-border in ace

Subtract start column

Save number on stack

Start column = righ border

Get number in X

Set carry for addition

Add low byte

And save again

Load ace with zero in order to

Add the carry to the high byte

Save high byte

Get number of characters in ace

Ace in word-count register

Update address high

Clear carry for addition

Get column in ace

And add low byte attribute

Save low byte on stack

Load ace with zero in order to

Add the carry

And write the high byte into the

Register Update address low

Get low byte from stack

And write in register

Get high byte of dest address

Mask out bits 4-7

And combine with dest address

And save

Color code for char output in ace

Only color & ALT bit relevant

Get reg contents from DATA reg

Get number from stack

If zero then jump

Output color

Get X-register back

Load right window-border Y-reg

Return from subroutine

253

Abacus Software C-128 Internals

C53C:

C53E:

C540:

C543:

C546:

C548:

C54A:

C54D:

C550:

C552:

C554:

C557:

C55A:

C55C:

ju ju a. a. ju ju
^ 7\ ^ ^ ^ 7V

C55D:

C55F:

C561:

C563:

C564:

C565:

C567:

C569:

C56B:

C56D:

C570:

C573:

C576:

C578:

C57A:

C57D:

C57E:

C581:

C583:

C586:

A9

A2

20

2C

10

A2

20

CD

90

A2

20

CD

90

60

^ ^ ^ ^

A5

29

49

4A

4A

85

A0

84

A9

8D

8D

AE

EO

DO

4C

A8

AD

85

AD

85

01

IE

CC

00

FB

12

DA

3D

EA

13

DA

3C

EO

01

40

40

D3

58

D4

00

00

2F

01

FF

03

97

3E

CC

3F

CD

CD

D6

CD

OA

CD

OA

^ ^ ^ ^ ^

DC

DO

DC

C6

03

03

LDA

LDX

JSR

BIT

BPL

LDX

JSR

CMP

BCC

LDX

JSR

CMP

BCC

RTS

r JL JL JL. JL. .

f ^ ^ rt TV 7\

LDA

AND

EOR

LSR

LSR

STA

LDY

STY

LDA

STA

STA

LDX

CPX

BNE

JMP

TAY

LDA

STA

LDA

STA

$01

$1E

$CDCC

$D600

$C543

$12

$CDDA

$0A3D

$C53C

$13

$CDDA

$0A3C

$C53C

******•:^\ ^\ ^\ /\ ^\ ^\ 4

* $01

$40

$40

A

A

* $D3

$58

* $D4

$00

$DC00

$D02F

$DC01

$FF

$C57D

$C697

$033E

* $CC

$033F

* $CD

Write ace times character to

update register

Load counter with one

Select word-count register

And determine value

Test status bit

And wait until done

Update address high

Get current value

Compare w/ high byte dest addr.

Doesn't match-correct error

Update address low

Get current value

Compare with dest address low

Doesn't match-correct error

Return from the subroutine

Check the keybaord matrix

Get bit 6 from zero-page data reg

Processor port. Bit 6 indicates if

the 40 or 80 char set is selected

Invert bit 6 and bring to bit

Position 4. Reset shift flag

And store 40/80 mode

Code for "no keyH in zero page

Store pointer for pressed key

Check value for matrix lines

Responsible for matrix lines 1-8

Responsible for matrix line 9-11

Port B=input of matrix columns

Check if a key is pressed

Check which key is pressed

No key, then continue

Displ cntr start of keyboard table

Copy address low of keyboard

decoding table la in zero page

Copy address high of keyboard

decoding table la in zero page

254

Abacus

C588:

C58A:

C58D:

C58E:

C590:

C592:

C595:

C597:

C59A:

C59C:

C59D:

C5A0:

C5A3:

C5A5:

C5A6:

C5A8:

C5A9:

C5AB:

C5AD:

C5AF:

C5B1:

C5B3:

C5B5:

C5B7:

C5B9:

C5BB:

C5BC:

C5BE:

C5BF:

C5C0:

C5C1:

C5C3:

C5C5:

C5C7:

C5C8:

C5C9:

C5CA:

C5CC:

C5CF:

Software

A9

8D

2A

24

30

8D

10

8D

A2

48

AD

CD

DO

4A

BO

48

Bl

C9

FO

C9

BO

C9

FO

05

85

2C

84

68

C8

CA

DO

CO

BO

68

38

2A

BO

8D

26

FF

2F

D3

05

00

03

2F

08

01

01

F8

17

CC

08

08

05

09

03

05

D3

D3

D4

E2

59

10

C2

00

D3

DO

DC

DO

DC

DC

DC

LDA

STA

ROL

BIT

BMI

STA

BPL

STA

LDX

PHA

LDA

CMP

BNE

LSR

BCS

PHA

LDA

CMP

BEQ

CMP

BCS

CMP

BEQ

ORA

STA

$FF

$D02F

A

* $D3

$C597

$DC00

$C59A

$D02F

$08

$DC01

$DC01

$C59D

A

$C5BF

($CC),Y

$08

$C5B7

$05

$C5BC

$03

$C5BC

* $D3

* $D3

.Byte $2C

STY

PLA

INY

DEX

BNE

CPY

BCS

PLA

SEC

ROL

BCS

STA

ROL

* $D4

$C5A5

$59

$C5D7

A

$C58E

$DC00

* $D3

C-128 Internals

Test value for keyboard matrix

Set test lines 9-11 to high

Bit position of the test line to 0

Pointer if testing 1-8 or 9-11

If testing lines 9-11 then skip

Test value in Port A

(matrix line 1-8)

Skip test of matrix lines 9-11

Test port A* (matrix lines 9-11)

Set counter for 8 matrix columns

Store line test value in ace

Compare port B (output the

matrix columns) with port B

And wait

Test the output value of matrix

Columns bit by bit. C=l -no key

Store matrix clmns output value

Get key code from keybrd table

Key code 8 is the ALT key

To corresponding evaluation

Check if code for SHIFT, C=,

or Ctrl. No, then continue

Is it code for the BREAK key?

Yes then continue for break key

Zero-page pointer - shift pattern

Combine with the ace

Skip to $C5BE

Place in zero-page for key code

Get matrix columns text value

Keyboard table disp. counter + 1

Matrix column loop counter -1

Loop until all columns tested

Are all lines and columns tested?

Yes, then evaluate key press

Get line test value from stack

Set carry flag for shifting the

Line test value

Continue test matrix lines 1-8

Set port A test value high ($FF)

Merge bit 7 in shift pattern flag

255

Abacus Software C-128 Internals

C5D1:

C5D2:

C5D4:

C5D5:

38

66 D3

2A

DO B7

SEC

ROR

ROL

BNE

$D3

A

$C58E

C5D7:

C5D9:

C5DB:

C5DC:

C5DE:

06 D3

46 D3

68

A5 D4

6C 3A 03

ASL * $D3

LSR * $D3

PLA

LDA * $D4

JMP ($033A)

C5E1:

C5E3:

C5E5:

C5E7:

C5E9:

C5EC:

C5EE:

C5F0:

C5F3:

C5F6:

C5F8:

C5FA:

C5FC:

C5FE:

C600:

C602:

C604:

C606:

C608:

C9 57

DO 13

24 F7

70 5A

AD 25 0A

DO 55

A9 OD

4D 21 OA

8D 21 OA

50 30

A5 D3

FO 55

C9 10

FO 44

C9 08

FO 42

29 07

C9 03

DO 25

CMP

BNE

BIT

BVS

LDA

BNE

LDA

EOR

STA

BVC

LDA

BEQ

CMP

BEQ

CMP

BEQ

AND

CMP

BNE

$57

$C5F8

$F7

$C643

$0A25

$C643

$0D

$0A21

$0A21

$C628

$D3

$C651

$10

$C644

$08

$C646

$07

$03

$C62F

C60A: A5 F7

C60C: 30 43

C60E: AD 25 OA

LDA * $F7

BMI $C651

LDA $0A25

Because remaining matrix lines

9-11 are tested via port A*

Clear bit for matrix line test 9-11

Jump: test next matrix line

Evaluate the keyboard result

Eliminate the set bit 7 in the shift

pattern flag (marker port A* test)

Clear line test value from stack

Code fro pressed key in ace

Vector - keyboard read ($C5E1)

Routine: evaluate keybaord

Was it the "No Scroll" key?

No, then skip

Z-P pause flag bit 6: l=disable

If pause not allowed then RTS

Load ace with last shift pattern

Not 0, then exit via RTS

Invert bits 0,1, and 3 of the

Z-P pause pointer and put in the

Zero-page pause pointer

Keyboard repeat routine

Get current shift pattern in ace

No shift pattern, evaluate normal

Was the 40 character set chosen

Yes, then to 40 evaluation

Was ALT keypress indicated?

Yes, then to ALT evaluation

Mask bits 3-7 from shift pattern

Was C=-SHIFT switch selected?

No, re-evaluate shift pattern

C=/Shift character set switch

Check flag for C= shift switch

Switch prohibit, to repeat routine

Get last-saved shift pattern

256

Abacus

C611:

C613:

C615:

C617:

C619:

C61B:

C61D:

C620:

C623:

C625:

C628:

C62A:

C62D:

Software

DO

24

10

A5

49

85

4C

AD

49

8D

A9

8D

DO

3E

D7

09

Fl

80

Fl

28

2C

02

2C

08

25

22

C6

OA

OA

OA

BNE

BIT

BPL

LDA

EOR

STA

JMP

LDA

EOR

STA

LDA

STA

BNE

$C651

* $D7

$C620

* $F1

$80

* $F1

$C628

$0A2C

$02

$0A2C

$08

$0A25

$C651

C-128 Internals

C62F:

C630:

C632:

C634:

C636:

C638:

C63A:

C63C:

C63E:

C640:

C643:

OA

C9

90

A9

A6

EO

DO

24

70

8E

60

08

12

06

D4

OD

OA

F7

06

21 OA

ASL

CMP

BCC

LDA

LDX

CPX

BNE

BIT

BVS

STX

RTS

A

$08

$C646

$06

* $D4

$0D

$C646

* $F7

$C646

$0A21

C644:

C646:

C647:

C64A:

C64C:

C64F:

A9 OA

AA

BD 3E 03

85 CC

BD 3F 03

85 CD

LDA # $0A

TAX

LDA $033E,X

STA * $CC

LDA $033F,X

STA * $CD

Not zero, then to repeat routine

Check for 40/80 column screen

Positive = 40 column screen

Color code for char output in ace

Invert bit 7 of the color code

Store color code for char code

Jump over VIC character switch

System pointer for text/screen

Get base and invert bit 2 of this

Pointer

Initialize the system pointer with

8 for the last shift pattern

Jump to repeat routine

Load and evaluate decoder table

corresponding to the shift pattern

Multiply shift pattern for disp *2

If shift pattern for shift or C=

Found, then load decoder table

Default value CTRL pattern, ace

Check offset of the decoder table

If it was the 13th key (S-key)

Then set the pause flag, else skip

Check if pause/Ctrl-s is allowed

Not allow, evaluate decod. table

Get pause flag with key value 13

Return from the subroutine

Set the start address of the

decoder table corresponding to

the shift pattern

Set default value to table 5a

of the decoder table in X-reg

Copy address low of decoder

table in zero-page memory

Copy address high of decoder

table in zero-page memory

257

Abacus Software C-128 Internals

C651:

C653:

C655:

C656:

C658:

C65A:

C65C:

C65F:

C661:

C663:

C666:

C668:

C66A:

C66C:

C66E:

C670:

C672:

C674:

C67 6:

C678:

C67A:

C67C:

A4

Bl

AA

C4

FO

AO

8C

DO

29

2C

30

70

C9

FO

C9

FO

C9

FO

C9

FO

C9

DO

D4

CC

D5

07

10

24 OA

36

7F

22 OA

16

5A

7F

29

14

OC

20

08

ID

04

11

46

LDY

LDA

TAX

CPY

BEQ

LDY

STY

BNE

AND

BIT

BMI

BVS

CMP

BEQ

CMP

BEQ

CMP

BEQ

CMP

BEQ

CMP

BNE

* $D4

($CC),Y

* $D5

$C661

$10

$0A24

$C697

$7F

$0A22

$C67E

$C6C4

$7F

$C697

$14

$C67E

$20

$C67E

$1D

$C67E

$11

$C6C4

C67E:

C681:

C683:

C686:

C688:

C68B:

C68D:

C68F:

C692:

C694:

C695:

AC

FO

CE

DO

CE

DO

AO

8C

A4

88

10

24

05

24

3C

23

37

04

23

DO

2D

OA

OA

OA

OA

LDY

BEQ

DEC

BNE

DEC

BNE

LDY

STY

LDY

DEY

BPL

$0A24

$C688

$0A24

$C6C4

$0A23

$C6C4

$04

$0A23

* $D0

$C6C4

Routine REPEAT

Repeat the keybaord logic

Displ. to table start in Y-reg

Load ace with char code from

Table and store char in X-reg

Compare with pointer for current

key. If equal, to repeat check

Counter for key repeat delay

Initialize with $10

Jump to keypress evaluation

Mask out bit 7, not a RVS char

Check pointer for key repeat

Allow all keys ($80), skip

Now key allowed ($40), skip

Check if "character invalid"

Yes, the default read and RTS

Was it the DEL key>

Yes, then repeat evaluation

Was it the space bar?

Yes, then repeat evaluation

Was it the <CRSR-right> key?

Yes, then repeat evaluation

Was it the <CRSR-down> key?

No, skip repeat evaluation

Key repeat evaluation

Get counter for repeat delay

Counter=0, then skip

Repeat delay counter -1

Not zero, default read and RTS

Count speed for repeat -1

Not zero, default read and RTS

Count speed for key repeat

Reinitialize with $04

Offset of key buffer queue in Y

If more than 1 character in buffer

Then default read and RTS

258

Abacus Software C-128 Internals

C697:

C69A:

C69C:

C69E:

C6A0:

C6A2:

C6A4:

C6A7:

C6A8:

C6AA:

4E

A4

84

EO

FO

A9

8D

8A

A6

4C

25

D4

D5

FF

22

00

21

D3

C6

OA

OA

FC

LSR

LDY

STY

CPX

BEQ

LDA

STA

TXA

LDX

JMP

$0A25

* $D4

* $D5

$FF

$C6C4

$00

$0A21

* $D3

$FCC6

C6AD:

C6AF:

C6B2:

C6B4:

C6B5:

C6B7:

C6B9:

C6BC:

C6BE:

C6C1:

C6C2:

C6C4:

C6C6:

C6C9:

A2

DD

FO

CA

10

A6

EC

BO

9D

E8

86

A9

8D

60

09

DD

16

F8

DO

20

06

4A

DO

7F

00

C6

OA

03

DC

LDX

CMP

BEQ

DEX

BPL

LDX

CPX

BCS

STA

INX

STX

LDA

STA

RTS

$09

$C6DD,X

$C6CA

$C6AF

* $D0

$0A20

$C6C4

$034A,X

* $D0

$7F

$DC00

a*****************************

C6CA:

C6CD:

C6CF:

C6D1:

C6D2:

C6D4:

C6D5:

BD 00 10

85 Dl

A9 00

CA

30 06

18

7D 00 10

LDA $1000,X

STA * $D1

LDA # $00

DEX

BMI $C6DA

CLC

ADC $1000,X

Entry: No key pressed

Divide last shift pattern by 2

Copy Displ to decoder table start

In pointer for current key

Was it code for "no character"?

Yes, then default read and RTS

Reset the pause/Ctrl-S pointer

for valid character

Copy character code in ace

Get current shift pattern in X-reg

Back to kernal routine: KEY

Evaluate and store keypress

Loop counter - 10 function keys

Compare ace with key code table

Function key found, evaluate

Decrement loop counter by 1

Loop until all comparisons done

Index: Keyboard buffer queue

Compare with maximum size

Max size reached, then skip

Place char in keyboard buffer

Increment keyboard buff, queue

Index by 1 character

Check keyboard matrix

For default

Return from the subroutine

Prepare keyboard buffer for

KEY

Get length from KEY X

And in KEY character counter

The position of the KEY in the

Entire table is detremined

When all lengths added, end

Else clear carry for addition

Add length of KEY X

259

Abacus Software C-128 Internals

C6D8: 90 F7

C6DA: 85 D2

C6DC: 60

BCC $C6D1

STA * $D2

RTS

If no overflow, then continue

Else store pointer

Return from subroutine

Key codes of 10 function keys

C6DD:

C6DF:

C6E1:

C6E3:

C6E5:

C6E6:

85

86

87

88

83

84

89

8A

8B

8C

C6E7:

C6E9:

C6EB:

C6EE:

C6F0:

C6F3:

C6F5:

C6F8:

C6FA:

C6FC:

C6FE:

C700:

C703:

C705:

C708:

C70A:

C70D:

C70F:

C712:

C715:

C717:

C71A:

C71C:

C71F:

C721:

24

30

AD

DO

CE

DO

AD

29

C9

F0

A9

8D

A4

AE

Bl

2C

30

8D

20

Bl

8D

A6

AD

49

20

D7

41

27

3C

28

37

26

CO

CO

2E

14

28

EC

2A

E0

26

10

29

7C

E2

2A

Fl

29

80

40

0A

0A

0A

0A

0A

0A

0A

Cl

0A

0A

CC

BIT

BMI

LDA

BNE

DEC

BNE

LDA

AND

CMP

BEQ

LDA

STA

LDY

LDX

LDA

BIT

BMI

STA

JSR

LDA

STA

LDX

LDA

EOR

JSR

* $D7

$C72C

$0A27

$C72C

$0A28

$C72C

$0A26

$C0

$C0

$C72C

$14

$0A28

* $EC

$0A2A

($E0),Y

$0A26

$C71F

$0A29

$C17C

($E2),Y

$0A2A

* $F1

$0A29

$80

$CC40

Fl F2

F3 F4

F5 F6

F7 F8

F9 (Shift-Run)

F10 (Help-key)

Flash VIC cursor

Test for 40/80 column

If 80 column then end

Get VIC cursor mode

Is turned off then end

Else decrement the flash counter

If not zero, then end

Get VIC cursor

Mask out bits 0-5

Cursor steady or turned off?

If so then end

Set the VIC cursor flash counter

To $14=20

Get current cursor columnY-Reg

Get color at cursor pos. for flash

Get character at current column

Test VIC cursor mode

Character normal again

Char at cursor pos before flash

Set color RAM address

Get color at cursor position

Save as color before flash

Color code-char output in X-Reg

Char at cursor pos before flash

Invert the negative bit

Save character and color

260

Abacus

C724:

C727:

C729:

C72C:

Software

AD

49

8D

60

26

80

26

OA

OA

LDA

EOR

STA

RTS

$0A26

$80

$0A26

C72D:

C72F:

C730:

C731:

C732:

C733:

C734:

C737:

C739:

C73B:

C73D:

C73E:

C740:

C741:

C743:

C745:

C747:

C749:

C74B:

C74D:

C74F:

C751:

C753:

C756:

C757:

C759:

C75C:

C75E:

C760:

C7 62:

C764:

C766:

85

48

8A

48

98

48

AD

DO

85

A9

48

A9

48

A4

A5

C9

F0

C9

F0

A6

EO

DO

4C

AA

10

4C

C9

90

C9

90

29

2C

EF

21

FB

D6

C3

OB

EC

EF

OD

26

8D

22

FO

IB

03

BE

03

02

20

56

60

03

DF

OA

C9

C8

STA

PHA

TXA

PHA

TYA

PHA

LDA

BNE

STA

LDA

PHA

LDA

PHA

LDY

LDA

CMP

BEQ

CMP

BEQ

LDX

CPX

BNE

JMP

TAX

BPL

JMP

CMP

BCC

CMP

BCC

AND

* $EF

$0A21

$C734

* $D6

$C3

$0B

* $EC

* $EF

$0D

$C76F

$8D

$C76F

* $F0

$1B

$C756

$C9BE

$C75C

$C802

$20

$C7B6

$60

$C7 67

$DF

.Byte $2C

C-128 Internals

Get VIC cursor mode

Negate the flash condition

And save again

Return from the subroutine

BSOUT entry for screen output

Save character to print in z-page

Save ace contents on stack

Save X-reg contents on stack

Via ace

Save Y-reg contents on stack

Via ace

Check contents of z-p pause flag

Wait until flag value is 0

Clear input/get flag via keyboard

High byte of continuation on

stack, tojumptorouitinevia

RTS now the byte of the

continuation on the stack as well

Get current cursor columnY-Reg

Get char to print - temp storage

Is it a carriage return <Cr> ?

Yes, then output <CR>

Is it a shift-CR?

Yes, then output <shift/CR>

Get value of previous character

Was it <ESC>, then handle char

as <ESC> sequence, else to

$C756 - evaluate ESC sequences

Character to output to X-Reg

Is it a character from 0 -127 ?

No, evalute: exteneded ASCII

Is characetr to output < Blank ?

Yes, then evaluate control codes

Is it a letter?

Yes, then output letter

Mask out bit 5

Skip to $C769

261

Abacus Software

C767:

C769:

C7 6C:

29

20

4C

3F

FF

22

C2

C3

AND

JSR

JMP

$3F

$C2FF

$C322

C7 6F:

C772:

C773:

C776:

C778:

C77A:

20

E8

20

A4

84

20

C3

85

E6

EC

63

CB

CB

C3

JSR

INX

JSR

LDY

STY

JSR

$CBC3

$CB85

* $E6

* $EC

$C363

C-128 Internals

Output letter

Mask out bits 6/7 of the char

Test for quote

Output character

<Carriage Return> - New line

Search end of input line

Clear the line overflow bit

Of the following-line

Load left window-border Y-reg

Store the current cursor position

Execute linefeed

****************************** Reset Quote/Insert/RVS

C77D:

C77F:

C781:

C783:

C785:

C787:

C789:

C78B:

A5

29

85

A9

85

85

85

60

Fl

CF

Fl

00

F5

F3

F4

LDA *

AND #

STA *

LDA #

STA *

STA *

STA *

RTS

$F1

$CF

$F1

$00

$F5

$F3

$F4

C78C:

C78D:

C78E:

C78F:

C790:

C791:

C792:

C793:

C794:

C7 95:

C796:

C797:

02

07

09

0A

0B

OC

0E

OF

11

12

13

14

.Byte

.Byte

.Byte

.Byte

.Byte

.Byte

.Byte

.Byte

.Byte

.Byte

.Byte

.Byte

$02

$07

$09

$0A

$0B

$0C

$0E

$0f

$11

$12

$13

$14

Color code tor char output in ace

Reverse and flash off for VDC

Store color code for char output

Load ace with zero for off

And clear the bits: insert mode

RVS flag

Quote-mode flag

Return from the subroutine

Control codes

2=underline on

7=bell

9=tab

A=linefeed

B=lock <Shift>/<Commodore>

C=unlock <Sh>/<C=>

E=lower case

F=flash on

ll=cursorup

12=reverse on

13=home

14=delete

262

Abacus Software C-128 Internals

C798: 18

C799: ID

-Byte $18

.Byte $ld

******************* * **********

C79A:

C79C:

C79E:

C7A0:

C7A2:

C7A4:

C7A6:

C7A8:

C7AA:

C7AC:

C7AE:

C7B0:

C7B2:

C7B4:

C6

8D

4E

BO

A5

AB

7F

D4

59

Cl

B2

1A

60

53

C8

C9

C9

C9

C8

C8

C8

C8

C8

C8

C8

C9

C9

C8

$C8C6

$C98D

$C94E

$C9B0

$C8A5

$C8AB

$C87F

$C8D4

$C859

$C8C1

$C8B2

$C91A

$C960

$C853

C7B6:

C7B9:

C7BB:

C7BD:

C7BF:

C7C1:

C7C3:

C7C5:

C7C7:

C7C9:

C7CB:

C7CD:

6C

C9

F0

A6

DO

C9

FO

A6

FO

A2

86

4C

34 03

IB

38

F5

08

14

OB

F4

07

00

EF

26 C3

JMP

CMP

BEQ

LDX

BNE

CMP

BEQ

LDX

BEQ

LDX

STX

JMP

($0334)

$1B

$C7F5

* $F5

$C7C9

$14

$C7D0

* $F4

$C7D0

$00

* $EF

$C326

18=set/cleartab

lD=Cursor Right

Addresses of the routines which

execute control codes (-1)

Accessed via RTS.

Underline on

Tab

Bell

Linefeed

Disable <Sh>/<C=>

Enable <Sh>/<C=>

Lower case

Rash on

Cursor up

Reverse on

Home

Delete

Set/clear tab

Cursor right

Execute control code

Vector character output with Ctrl

Is character <ESC>?

Yes, then end

Insert mode set?

Yes, then output char in reverse

Is the character <Delete>?

Then execute

Is the quote-mode flag set?

If so, then reverse character

Clear the last-printed character

In the zero-page

And output character in reverse

263

Abacus Software C-128 Internals

C7D0:

C7D2:

C7D5:

C7D7:

C7D8:

C7DA:

C7DC:

C7DF:

C7E1:

C7E2:

C7E4:

A2

DD

FO

CA

10

A2

DD

FO

CA

10

60

0D

8C C7

IF

F8

OF

4C CE

04

F8

LDX

CMP

BEQ

DEX

BPL

LDX

CMP

BEQ

DEX

BPL

RTS

$0D

$C78C,X

$C7F6

$C7D2

$0F

$CE4C,X

$C7E5

$C7DC

C7E5:

C7E7:

C7E9:

C7EB:

24

30

86

60

D7

03

Fl

BIT

BMI

STX

RTS

* $D7

$C7EC

* $F1

C7EC:

C7EE:

C7F0:

C7F3:

C7F5:

A5

29

ID

85

60

Fl

FO

5C CE

Fl

LDA

AND

ORA

STA

RTS

* $F1

$F0

$CE5C,X

* $F1

C7F6:

C7F7:

C7F8:

C7F9:

C7FC:

C7FD:

C800:

C801:

8A

OA

AA

BD

48

BD

48

60

9B C7

9A C7

TXA

ASL

TAX

LDA

PHA

LDA

PHA

RTS

$C79B,X

$C7 9A,X

Compare A with possible control

codes

X is the counter for Ctrl codes

Compare with the table

Found? Then jump to execution

Else decrement the counter and

Compare with next value

Compare with the 16 possible

Codes for changing the color

Jump if found

Else decrement counter and

Compare with next value

Returns from the subroutine

Set color - 40-column

Test 40/80-column mode

Jump if 80-column mode

Store color code for char outout

Return from subroutine

Set color - 80-column mode

Color code for char output in ace

Mask out lower nibble (bits 0-3)

OR with color code table

Store color code for char output

Return from subroutine

Execute control codes

Pointer to ace and then

Multiply by two because a

16-bit value is being fetched

Get low byte of the start address

In ace and get

High byte of the start address

In ace. Accessed via

RTS

264

Abacus Software C-128 Internals

C802:

C805:

C807:

C809:

C80B:

C80D:

C80F:

C811:

C814:

C816:

C818:

C81A:

C81D:

C81F:

C821:

C824:

C826:

C828:

C82A:

C82C:

C82E:

C830:

C832:

C834:

C836:

C838:

C83B:

C83D:

C83F:

C842:

C844:

C846:

C849:

C84B:

C84D:

C850:

C852:

6C

29

C9

90

C9

DO

A9

4C

A6

F0

09

4C

C9

DO

4C

A6

DO

C9

FO

C9

FO

C9

FO

C9

DO

4C

C9

DO

4C

C9

DO

4C

C9

DO

4C

09

DO

36

7F

20

09

7F

02

5E

20

F4

05

40

26

14

03

E3

F5

FO

11

3B

ID

45

OE

5E

12

03

BF

02

03

CE

OF

03

DC

13

03

42

80

86

03

C3

C3

C8

C8

C8

C8

Cl

JMP

AND

CMP

BCC

CMP

BNE

LDA

JMP

LDX

BEQ

ORA

JMP

CMP

BNE

JMP

LDX

BNE

CMP

BEQ

CMP

BEQ

CMP

BEQ

CMP

BNE

JMP

CMP

BNE

JMP

CMP

BNE

JMP

CMP

BNE

JMP

ORA

BNE

($0336)

$7F

$20

$C814

$7F

$C811

$5E

$C320

• $F4

$C81D

$40

$C326

$14

$C824

$C8E3

* $F5

$C818

$11

$C867

$1D

$C875

$0E

$C892

$12

$C83B

$C8BF

$02

$C842

$C8CE

$0F

$C849

$C8DC

$13

$C850

$C142

$80

$C7DA

Analyze extended ASCII

Vector char output with shift

Mask out bit 7, not shifted

Compare with <space>

Less than 32

Is it ASCII code 127?

If not then jump

ASCII code for up-arrow

And output

Get quote-mode flag

Jump if not set

Else set bit 6

Output as reverse character

Is the character <INSERT>?

Jumpifnot<INSERT>

Else execute <INSERT>

Get insert-mode flag

If set, then as with quote

Compare to cursor up

Jump if cursor-up

Cursor-left?

If yes, then execute

Compare if upper case

Jump to execution

Reverse off?

No, then skip

Else clear RVS mode

Underline on?

If not then jump

Else set underline mode

Rash mode off?

Skip if not

Else clear flash mode

Is it <CLR/HOME>?

Skip if not

Else clear window

Clear bit 7 - it must be a color

Andjump to evaluation

265

Abacus Software C-128 Internals

C854:

C857:

C859:

20

BO

60

ED CB

04

JSR

BCS

RTS

$CBED

$C85D

C85A:

C85D:

C860:

C862:

C863:

C865:

C866:

20

20

BO

38

66

18

60

63 C3

74 CB

03

E8

JSR

JSR

BCS

SEC

ROR

CLC

RTS

$C363

$CB74

$C865

$E8

Cursor right in window

Cursor one position to the right

New line begun

Return from subroutine

Cursor down

Perform linefeed

Test line-overflow bit

Line too long

Set carry and rotate

It in the start input line

Clear carry for OK

Return from the subroutine

C867:

C869:

C86B:

C86D:

C870:

C872:

A6

E4

B0

20

C6

4C

E5

EB

F9

5D

EB

5C

C8

Cl

LDX

CPX

BCS

JSR

DEC

JMP

* $E5

* $EB

$C866

$C85D

* $EB

$C15C

Cursor up

Load upper window-border in X

Compare with current cursor line

Is less than or equal

Set line status

Dec. current cursor line by 1

Determine start addr current line

Cursor left in window

C875:

C878:

C87A:

C87C:

C87E:

20

B0

DO

E6

DO

00 CC

EC

E9

EB

ED

JSR^

BCS

BNE

INC

BNE

$CC00

$C866

$C865

* $EB

$C86D

C880:

C882:

C884:

C887:

C889:

24

30

AD

09

DO

D7

07

2C 0A

02

10

BIT

BMI

LDA

ORA

BNE

* $D7

$C88B

$0A2C

$02

$C89B

Cursor left

Cursor not moved

Cursor moved, no new line

Incr. current cursor line by 1

Unconditional jump

2nd character set

Test 40/80-column mode

Jump if 80-column mode

Get CHARROM base address

Set bits 0 and 1

Unconditional jump

266

Abacus

C88B:

C88D:

C88F:

C891:

Software

A5 Fl

09 80

85 Fl

60

LDA

ORA

STA

RTS

* $F1

$80

* $F1

C892:

C894:

C896:

C899:

C89B:

C89E:

24 D7

30 09

AD 2C OA

29 FD

8D 2C OA

60

BIT

BMI

LDA

AND

STA

RTS

* $D7

$C89F

$0A2C

$FD

$0A2C

CJ-128 internals

Color code for char output in ace

Select alternate character set

Store color code for char output

Return from subroutine

<Shift> <Commodore>

Test 40/80-column mode

Jump if 80-column mode

Get base address CHARROM

Clear bits 0 and 1

Store as new base address

Return from the subroutine

C89F:

C8A1:

C8A3:

C8A5:

A5 Fl

29 7F

85 Fl

60

LDA

AND

STA

RTS

* $F1

* $7F

* $F1

C8A6:

C8A8:

C8AA:

C8AC:

C8AE:

C8B0:

C8B2:

A9

05

30

A9

25

85

60

80

F7

04

7F

F7

F7

LDA

ORA

BMI

LDA

AND

STA

RTS

$80

* $F7

$C8B0

$7F

* $F7

* $F7

C8B3: A5 F0

C8B5: C9 13

C8B7: DO 03

LDA * $F0

CMP # $13

BNE $C8BC

<Shift> <Commodore>

80-column

Color code for char output in ace

Clear bit 7, first character set

Set color code for char output

Return from subroutine

<Shift> <Commodore>

enable/disable

Set bit 7 to disable and OR

With flag register

Unconditional jump

Clear bit 7 in order to

Enable

And save

Return from subroutine

Test for <Home>-<Home>

combination

Get last-printed character

Was it HOME?

If not, then end of the routine

267

Abacus

C8B9:

C8BC:

Software

20 24 CA

4C 50 Cl

JSR

JMP

$CA24

$C150

C8BF:

C8C1:

C8C2:

C8C4:

C8C6:

A9 00

2C

A9 80

85 F3

60

LDA # $00

.Byte $2C

LDA

STA

RTS

$80

* $F3

C-128 Internals

Else cancel window

Jump to cursor home

Set/clear reverse mode

Load ace with zero, clear RVS

Skip to $C8C4

Set bit, turn RVS mode on

And store flag

Return from subroutine

C8C7:

C8C9:

C8CB:

C8CD:

A5 Fl

09 20

85 Fl

60

LDA

ORA

STA

RTS

* $F1

* $20

* $F1

C8CE:

C8D0:

C8D2:

C8D4:

A5 Fl

29 DF

85 Fl

60

LDA * $F1

AND # $DF

STA * $F1

RTS

C8D5:

C8D7:

C8D9:

C8DB:

A5 Fl

09 10

85 Fl

60

LDA * $F1

ORA # $10

STA * $F1

RTS

C8DC:

C8DE:

C8E0:

C8E2:

A5

29

85

60

Fl

EF

Fl

LDA

AND

STA

RTS

*

#

*

$F1

$EF

$F1

Turn underline on

Color code for char output in ace

Set bit 6 for underline on

store color code for char output

Return from subroutine

Turn underline off

Color code for char output in ace

Clear bit 5, underline off

Store color code for char output

Return from subroutine

Set flash mode

Color code for char output in ace

Set bit 4 for flash on

Store color code for char output

Return from the subroutine

Turn flash mode off

Color code for char output in ace

Clear bit 4, no flash

Store color code for char output

Return from the subroutine

268

Abacus Software C-128 Internals

•a****************************

C8E3:

C8E6:

C8E9:

C8EB:

C8ED:

C8EF:

C8F1:

C8F4:

C8F6:

C8F9:

C8FC:

C8FF:

C902:

C905:

C907:

C909:

C90B:

C90D:

C90F:

C912:

C914:

C916:

C918:

20 IE CC

20 C3 CB

E4 DF

DO 02

C4 DE

90 21

20 3E C3

BO 22

20 00 CC

20 58 CB

20 ED CB

20 32 CC

20 00 CC

A6 EB

E4 DF

DO EB

C4 DE

DO E7

20 27 CC

E6 F5

DO 02

C6 F5

4C 32 C9

JSR

JSR

CPX

BNE

CPY

BCC

JSR

BCS

JSR

JSR

JSR

JSR

JSR

LDX

CPX

BNE

CPY

BNE

JSR

INC

BNE

DEC

JMP

$CC1E

$CBC3

* $DF

$C8EF

* $DE

$C912

$C33E

$C918

$CC00

$CB58

$CBED

$CC32

$CC00

* $EB

* $DF

$C8F6

* $DE

$C8F6

$CC27

* $F5

$C918

* $F5

$C932

C91B:

C91E:

C921:

C923:

C925:

C927:

C929:

C92A:

C92D:

C92F:

20 75 C8

20 IE CC

BO OF

C4 E7

90 16

A6 EB

E8

20 76 CB

BO OE

20 27 CC

JSR

JSR

BCS

CPY

BCC

LDX

INX

JSR

BCS

JSR

$C875

$CC1E

$C932

* $E7

$C93D

* $EB

$CB7 6

$C93D

$CC27

Perform insert

Copy cursor coordinates

Search for end of input line

Compare line with cursor line

If changed then jump

Compare clmn with current clmn

Smaller

Cursor at line end

Cannot be scrolled

Cursor one to the left

Get char and color cursor pos

Cursor one to the right again

Output character

Cursor one position to the left

Get current cursor line in X-reg

Compare w/ starting cursor line

Copy next character

Compare col. with starting col.

If not reached, continue

Space at current cursor position

Increment counter for insert

If not zero then jump

Else reset insert again

Reset old cursor position

Delete character to left of cursor

Cursor left with bit manipulation

Copy the cursor coordinate

Cursor left not possible

Compare right window-border

Border not yet reached

Get current cursor line in X

Increment the line by 1

Test overflow bit

There is a following-line

Else <space> at current position

269

Abacus Software C-128 Internals

C932:

C934:

C936:

C938:

C93A:

A5

85

A5

85

4C

DE

EC

DF

EB

5C Cl

LDA

STA

LDA

STA

JMP

* $DE

* $EC

* $DF

* $EB

$C15C

C93D: 20 ED CB JSR $CBED

C940:

C943:

C946:

C949:

C94C:

20

20

20

20

4C

58

00

32

ED

23

CB

CC

CC

CB

C9

JSR

JSR

JSR

JSR

JMP

$CB58

$CC00

$CC32

$CBED

$C923

C94F:

C951:

C952:

C954:

C956:

C959:

C95B:

C95C:

C95E:

C960:

A4 EC

C8

C4 E7

BO 06

20 6C C9

F0 F6

2C

A4 E7

84 EC

60

LDY * $EC

INY

CPY * $E7

BCS $C95C

JSR $C96C

BEQ $C951

.Byte $2C

LDY * $E7

STY * $EC

RTS

C961:

C963:

C966:

C968:

C96B:

A4 EC

20 6C C9

45 DA

9D 54 03

60

LDY * $EC

JSR $C96C

EOR * $DA

STA $0354,X

RTS

Set old cursor address again

Get column

Store the current cursor column

Get line

Write current cursor line

Determine start address of line

Delete character under cursor

Cursor one to the right

Get character and color at cursor

Cursor one to the left

Character at cursor position

Cursor back to the right

Move line to cursor

Tab

Get current cursor col. in Y-reg

Increment the column pointer

Compare right window-border

No more tabs possible

Get next tab position

Cursor is at tab pos, again

Skip to $C95E

Right window-border to Y

Store the current cursor column

Return from subroutine

Set/clear tab

Get current cursor coL in Y-reg

Get tab byte

Reverse the tab bit

And store again

Return from subroutine

270

Abacus Software C-128 Internals

C96C:

C96D:

C96F:

C970:

C973:

C975:

C976:

C977:

C978:

C979:

C97A:

C97D:

C97F:

98

29

AA

BD

85

98

4A

4A

4A

AA

BD

24

60

07

6C CE

DA

54 03

DA

TYA

AND

TAX

LDA

STA

TYA

LSR

LSR

LSR

TAX

LDA

BIT

RTS

$07

$CE6C,X

* $DA

A

A

A

$0354,X

* $DA

Determine tab position

Column to accumulator

Mask out bits 4-7=A MOD 7

And to X-register as pointer

Get power of 2

And store in $DA

Column back to ace

Shift ace right three times

Amounting to INT(A/8)

Back into X-reg as pointer

Get tab byte

Test if 8th tab is set

Return from subroutine

C980:

C982:

C983:

C985:

C987:

C98A:

C98B:

C98D:

A9

2C

A9

A2

9D

CA

10

60

00

80

09

54 03

FA

LDA # $00

•Byte $2C

LDA

LDX

STA

DEX

BPL

RTS

$80

$09

$0354,X

$C987

Clear the tabs (or reset)

Load ace with zero to clear

Skip to $C985

Every 8th position is a tab

All 10 tab bytes

Are written with the value

Decrement the counter and

Jump if not yet done

Return from subroutine

C98E:

C990:

C992:

C994:

C997:

C999:

C99B:

C99E:

C9A1:

C9A3:

C9A6:

24

30

A9

8D

A0

A2

8C

8E

A9

8D

A9

F9

FB

15

18

09

00

05

06

30

01

20

D4

D4

D4

D4

BIT

BMI

LDA

STA

LDY

LDX

STY

STX

LDA

STA

LDA

* $F9

$C98D

$15

$D418

$09

$00

$D405

$D406

$30

$D401

$20

CHR$(7) - Bell

Test beep flag

No beep

Set SID volume to

15 (maximum)

Attack/decay constant

Sustain/release constant

Place in the corresponding reg

(for voice 1)

Define high byte of frequency

For voice 1

Select sawtooth

271

Abacus Software C-128 Internals

C9A8:

C9AB:

C9AD:

C9B0:

8D 04 D4

A9 21

8D 04 D4

60

STA $D404

LDA # $21

STA $D404

RTS

C9B1:

C9B3:

C9B4:

C9B7:

C9BA:

C9BB:

C9BD:

A5 EC

48

20 C3 CB

20 63 C3

68

85 EC

60

LDA * $EC

PHA

JSR $CBC3

JSR $C363

PLA

STA * $EC

RTS

C9BE:

C9C1:

C9C3:

C9C5:

C9C7:

C9CA:

C9CC:

C9CD:

C9CF:

C9D1:

C9D3:

C9D4:

C9D5:

C9D8:

C9D9:

C9DC:

C9DD:

6C

C9

DO

46

4C

29

38

E9

C9

BO

0A

AA

BD

48

BD

48

60

38

IB

05

EF

7D

7F

40

IB

OA

DF

DE

03

C7

C9

C9

JMP

CMP

BNE

LSR

JMP

AND

SEC

SBC

CMP

BCS

ASL

TAX

LDA

PHA

LDA

PHA

RTS

($0338)

$1B

$C9CA

* $EF

$C77D

$7F

$40

$1B

$C9DD

A

$C9DF,X

$C9DE,X

C9DE:

C9E0:

C9E2:

9E

EC

15

CA

CA

CA

$CA9E

$CAEC

$CA15

And write to SID

The tone is started

By setting bit 0

Return from subroutine

<LF> - cursor column remains

Get current cursor column in ace

Save current column in ace

Search for end of line

Perform linefeed

Get current column back

Store the current cursor line

Return from subroutine

Execute ESC sequences

Vector char output with ESC

Is character <ESC>?

Jump if another character

Current character by 2

Turn off all special functions

Mask out bit 7, not reverse char

Set carry for subtraction

Subtract 64 from ASCII value

Compare with 27

Return if character greater than Z

Ace * 2 -- 16-bit value fetched

And then to X as pointer

Get high byte of exec, routine

Save on stack

Get low byte of routine on stack

Jump to routine via

RTS. Address is on the stack

Addresses of the escape routine

<ESC> @ - Clear cursor to end

<ESC> A - Auto-insert on

<ESC> B - Set bottom - screen

272

Abacus

C9E4:

C9E6:

C9E8:

C9EA:

C9EC:

C9EE:

C9F0:

C9F2:

C9F4:

C9F6:

C9F8:

C9FA:

C9FC:

C9FE:

CAOO:

CA02:

CA04:

CA06:

CA08:

CAOA:

CAOC:

CAOE:

CA10:

CA12:

Software

E9 CA

51 CA

OA CB

20 CB

36 CB

39 CB

3C CA

BO CB

51 CB

El CA

E4 CA

47 CB

7C C7

8A CA

75 CA

3E CB

Fl CA

13 CA

FD CA

BB CA

C9 CA

2B CD

82 C9

7F C9

$CAE9

$CA51

$CB0A

$CB20

$CB36

$CB39

$CA3C

$CBB0

$CB51

$CAE1

$CAE4

$CB47

$C77C

$CA8A

$CA75

$CB3E

$CAF1

$CA13

$CAFD

$CABB

$CAC9

$CD2B

$C982

$C97F

CA14:

CA15:

CA16:

CA17:

CA19:

CA1B:

CA1D:

CA1F:

CA21:

18

24

38

A6 EC

A5 EB

90 11

85 E4

86 E7

4C 32 CA

CLC

.Byte

SEC

LDX *

LDA *

$24

$EC

$EB

BCC $CA2E

STA *

STX *

$E4

$E7

JMP $CA32

C-128 Internals

<ESC> C - Auto-insert off

<ESC> D - Delete current line

<ESC> E - Cursor flash off

<ESC> F - Cursor flash on

<ESC> G - Enable beep

<ESC> H - Disable beep

<ESC> I - Insert line

<ESC> J - Cursor to start of line

<ESC> K - Cursor to end of line

<ESC> L - Enable scrolling

<ESC> M - Disable scrolling

<ESC> N - Reverse off (80-col)

<ESC> O - Inst, quote, RVS off

<ESC> P - Clear to line start

<ESC> Q - Clear to line end

<ESC> R - Reverse screen (80)

<ESC> S - Block cursor (80)

<ESC> T - Set top of screen

<ESC> U - Underline cursor 80

<ESC> V - Scroll up

<ESC> W - Scroll down

<ESC> X - Switch 40/80-col.

<ESC> Y - Reset tabs to normal

<ESC> Z - Clear all tabs

Definition of window borders

Cursor position is top/left

Skip to $CA17

Cursor position is right/bottom

Get current cursor col in X-reg

Get current cursor line in ace

If carry cleared: left/top!

Define bottom of screen window

As well as right border

Execute remainder of routine

273

Abacus Software C-128 Internals

CA24:

CA26:

CA28:

CA2B:

CA2D:

CA2E:

CA30:

CA32:

CA34:

CA36:

CA39:

CA3A:

CA3C:

A5

A6

20

A9

AA

85

86

A9

A2

9D

CA

DO

60

ED

EE

ID CA

00

E5

E6

00

04

5D 03

FA

LDA

LDX

JSR

LDA

TAX

STA

STX

LDA

LDX

STA

DEX

BNE

RTS

* $ED

* $EE

$CA1D

$00

* $E5

* $E6

$00

$04

$035D,X

$CA36

Define screen as window

Get max number of lines in A

Get max number of cols in X

Define as right/bottom

Left/top with 0/0

And define as left

And top border

Load ace with zero and

The X-register with 4 in order to

Clear the line-overflow bit

Decrement counter and jump

If not all bits cleared yet

Return from subroutine

CA3D:

CA40:

CA43:

CA44:

CA47:

CA48:

CA4B:

CA4C:

CA4E:

CA4F:

CA51:

20

20

E8

20

08

20

28

B0

38

66

60

7C

56

76

81

03

E8

C3

Cl

CB

CB

JSR

JSR

INX

JSR

PHP

JSR

PLP

BCS

SEC

ROR

RTS

$C37C

$C156

$CB7 6

$CB81

$CA51

$E8

Insert line

Move remainder of screen to X

Cursor left - determine start addr

Increment the line

Test line-overflow bit

Save the carry

Set/clear test-overflow bit

Get carry from stack

Cursor line is start line

Else mark old line

As following-line

Return from subroutine

****************************** Delete current line

CA52:

CA55:

CA57:

CA58:

CA5A:

CA5C:

CA5E:

CA5F:

20

A5

48

A5

85

A5

48

A9

B5 CB

E5

EB

E5

F8

80

JSR

LDA

PHA

LDA

STA

LDA

PHA

LDA

$CBB5

* $E5

* $EB

* $E5

* $F8

$80

Set line start address

Load top of window into ace

Save on stack

Get current cursor line in ace

Define as top of window

Save scroll flag

On stack

Don't scroll

274

Abacus

CA61:

CA63:

CA66:

CA67:

CA69:

CA6B:

CA6D:

CA6E:

CA70:

CA71:

CA73:

Software

85

20

68

85

A5

85

68

85

38

66

4C

F8

B8 C3

F8

E5

EB

E5

E8

56 Cl

STA

JSR

PLA

STA

LDA

STA

PLA

STA

SEC

ROR

JMP

* $F8

$C3B8

* $F8

* $E5

* $EB

* $E5

$E8

$C156

C-128 Internals

Enable

Scroll up

Get scroll flag back

And reconstruct

Load top of window into ace

Write current cursor line

Get top of window

And write back

Set carry in order to write to $E8

Mark as following-line

Cursor left window border

•••a**************************

CA76:

CA7 9:

CA7C:

CA7E:

CA81:

CA83:

CA86:

CA88:

20

20

E6

20

A4

20

B0

4C

IE

AA

EB

5C

E6

74

Fl

32

CC

C4

Cl

CB

C9

JSR

JSR

INC

JSR

LDY

JSR

BCS

JMP

$CC1E

$C4AA

* $EB

$C15C

* $E6

$CB74

$CA79

$C932

a*****************************

CA8B:

CA8E:

CA91:

CA93:

CA95:

CA98:

CA9A:

CA9D:

20

20

C4

DO

20

90

20

90

IE

27

E6

05

74

EE

00

EF

CC

CC

CB

CC

JSR

JSR

CPY

BNE

JSR

BCC

JSR

BCC

$CC1E

$CC27

* $E6

$CA9A

$CB74

$CA88

$CC00

$CA8E

a*****************************

CA9F: 20 IE CC

CAA2: 20 AA C4

CAA5: E6 EB

JSR $CC1E

JSR $C4AA

INC * $EB

Delete from cursor to end of line

Save cursor coordinates

Clear current line at cursor

Incr. current cursor line by 1

Determine line start address

Load left window-border in Y

Test line-overflow bit

Clear following-line too

Set old cursor address

Delete from line start to cursor

Save cursor coordinates

Space at current cursor position

Compare w/ left window-border

Not yet reached

Test line-overflow bit

No overflow, then end

Else cursor left

If moved then clear line

Delete from cursor pos to end of

line

Save cursor coordinates

Delete line

Incr. current cursor line by 1

275

Abacus

CAA7:

CAAA:

CAAC:

CAAF:

CAB1:

CAB3:

CAB5:

CAB7:

CAB9:

Software

20

A4

20

BO

A5

C5

90

F0

4C

5C

E6

74

Fl

EB

E4

EB

E9

32

Cl

CB

C9

JSR

LDY

JSR

BCS

LDA

CMP

BCC

BEQ

JMP

$C15C

* $E6

$CB74

$CAA2

* $EB

* $E4

$CAA2

$CAA2

$C932

C-128 Internals

Determine start addr. cursor line

Load left window-border Y-reg

Test line overflow bit

Line not yet done

Get current cursor line in ace

Compare lower window border

Lower border not yet reached

Lower border reached

Reset old cursor address

Scroll up

CABC:

CABF:

CACO:

CAC1:

CAC4:

CAC5:

CAC7:

20

8A

48

20

68

85

4C

IE

A6

DF

32

CC

C3

C9

JSR

TXA

PHA

JSR

PLA

STA

JMP

$CC1E

$C3A6

* $DF

$C932

CACA:

CACD:

CADO:

CAD2:

CAD3:

CAD5:

CAD7:

CAD9:

CADC:

CADF:

20

20

B0

38

66

A5

85

20

20

4C

IE

74

03

E8

E5

EB

7C

85

32

CC

CB

C3

CB

C9

JSR

JSR

BCS

SEC

ROR

LDA

STA

JSR

JSR

JMP

$CC1E

$CB74

$CAD5

$E8

* $E5

* $EB

$C37C

$CB85

$C932

oave cursor coordinates

Line to ace and

Then save on stack

Perform scroll-up

Get line back from stack

And store

Old cursor coordinates back

Scroll down

Save cursor coordinates

Test line-overflow bit

Line is not overflow line

Mark that input line is not

Start line

Load top of window in ace

Write current cursor line

Scroll down

Clear line-overflow bit

Old cursor coordinates back

CAE2:

CAE4:

CAE5:

CAE7:

CAE9:

A9

2C

A9

85

60

00

80

F8

LDA #

• Byte

LDA #

STA *

RTS

$00

$2C

$80

$F8

Enable/disable scrolling

Enable scrolling

Skip to $CAE7

Disable scrolling

Store scroll flag

Return from subroutine

276

Abacus Software C-128 Internals

CAEA:

CAEC:

CAED:

CAEF:

CAF1:

A9

2C

A9

85

60

00

80

F6

LDA #

.Byte

LDA #

STA *

RTS

$00

$2C

$80

$F6

CAF2:

CAF4:

CAF6:

CAF9:

CAFB:

24

10

AD

29

4C

D7

40

2B

E0

14

0A

CB

BIT

BPL

LDA

AND

JMP

* $D7

$CB36

$0A2B

$E0

$CB14

Set/clear flag for auto-insert

Clear auto-insert flag

Skip to $CAEF

Set auto-insert flag

And store flag

Return from subroutine

Turn on block cursor

Test 40/80-column mode

For 40-column mode —> end

Get VDC cursor mode

Mask out bits 0-4 (start-scan)

Save and VIC cursor off

Turn on underline cursor

CAFE:

CB00:

CB02:

CB05:

CB07:

CB09:

24

10

AD

29

09

DO

D7

34

2B

E0

07

09

0A

BIT

BPL

LDA

AND

ORA

BNE

* $D7

$CB36

$0A2B

$E0

$07

$CB14

CB0B:

CB0D:

CB0F:

CB12:

CB14:

CB17:

24

10

AD

29

8D

4C

D7

0B

2B

IF

2B

91

0A

0A

CD

BIT

BPL

LDA

AND

STA

JMP

* $D7

$CB1A

$0A2B

$1F

$0A2B

$CD91

CB1A:

CB1D:

CB1F:

AD

09

DO

26

40

12

0A LDA

ORA

BNE

$0A26

$40

$CB33

lest 4U/5U-coiumn nag

If 40-column, end

Get VDC cursor mode

Mask out start-scan

Start-scan line is 7

Unconditional jump to settir

Cursor flash off

Test 40/80-column mode

If 40-column, then jump

Get VDC cursor mode

Mask out flash

And save again

Set mode and VIC off

for 40 column

Get VIC cursor mode

Set bit 6 for steady

Unconditional jump to store

277

Abacus Software

CB21:

CB23:

CB25:

CB28:

CB2A:

CB2C:

24 D7

10 09

AD 2B OA

2 9 IF

09 60

DO E6

BIT

BPL

LDA

AND

ORA

BNE

* $D7

$CB2E

$0A2B

$1F

$60

$CB14

CB2E:

CB31:

CB33:

CB36:

AD 26 OA

29 BF

8D 26 OA

60

LDA

AND

STA

RTS

$0A26

$BF

$0A26

C-128 Internals

Cursor flash on

Test 40/80-column mode

Jump if 40 column

Get VDC cursor mode

Mask out flash

And define flash period

Unconditional jump to store

for 40 column

Get VIC cursor mode

Mask otu bit 6 (steady)

And save again

Return from subroutine

****************************** Set/clear flag for bell

CB37:

CB39:

CB3A:

CB3C:

CB3E:

A9

2C

A9

85

60

00

80

F9

LDA #

.Byte

LDA #

STA *

RTS

$00

$2C

$80

$F9

Enable bell

Skip to $CB3C

Disable bell

And store flag

Return from the subroutine

****************************** Reverse 80-column monitor

CB3F:

CB41:

CB44:

CB46:

A2

20

09

DO

18

DA CD

40

07

LDX

JSR

ORA

BNE

$18

$CDDA

$40

$CB4F

Select register 24

And get current contents

Set reverse flag

Unconditional jump to $CB4F

CB48:

CB4A:

CB4D:

CB4F:

A2

20

29

4C

18

DA

BF

CC

CD

CD

LDX

JSR

AND

JMP

$18

$CDDA

$BF

$CDCC

Switch 80-column monitor

normal

Select register 24

And get current contents

Clear the reverse flag

And store

278

Abacus Software C-128 Internals

CB52:

CB55:

20

4C

C3

3E

CB

C3

JSR

JMP

$CBC3

$C33E

CB58:

CB5A:

CB5C:

CB5E:

CB60:

CB62:

CB64:

A4

24

30

Bl

85

Bl

60

EC

D7

07

E2

F2

E0

LDY

BIT

BMI

LDA

STA

LDA

RTS

* $EC

* $D7

$CB65

($E2),Y

* $F2

($E0),Y

CB65:

CB68:

CB6B:

CB6D:

CB70:

CB73:

20

20

85

20

20

60

F9

D8

F2

E6

D8

CD

CD

CD

CD

JSR

JSR

STA

JSR

JSR

RTS

$CDF9

$CDD8

* $F2

$CDE6

$CDD8

Cursor to end of current line

Determine start addr current line

Cursor to end of line

Get char and color at cursor pos

Get current cursor col in Y-reg

Test 40/80-column mode

Jump if 80-column mode

Get color at cursor position

And save

Get character at cursor position

Return from subroutine

Get char, and color under cursor

Set the update address to ARA

Get current attribute

Store attribute

Set the update address to video

Get character from video RAM

Return from subroutine

CB74:

CB7 6:

CB79:

CB7C:

CB7E:

CB81:

CB83:

CB85:

CB88:

CB8A:

CB8D:

CB90:

CB92:

A6

20

3D

C9

4C

A6

B0

20

49

3D

9D

A6

60

EB

9F

5E

01

90

EB

0E

9F

FF

5E

5E

DA

CB

03

CB

CB

03

03

LDX

JSR

AND

CMP

JMP

LDX

BCS

JSR

EOR

AND

STA

LDX

RTS

* $EB

$CB9F

$035E,X

$01

$CB90

* $EB

$CB93

$CB9F

$FF

$035E,X

$035E,X

* $DA

Routine to test line-overflow bit

Get current cursor line in X-reg

Determine power 2 & remainder

Clear line overflow bit

No line set in the block?

Jump to the end of the routine

Get current cursor line in X-reg

Jump if flag set

Determine power 2 & remainder

One's complement of ace

combine with line overflow table

And store again

Get X from temp storage

Return from subroutine

279

Abacus Software C-128 Internals

CB93:

CB95:

CB97:

CB9A:

CB9D:

24

70

20

ID

DO

F8

DF

9F

5E

EE

CB

03

BIT

BVS

JSR

ORA

BNE

* $F8

$CB76

$CB9F

$035E,X

$CB8D

CB9F:

CBA1:

CBA2:

CBA4:

CBA5:

CBA8:

CBA9:

CBAB:

CBAC:

CBAD:

CBAE:

CBAF:

CBBO:

86

8A

29

AA

BD

48

A5

4A

4A

4A

AA

68

60

DA

07

6C CE

DA

STX

TXA

AND

TAX

LDA

PHA

LDA

LSR

LSR

LSR

TAX

PLA

RTS

* $DA

$07

$CE6C,X

* $DA

A

A

A

CBB1:

CBB3:

CBB5:

CBB8:

CBBA:

CBBC:

CBBE:

CBCO:

A4

84

20

90

C6

10

E6

4C

E6

EC

74 CB

06

EB

F7

EB

5C Cl

LDY

STY

JSR

BCC

DEC

BPL

INC

JMP

* $E6

* $EC

$CB74

$CBC0

* $EB

$CBB5

* $EB

$C15C

Set the line-overflow bit

Test scroll bit

Jump if bit 6 set

Determine power 2 & remainder

Set the line-ovprflow bit

And update

Routine finds 2A(X AND 7) and

INT (X/8). Param in X-reg

Save the accumulator

X-register to ace

Mask out bits 3-7=X MOD 8

Ace back to X-reg

Get corresponding power of 2

Save ace on stack

Get original value back

This value is divided by 2

Three times

Which results in INT(X/8)

Result to X-reg

Get power of 2 from stack

Return from subroutine

Clear the overflow chain

Put left window-bdr into Y-reg

Save the current cursor column

Clr line-overfl. bit of cur. line

Carry cleared if all bits are 0

Decrement current cursor line

If not first line then jump

Increment current cursor line

Find start addr of current line

280

Abacus Software C-128 Internals

CBC3:

CBC5:

CBC8:

CBCA:

CBCC:

CBCF:

CBD1:

CBD3:

CBD6:

CBD8:

CBDA:

CBDC:

CBDE:

CBEO:

CBE3:

CBE5:

CBE8:

CBEA:

CBEC:

*****;

CBED:

CBEE:

CBFO:

CBF2:

CBF4:

CBF7:

CBF9:

CBFA:

CBFB:

CBFC:

CBFE:

CBFF:

E6

20

BO

C6

20

£4

84

20

A6

C9

DO

C4

DO

20

90

20

90

84

60

48

A4

C4

90

20

A4

88

38

C8

84

68

60

EB

74

F9

EB

5C

E7

EC

58

EB

20

OE

E6

05

74

05

00

E9

EA

EC

E7

07

63

E6

EC

CB

Cl

CB

CB

CC

^ £ £ £ .

C3

INC

JSR

BCS

DEC

JSR

LDY

STY

JSR

LDX

CMP

BNE

CPY

BNE

JSR

BCC

JSR

BCC

STY

RTS

^ ^ ^ ^ ^ ^

PHA

LDY

CPY

BCC

JSR

LDY

DEY

SEC

INY

STY

PLA

RTS

* $EB

$CB74

$CBC3

* $EB

$C15C

* $E7

* $EC

$CB58

* $EB

$20

$CBEA

* $E6

$CBE5

$CB74

$CBEA

$CC00

$CBD3

* $EA

JL JL JL JL JL JL
ft A A A « rt

* $EC

* $E7

$CBFB

$C363

* $E6

* $EC

Search for end of input line

Increment current cursor line

Clear line-overflow bit

If not last line => Jump

Decrement current cursor line

Find start addr of current line

Load rt window-border, Y-reg

Save the current cursor column

Get char, and color at cursor pos

Get current cursor line in X-reg

Is character <space>?

No, then jump

Compare with If window-border

Not yet reached

Clear line-overflow bit

A line is still free

Cursor one position to the left

Cursor can be moved

Current input line: End

Return from subroutine

Cursor 1 spc right in window

Save ace on stack

Get current cursor line in Y-reg

Compare to rt window-border

Right window-border reached?

No, then increment crsr column

Lbad left window-border into Y

Decrement

Carry set means new line

Increment cursor column

Store the current cursor column

Put ace back on stack

Return from the subroutine

281

Abacus Software C-128 Internals

••••a*************************

CCOO:

CCO 2:

CCO 3:

CCO 5:

CCO 7:

CCO 9:

CCOB:

CCOD:

CCOF:

CC11:

CC12:

CC15:

CC16:

CC18:

CC1A:

CC1C:

CC1D:

A4

88

30

C4

BO

A4

C4

BO

C6

48

20

68

A4

84

C4

18

60

EC

04

E6

OF

E5

EB

OE

EB

5C Cl

E7

EC

E7

LDY

DEY

BMI

CPY

BCS

LDY

CPY

BCS

DEC

PHA

JSR

PLA

LDY

STY

CPY

CLC

RTS

* $EC

$CC09

* $E6

$CC18

* $E5

* $EB

$CC1D

* $EB

$C15C

* $E7

* $EC

* $E7

CC1E:

CC20:

CC22:

CC24:

CC2 6:

A4

84

A6

86

60

EC

DE

EB

DF

LDY

STY

LDX

STX

RTS

* $EC

* $DE

* $EB

* $DF

CC27:

CC2 9:

CC2B:

CC2C:

CC2E:

A5

29

AA

A9

2C

Fl

8F

20

LDA *

AND #

TAX

LDA #

.Byte

$F1

$8F

$20

$2C

Cursor 1 spc to left in window

Get current crsr column in Y-reg

Decrement the column by 1

If negative, cursor in column 0

Compare with If window-border

Left edge not reached, OK

Load top of window in Y-reg

Compare with current cursor line

Cursor is in topmost line, end

Decrement current cursor line

Save ace on stack

Find start address oSthe line

Get ace back from stack

Load right window-bdr in Y-reg

Save the current cursor column

Compare with right window-bdr

Clear carry for cursor moved

Return from the subroutine

Copy cursor (X/Y) to $DE/$DF

Get current crsr column in Y-reg

Copy to $DE

Get current crsr column in X-reg

Copy to $DF

Return from the subroutine

Space at current cursor position

Color code for char output in ace

Mask out bits 4-6 (attribute)

And to X-register

Load ace with space

Skipto$CC31

282

Abacus Software C-128 Internals

CC2F:

CC31:

CC32:

CC34:

CC35:

CC37:

CC3A:

CC3D:

CC3E:

CC40:

CC42:

CC44:

CC46:

CC47 :

CC49:

A6

2C

A6

A8

A9

8D

20

98

A4

24

30

91

8A

91

60

Fl

F2

02

28 OA

7C Cl

EC

D7

06

E0

E2

LDX * $F1

.Byte $2C

LDX

TAY

LDA

STA

JSR

TYA

LDY

BIT

BMI

STA

TXA

STA

RTS

* $F2

$02

$0A28

$C17C

* $EC

* $D7

$CC4A

($E0),Y

($E2),Y

Character (ace) at cursor position

Load X-register with color

Skip to $CC34

Color code reg. for insert/delete

Ace to Y-register

Place the value two in

VIC cursor-flash counter

Adapt attribute address

And Y-register back to ace

Get current crsr column in Y-reg

Test 40/80 column mode

Jump if 80-column mode

Store character in 40-column

Put video RAM & X-reg. (color)

In color memory

Return from subroutine

CC4A:

CC4B:

CC4C:

CC4D:

CC50:

CC51:

CC54:

CC57:

CC58:

48

8A

48

20

68

20

20

68

4C

F9

CA

E6

CA

CD

CD

CD

CD

PHA

TXA

PHA

JSR

PLA

JSR

JSR

PLA

JMP

$CDF9

$CDCA

$CDE6

$CDCA

CC5B:

CC5C:

CC5E:

CC60:

CC61:

CC62:

CC64:

38

A5

E5

A8

38

A5

E5

E4

E5

E7

E6

SEC

LDA

SBC

TAY

SEC

LDA

SBC

* $E4

* $E5

* $E7

* $E6

Character on 80-column screen

Ace: character, X: color, Y: col

Save ace on stack

X-register (color) to ace

And store on stack

Set update register for attribute

Get color from stack in ace

And store in attribute RAM

Set update addr. for video RAM

And get character from stack

Store character in video RAM

Find chars/line & lines/window

Set carry

Load bottom of window in ace

Minus top yields lines

Of the window to Y-register

Set the carry again

Load it window-border into ace

Minus left window-border yields

283

Abacus Software C-128 Internals

CC66: AA

CC67: A5 EE

CC69: 60

TAX

LDA * $EE

RTS

CC6A:

CC6C:

CC6D:

CC6F:

CC71:

CC73:

CC75:

CC11:

CC78:

CC7 9:

CC7A:

CC7C:

CC7E:

CC80:

CC82:

CC84:

CC85:

***** ^^\ ^\ ^\ ^\ ^\ /

CC86:

CC88:

CC8A:

CC8B:

CC8D:

CC8F:

CC92:

CC95:

CC97:

CC99:

CC9A:

CC9B:

CC9D:

CC9F:

BO

8A

65

BO

C5

F0

BO

48

18

98

65

BO

C5

FO

90

68

60

85

85

68

85

85

20

20

A5

E5

AA

38

A5

E5

A8

29

E5

14

E4

02

OE

E6

06

E7

04

02

UJL.JUJUJUX.JU.
\ ^\ ^\ r\ w\ w\ /% 4

EC

E9

EB

E8

5C Cl

57 CD

EB

E5

EC

E6

BCS

TXA

ADC

BCS

CMP

BEQ

BCS

PHA

CLC

TYA

ADC

BCS

CMP

BEQ

BCC

PLA

RTS

t ** ***^ /\ w\ w\ w\ w\

STA

STA

PLA

STA

STA

JSR

JSR

LDA

SBC

TAX

SEC

LDA

SBC

TAY

$CC95

* $E5

$CC85

* $E4

$CC77

$CC85

* $E6

$CC84

* $E7

$CC86

$CC86

■fr JU JU JU JU JL .
r» »\ r\ f\ r\ r^ i

* $EC

* $E9

* $EB

* $E8

$C15C

$CD57

* $EB

* $E5

* $EC

* $E6

Number of chars/line into X-reg

Max number of columns in ace

Return from the subroutine

Get or set cursor position

If carry set - then get pos

Line to ace

Add top of window

If overflow then end (Error!)

Compare to bottom of window

If reached, then OK

If oveflow then end (Error!)

Save line on stack

Clear carry for addition

Get column in ace

And add left window-border

If overflow then end (Error!)

Compare to rt window-border

If equal, then OK

If overflow then end (Error!)

Get line from stack

Return from subroutine

Make input line clear

Store the current cursor column

Store the start input line

Get line from stack

Write current cursor line back

Store as start input line

Determine addr of current line

Set cursor to current column

Get current cursor line in ace

Subtract top of window

Result then to X

Set carry for subtraction

Get current cursor column in ace

Subtract left window-border

Result to Y

284

Abacus Software C-128 Internals

CCAO: 18

CCA1: 60

CLC

RTS

CCA2:

CCA3:

CCA5:

CCA7:

CCAA:

CCAB:

CCAD:

CCBO:

CCB2:

CCB4:

CCB7:

CCB9:

CCBB:

CCBC:

CCBF:

CCC1:

CCC3:

CCC5:

CCC6:

CCC9:

CCCB:

CCCD:

CCCE:

CCDO:

CCD2:

CCD3:

CCD5:

CCD7:

CCD9:

CCDA:

CCDB:

CCDE:

CCE1:

CCE3:

CA

86

84

8D

A8

B6

20

85

A2

20

85

A6

E8

20

85

A6

A5

38

FD

FO

90

18

65

BO

AA

A4

C4

FO

88

CA

B9

9D

BO

65

DC

DA

AA

02

6B

DE

OA

20

DB

DC

20

DD

DC

DA

00

2B

16

DB

4D

DB

DD

ID

OA

OA

F2

DD

02

FF

CD

CD

10

10

10

DEX

STX

STY

STA

TAY

LDX

JSR

STA

LDX

JSR

STA

LDX

INX

JSR

STA

LDX

LDA

SEC

SBC

BEQ

BCC

CLC

ADC

BCS

TAX

LDY

CPY

BEQ

DEY

DEX

LDA

STA

BCS

ADC

* $DC

* $DA

$02AA

* $02,Y

$FF6B

* $DE

$0A

$CD20

* $DB

* $DC

$CD20

* $DD

* $DC

* $DA

$1000,X

$CCF6

$CCE3

* $DB

$CD1F

* $DB

* $DD

$CCF6

$100A,Y

$100A,X

$CCD5

* $DD

Clear carry for OK

Return from subroutine

Kernal entry: PFKEY

Program function key

Dec the number of the ftn. key

Number of (ftn key -1) in Z-P

Store length of string in Z-P

Z-P addr - string ptr in FETVEC

Z-page address of string ptr in Y

Get bank # of the ftn string in X

Kernal: GETCFG get config

Store in bank byte for ftn string

Number of ftn keys (10) in ace

Add ftn str lengths up to (X -1)

Store string length in zero page

Get number of the (ftn key -1)

Create real ftn key number

Add ftn str lengths up to (X -1)

Store string length

Get number of (ftn key -1)

Get string length of ftn key

Set carry for normal subtraction

Subtract length of the old ftn str

No move necessary, continue

New string shorter than old

Clear carry for addition

Add total length + difference len

Length > 256 than RTS: error

Put new maximum length in X

Get old max length in Y

If both are equal, than the last

Ftn key was addressed

Decrement old max length by 1

Decrement new max length by 1

Move ftn str's away from new

Insert position

And create space fpr the new str

Add difference length

285

Abacus

CCE5:

CCE6:

CCE8:

CCEA:

CCEC:

CCEF:

CCF2:

CCF3:

CCF4:

Software

AA

A4

C4

BO

B9

9D

C8

E8

90

DD

DB

OA

OA

OA

F2

10

10

TAX

LDY

CPY

BCS

LDA

STA

INY

INX

BCC

* $DD

* $DB

$CCF6

$100A,

$100A,

$CCE8

Y

X

CCF6:

CCF8:

CCFB:

CCFC:

CCFE:

CDOO:

CD03:

CD05:

CD07:

CD0 9:

CDOB:

CDOD:

CD10:

CD11:

CD14:

CD15:

CD17:

CD1A:

CD1B:

CD1C:

CD1E:

CD1F:

A6

20

AA

A4

A5

99

AO

C6

30

86

A6

AD

78

20

58

A6

9D

E8

C8

DO

18

60

DC

20

DC

DA

00

00

DA

15

DF

DE

AA

A2

DF

OA

E7

CD

10

02

02

10

LDX

JSR

TAX

LDY

LDA

STA

LDY

DEC

BMI

STX

LDX

LDA

SEI

JSR

CLI

LDX

STA

INX

INY

BNE

CLC

RTS

* $DC

$CD20

* $DC

* $DA

$1000,

$00

* $DA

$CD1E

* $DF

* $DE

$02AA

$02A2

* $DF

$100A,

$CD05

Y

X

C-128 Internals

$00CD20:

CD22:

CD23:

A9

18

CA

00 LDA

CLC

DEX

Copy new len in X

Get old len in Y

Compare with old max length

Equal, than space

Insertion for new ftn string

For ftn key is done

Increment old & new len

By 1 for move

Until ftn strings shifted

Insert new function string

Get number of the (ftn key -1)

Add ftn str lengths up to (X -1)

Get str len up to the new ftn key

Get#ofthe(ftnkey-1)

Length of the ftn string to insert

Replace len entry in ftn str table

Initialize displacement pointer

Length of the ftn str = length -1

All chars in table xferred, exit

Store the "to" string length

Bank value where str is located

Load ace with FETVEC

Disable all system interrupts

FETCH: get ftn string character

Enable all system interrupts

Position for ftn string in table

Enter character in ftn string table

DispL to "to where" str buffer* 1

Displ to "from where" str buff-fl

Jump in the string transfer loop

Marker for "OK" return

Return from the subroutine

Add lengths of ftn strfs up to X

Load counter with zero

Clear carry for addition

Previous key assignment

286

Abacus Software C-128 Internals

CD24:

CD26:

CD2 9:

30 05

7D 00 10

90 F8

CD2B: 60

BMI $CD2B

ADC $1000,X

BCC $CD23

RTS

CD2C:

CD2E:

CD30:

CD33:

CD35:

CD38:

CD39:

CD3B:

CD3C:

CD3E:

CD40:

CD43:

CD46:

CD49:

CD4A:

CD4D:

CD4E:

CD50:

CD52:

CD54:

CD56:

85

A2

BC

B5

9D

98

95

CA

10

A2

BC

BD

9D

98

9D

CA

10

A5

49

85

60

F0

1A

40

E0

40

E0

F2

0D

60

54

60

54

FO

D7

80

D7

OA

OA

OA

03

OA

03

STA

LDX

LDY

LDA

STA

TYA

STA

DEX

BPL

LDX

LDY

LDA

STA

TYA

STA

DEX

BPL

LDA

EOR

STA

RTS

* $F0

$1A

$0A40,

* $E0,

$0A40,

* $E0,

$CD30

$0D

$0A60,

$0354,

$0A60f

$0354,

$CD40

* $D7

$80

* $D7

X

X

X

X

X

X

X

CD57:

CD59:

CD5B:

CD5D:

CD5E:

CD60:

CD 62:

24

10

A2

18

A5

65

48

D7

FB

OE

EO

EC

BIT

BPL

LDX

CLC

LDA

ADC

PHA

* $D7

$CD56

$0E

* $E0

* $EC

If zero, then add all

Add length of key X

Jump unconditionally to $CD23

Return from subroutine

Kernal routine: SWAPPER

Switch 40/80-col modes

Store ace as last-printed char

Exchange the passive monitor

Storage with the active storage.

This is done 26 times because

26 bytes must be copied

The passive range lies from

$0A40 to $0A5B.

Decrement the counter if

Not done exchanging

Now the bit maps, the bit tables

Of active and passive screens

Must be exchanged.

This is done 13 times

The passive areas starts at

$0A60.

Decrement counter and jump

If not done copying

Get status 40/80 column

And invert flag bit

Save again

Return from subroutine

Set cursor to current column

Test for 40/80 column mode

End if 40-column mode

Cursor position high

Clear carry

Low byte of current screen line

Add cursor column

Save low byte

287

Abacus

CD63:

CD65:

CD 67:

CD6A:

CD6B:

CD6C:

Software

A5

69

20

E8

68

4C

El

00

CC

CC

CD

CD

LDA

ADC

JSR

INX

PLA

JMP

* $E1

$00

$CDCC

$CDCC

CD6F:

CD71:

CD73:

CD7 6:

CD78:

CD7B:

CD7E:

CD81:

CD83:

CD85:

CD88:

CD8A:

CD8C:

CD8E:

CD91:

CD93:

CD96:

CD99:

CD9B:

CD9E:

24

10

20

A4

20

20

8D

29

85

20

A5

29

05

20

A2

AD

4C

A9

8D

60

D7

26

7C

EC

F9

D8

33

F0

DB

F9

Fl

OF

DB

CA

0A

2B

CC

00

27

Cl

CD

CD

0A

CD

CD

OA

CD

OA

BIT

BPL

JSR

LDY

JSR

JSR

STA

AND

STA

JSR

LDA

AND

ORA

JSR

LDX

LDA

JMP

LDA

STA

RTS

* $D7

$CD99

$C17C

* $EC

$CDF9

$CDD8

$0A33

$F0

* $DB

$CDF9

* $F1

$0F

* $DB

$CDCA

$0A

$0A2B

$CDCC

$00

$0A27

C-128 Internals

High byte of current screen line

Add the carry

And store the high byte

Increment register pointer to $0F

Get low byte from stack

And save it too (return)

Set cursor color at cursor pos

Test for 40/80-column mode

Jump if 40 column mode

Set attribute address

Get current crsr column in Y-reg

Attribute addr in update register

Get current attribute

Store temporarily

Mask out bits 0-3 (color)

And store

Attribute addr in update register

Color code for char output in ace

Mask out bits 4-7 (attribute)

And combine with attribute

Store at attribute address

Cursor mode and start-scan line

80-column cursor mode

And store

Ace equal zero and store

Means turn VIC cursor off

Return from subroutine

CD9F:

CDA1:

CDA3:

CDA6:

CDA9:

CDAC:

CDAE:

CDB0:

24

10

20

AD

20

A2

A9

4C

D7

10

F9

33

CA

0A

20

CC

CD

0A

CD

CD

BIT

BPL

JSR

LDA

JSR

LDX

LDA

JMP

* $D7

$CDB3

$CDF9

$0A33

$CDCA

$0A

$20

$CDCC

Turn cursor on (80-column)

Test 40/80-column mode

Jump if 40-columnmode

Set update to attribute address

Temp storage for MOVLIN

Store attribute

Cursor mode and start-scan line

Assigned value 32

Place ace in VDC data register

288

Abacus Software C-128 Internals

CDB3:

CDB6:

CDB9:

CDBB:

CDBD:

CDCO:

CDC3:

CDC 6:

CDC9:

8D

AD

10

29

8D

AD

AE

20

60

27

26

0E

40

26

29

2A

34

OA

OA

OA

OA

OA

CC

STA

LDA

BPL

AND

STA

LDA

LDX

JSR

RTS

$0A27

$0A26

$CDC9

$40

$0A26

$0A29

$0A2A

$CC34

CDCA:

CDCC:

CDCF:

CDD2:

CDD4:

CDD7:

A2

8E

2C

10

8D

60

IF

00

00

FB

01

D6

D6

D6

LDX

STX

BIT

BPL

STA

RTS

$1F

$D600

$D600

$CDCF

$D601

CDD8:

CDDA:

CDDD:

CDEO:

CDE2:

CDE5:

A2

8E

2C

10

AD

60

IF

00

00

FB

01

D6

D6

D6

LDX

STX

BIT

BPL

LDA

RTS

$1F

$D600

$D600

$CDDD

$D601

Turn cursor on (40-column)

Turn VIC cursor on

Steady or flashing cursor?

Steady, then end

Clear flash flag

And store again

VIC character before flash

VIC color before flash

Set old values

Return from subroutine

Ace in data register of VCR

VCR data register

Transmit register

Test status

Not done yet, wait

Store value in register

Return from subroutine

Get value of the data register

VCR data register

Transmit register

Test status

Not done yet, wait

Get value of the register

Return from subroutine

A*****************************

CDE6:

CDE8:

CDE9:

CDEA:

CDEC:

CDED:

CDEF:

A2

18

98

65

48

A9

65

12

E0

00

El

LDX

CLC

TYA

ADC

PHA

LDA

ADC

#

#

$12

$E0

$00

$E1

Set update address to current

screen position

Update address high

Clear carry for addition

Y (column) to ace

Add low byte of current addr

Then on stack

Load ace with zero and then

Add the carry

289

Abacus Software C-128 Internals

CDF1:

CDF 4:

CDF5:

CDF 6:

20

68

E8

4C

CC

CC

CD

CD

JSR

PLA

INX

JMP

$CDCC

$CDCC

CDF 9:

CDFB:

CDFC:

CDFD:

CDFF:

CEOO:

CE02:

CEO 4:

CE07:

CEO 8:

CE09:

A2

18

98

65

48

A9

65

20

68

E8

4C

12

E2

00

E3

CC

CC

CD

CD

LDX

CLC

TYA

ADC

PHA

LDA

ADC

JSR

PLA

INX

JMP

$12

* $E2

$00

* $E3

$CDCC

$CDCC

CEOC:

CEOE:

CE10:

CE12:

CE14:

CE16:

CE18:

CE1B:

CE1C:

CE1E:

CE21:

CE23:

CE25:

CE27:

CE2A:

CE2D:

CE2E:

CE30:

CE32:

A9

AO

85

84

A2

A9

20

E8

A9

20

AO

A2

A9

20

20

C8

CO

90

A9

00

DO

DA

DB

12

20

CC

00

CC

00

OE

DA

74

CA

08

Fl

00

CD

CD

FF

CD

LDA

LDY

STA

STY

LDX

LDA

JSR

INX

LDA

JSR

LDY

LDX

LDA

JSR

JSR

INY

CPY

BCC

LDA

$00

$D0

* $DA

* $DB

$12

$20

$CDCC

$00

$CDCC

$00

$0E

$DA

$FF74

$CDCA

$08

$CE23

$00

Store the high byte

Get low byte from stack

Increment register to $13

And low byte in update register

Set update address for attribute

Update register high byte

Clear carry for addition

Y (column) to ace

Add low byte of attribute addr

And then on stack

Load ace with zero and then

Add carry

Store high byte

Get low byte from stack and

Increment register to $13

Store low byte

Copy character set in VDC RAM

Load ace (low) & Y (high) with

Start addr - CHARROM: $D000

Store these values in zero-page

Addresses $DA and $DB

Update register high

Start address of char generator

Define in VDC

Pointer to low byte

$00 is low byte of start address

Of the character generator

Index pointer to line/char

Select CHARROM

Zero-page address to access

INDFET: LDA(XX),Y fr bank

And store value in RAM

VDC. Increment index pointer

All 8 character copied?

No, then next line

Else load ace with zero

290

Abacus

CE34:

CE37:

CE38:

CE3A:

CE3B:

CE3D:

CE3F:

CE41:

CE43:

CE45:

CE47:

CE49:

CE4B:

Software

20

88

DO

18

A5

69

85

90

E6

A5

C9

90

60

CA CD

FA

DA

08

DA

E0

DB

DB

E0

D8

JSR

DEY

BNE

CLC

LDA

ADC

STA

BCC

INC

LDA

CMP

BCC

RTS

$CDCA

$CE34

* $DA

$08

* $DA

$CE23

* $DB

* $DB

$E0

$CE23

C-128 Internals

And store value in VDC-RAM

Eight times

Jump if not yet done

Clear carry for addition

Load ace with low byte

And add 8 to it

Store again and

If no carry than continue

Else account for carry

And check if the high byte

points to end of CHARROM

Else continue

Return from the subroutine

CE4C: 90 05 1C 9F 9C IE IF 9E

CE54: 81 95 96 97 98 99 9A 9B

CE5C: 00 OF 08 07 0B 04 02 0D

CE64: 0A 0C 09 06 01 05 03 0E

CE6C: 80 40 20 10 08 04 02 01

CE74: 00 04 00 D8 18 00 00 27

CE7C: 00 00 00 00 00 18 27 00

CE84: 00 0D 0D 00 00 00 00 00

CE8C: 00 00

CE8E: 00 00 00 08 18 00 00 4F

CE96: 00 00 00 00 00 18 4F 00

CE9E: 00 07 07 00 00 00 00 00

CEA6: 00 00

Table of the color codes (ASCII)

Table of color codes for VDC

Power of 2

128, 64,32,16, 8,4, 2, 1

Init. values for 40-col screen

These values are copied to zero

page at $E0 during initialization

They are explained in zero-page

Comments

Init. values for 80-col screen

These values are copied into

Page 3 at $0A40 during init.

They're explained in page-three

Comments

291

Abacus Software C-128 Internals

CEA8: 07 06 0A 07 06 04 05 08

CEBO: 09 05

Init. assignment of function keys

Length of function key strings

(Fl - F8, Shift-Run, Help)

Init. ftn key string assignments

CEB2:

CEB9:

CEBF :

CEC7:

CEC9:

CED0:

CED6:

CEDA:

CEDF:

CEE7:

CEEF:

CEF0:

47

44

44

59

53

44

52

4C

4D

44

0D

48

52

4C

49

0D

43

53

55

49

4F

CC

45

41

4F

52

4E

41

4E

53

4E

22

4C

50

41

45

43

56

0D

54

49

2A

50

48

44

43

4C

45

OD

54

OD

OD

49

22

54

52

22

4F

52

43

4F 52

OD

52 OD

55 4E

CEF5:

CFFD:

FF FF

• •

FF

FF

• ■

00 FF

GRAPHIC

DLOAD"

DIRECTORY <Cr>

SCNCLR <Cr>

DSAVE"

RUN <Cr>

LIST <Cr>

MONITOR <Cr>

D <Shift - L> <Cr> RUN <Cr>

HELP <Cr>

Free area

Not used

Not used

292

Abacus Software C-128 Internals

E000:

E002:

E003:

E004:

E005:

E007:

EOOA:

EOOC:

EOOF:

E012:

E013:

E015:

E018:

E01B:

E01E:

EO21:

EO24:

QO27:

E028:

E02A:

E02C:

E02F:

EO31:

E034:

E037:

E03A:

E03B:

E03C:

E03E:

E041:

E043:

EO45:

E048:

A2

78

9A

D8

A9

8D

A2

BD

9D

CA

10

8D

20

20

20

20

20

48

30

A9

CD

FO

20

20

20

68

58

30

4C

C9

FO

6C

4C

FF

00

00

OA

4B

00

F7

04

CD

FO

42

09

3D

07

A5

02

03

93

56

00

03

00

DF

03

00

4B

FF

EO

D5

OA

EO

El

E2

El

F6

OA

EO

EO

CO

BO

OA

E2

LDX

SEI

TXS

CLD

LDA

STA

LDX

LDA

STA

DEX

BPL

STA

JSR

JSR

JSR

JSR

JSR

PHA

BMI

LDA

CMP

BEQ

JSR

JSR

JSR

PLA

CLI

BMI

JMP

CMP

BEQ

JMP

JMP

5FF

$00

$FF00

$0A

$E04B,X

$D500,X

$E00C

$0A04

$E0CD

$E1FO

$E242

$E109

$F63D

$E031

$A5

$0A02

$E034

$E093

$E056

$C000

$E041

$B000

$DF

$E048

($0A00)

$E24B

Reset routine

Init. value for stack pointer

Disable all system interrupts

Set system stack pointer to start

Reset decimal mode

Load ace with zero and

Enable all system ROMs

Set loop and displ. counter

Get byte from init. counter

Initialize MMU registers

Loop and displ. counter -1

Transfer 11 values from table

Clear NMI/Reset status pointer

NMI,IRQ+copy z-page routines

Check <CBM> code in RAM 1

Cartridge test for C-64 config

Kernal IOINIT: Init I/O devices

Shift RUN/STOP keyboard test

Save ace contents on stack

Bit 7 set, skip reset status test

System warm/cold start stat. ptr.

Test for warm-start status

Warm-start status, then skip

RAMTAS: Clear/test RAM

RESTOR: Initialize I/O

Routine CINT: Init. editor+scr.

Get code for keyboard poll

Enable all system interrupts

Bit 7 set, skip monitor entry

Kernal MONITOR entry

Configure system as C-64?

Yes, then do it

System restart vector ($4003)

GO64MODE: configure C-64

293

Abacus Software

E04B:

E04C:

E04D:

E04E:

E04F:

E050:

E051:

E052:

E053:

E054:

E055:

00

00

00

00

00

BF

04

00

00

01

00

.Byte

.Byte

.Byte

.Byte

.Byte

.Byte

.Byte

.Byte

.Byte

.Byte

.Byte

$00

$00

$00

$00

$00

$BF

$04

$00

$00

$01

$00

E056:

E058:

E05A:

A2 73

AO EO

18

LDX i

LDY i

CLC

» $73

» $E0

E05B:

E05D:

E05F:

E061:

E064:

E066:

E068:

E06B:

E06D:

E06F:

E070:

E072:

86 C3

84 C4

AO IF

B9 14 03

BO 02

Bl C3

99 14 03

90 02

91 C3

88

10 EF

60

SIX '

STY ■

LDY <

LDA I

BCS i

LDA

STA I

STA

DEY

BPL I

RTS

k $C3

* $C4

1 $1F

?0314,Y

$E068

($C3),Y

?0314,Y

$E06F

<$C3),Y

$E061

E073:

E075:

E077:

65 FA

03 BO

40 FA

$FA65

$B003

$FA40

C-128 Internals

Initialization table for MMU

$D500: Configuration Register

$D501: Preconfig. Register A

$D502: Preconfig. Register B

$D503: Preconfig. Register C

$D504: Preconfig. Register D

$D505: Mode Config. Register

$D506: RAM Config. Register

$D507: Page 0 Pointer Low

$D508: Page 0 Pointer High

$D509: Page 1 Pointer Low
$D50A: Page 1 Pointer High

Kernal routine: RESTOR

Low byte of kernal vector table

High byte of kernal vector table

Marker for dnload of vector table

Kernal routine: VECTOR

Low byte of vector tbl in z-page

High byte of vector tbl ($E073)

Set loop counter to 32

Read byte from page 3 vector tbl

If upload vector table, skip

Read a value from vector table

Store in page three vector table

If download vector table, skip

Copy in indexed table

Loop counter & displacement -1

Loop until table transferred

Return from subroutine

Vector table

Vector points to IRQ entry

Vector to Monitor Break entry

Vector points to NMI entry

294

Abacus

E079:

E07B:

E07D:

E07F:

E081:

E083:

E085:

E087:

E089:

F08B:

E08D:

E08F:

E091:

Software

BD EF

88 Fl

06 Fl

4C Fl

26 F2

06 EF

79 EF

6E F6

EB EE

22 F2

06 BO

6C F2

4E F5

$EFBD

$F188

$F106

$F14C

$F22 6

$EF0 6

$EF7 9

$F66E

$EEEB

$F222

$B006

$F2 6C

$F54E

C-128 Internals

E093:

E095:

E096:

E099:

E09A:

E09C:

E09E:

E0A0:

E0A2:

E0A4:

E0A6:

E0A8:

EOAA:

EOAC:

EOAE:

EOAF:

E0B1:

E0B3:

E0B6:

E0B8:

EOBA:

A9

A8

99

C8

DO

AO

84

85

AO

84

85

AO

84

85

18

AO

A2

20

AO

A2

20

00

02 00

FA

OB

B3

B2

OC

C9

C8

OD

CB

CA

FF

00

6B F7

1C

00

7A F7

LDA

TAY

STA

INY

BNE

LDY

STY

STA

LDY

STY

STA

LDY

STY

STA

CLC

LDY

LDX

JSR

LDY

LDX

JSR

900

$0002,

$E096

$0B

* $B3

* $B2

$0C

* $C9

* $C8

$0D

* $CB

* $CA

$FF

$00

$F7 6B

$1C

$00

$F77A

Vctr pts to Kernal OPEN rout.

Vctr pts to Kernal CLOSE rout.

Vctr pts to Kernal CHKIN rout.

Vctr pts to Kernal CKOUT rout.

Vctr pts to Kernal CLRCH rout.

Vctr pts to Kernal BASIN rout.

Vctr pts to Kernal BSOUT rout.

Vctr pts to Kernal STOP rout

Vctr pts to Kernal GETIN rout.

Vctr pts to Kernal CLALL rout

Vctr to Monitor Exmon entry

Vector points to LOADSP entry

Vector points to SAVESP entry

Kernal routine: RAMTAS

Clr z-page,set Memtop,Membot,

RS-232 I/O buffs+cassette buff

Init ace with $00, addr val low

And copy to Y

Clear the entire zero page

Except for the 2 processor ports

Registers $00 and $01

Set the zero-page cassette buffer

Pointer (z-page $B2-$B3) to the

Start address $0B00

Set the zero-page RS-232 input

Buffer ptr (z-page $C8-$C9) to

The start address $0C00

Set the zero-page RS-232 output

Buffer ptr (z-page $CA-$CB) to

To the start address $0D00

Clear carry flag as marker

Set top of memory

In the system bank to $FF00

Jump to kernal rout MEMTOP

Set the memory bottom

In the system bank to $1COO

Jump to kernal rout. MEMBOT

295

Abacus

EOBD:

EOBF:

EOC1:

E0C4:

EOC7:

E0C9:

EOCC:

Software

AO

A2

8C

8E

A9

8D

60

40

00

01

00

A5

02

OA

OA

OA

LDY

LDX

STY

STX

LDA

STA

RTS

$40

$00

$0A01

$0A00

$A5

$0A02

C-128 Internals

EOCD:

EOCF:

E0D2:

E0D5:

E0D7:

EODA:

EODD:

EODE:

EOEO:

E0E2:

E0E5:

E0E8:

E0E9:

EOEB:

EOEC:

EOEE:

EOFO:

E0F3:

E0F6:

E0F7:

E0F9:

EOFB:

EOFE:

E101:

E102:

E104:

AO

B9

8D

A2

BD

9D

CA

10

A2

BD

9D

CA

10

88

10

A2

BD

9D

CA

10

A2

BD

9D

CA

10

60

03

05

00

3F

05

05

F7

05

FA

FA

F7

El

59

00

A2

F7

OC

5A

FO

F7

El

FF

FF

FF

FF

FF

F8

02

F8

03

LDY

LDA

STA

LDX

LDA

STA

DEX

BPL

LDX

LDA

STA

DEX

BPL

DEY

BPL

LDX

LDA

STA

DEX

BPL

LDX

LDA

STA

DEX

BPL

RTS

$03

$E105,Y

$FFOO

$3F

$FF05,X

$FF05,X

$E0D7

$05

$FFFA,X

$FFFA,X

$E0E2

$EOCF

$59

$F800,X

$02A2,X

$EOFO

$0C

$F85A,X

$03F0,X

$EOFB

Initialize the system

RESTART vector at the address

$A00-$A01 w/ value $4000 for

The system cold-start entry

Initialize the system cold-start/

Warm-start stat. ptr with $A5

Return from subroutine

Copy NMI, IRQ + z-pge rout's

Init loop counter for four loops

Get value from RAM bank table

Set corresponding configuration

Transfer 64 bytes

Read NMI+IRQ rout from ROM

Copy into underlying RAM

Transfer loop counter -1

Loop until 64 bytes transferred

In the same manner the

NMI, reset & IRQ vectors are

Copied from kernal ROM in the

Underlying RAM, loop 'til all 3

Vectors are transferred

Loop cntr for 4 RAM banks-1

Copy rout.+vect. in 4 RAM bks

90 bytes to transfer

Here the ROM originals of the

FETCH,STASH,CMPARE,

JSRFAR,JMPFAR routs copied

In RAM at pages 2 and 3

Transfer 13 bytes

Here the original routine in ROM

Is copied into the

RAM area at address

$03F0

Return from subroutine

296

Abacus Software C-128 Internals

.Byte $00

.Byte $40

E105:

E106:

E107:

E108:

00

40

80

CO

.Byte

.Byte

$80

$C0

E109:

E10B:

E10E:

Elll:

E114:

E116:

E119:

E11C:

E11F:

E122:

E124:

E127:

E12A:

E12B:

E12E:

E130:

E133:

E135:

E138:

E13A:

E13C:

E13E:

E140:

E142:

E145:

E147:

E149:

E14C:

E14E:

E151:

A9 7F

8D OD DC

8D OD DD

8D 00 DC

A9 08

8D OE DC

8D OE DD

8D OF DC

8D OF DD

A2 00

8E 03 DC

8E 03 DD

CA

8E 02 DC

A9 07

8D 00 DD

A9 3F

8D 02 DD

A9 E3

85 01

A9 2F

85 00

A2 FF

AD 11 DO

10 FB

A9 08

CD 12 DO

90 06

AD 11 DO

30 F4

LDA

STA

STA

STA

LDA

STA

STA

STA

STA

LDX

STX

STX

DEX

STX

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDX

LDA

BPL

LDA

CMP

BCC

LDA

BMI

$7F

$DC0D

$DD0D

$DC00

$08

$DC0E

$DD0E

$DC0F

$DD0F

$00

$DC03

$DD03

$DC02

$07

$DD00

$3F

$DD02

$E3

$01

$2F

$00

$FF

$D011

$E142

$08

$D012

$E154

$D011

$E147

RAM bank table

RAM0,SysROM,Bs hi,Bs
RAMl,SysROM,Bs hi,Bs

RAM2,SysROM,Bs hi,Bs
RAM3,SysROM,Bs hi,Bs

Kemal routine: IOINIT

Initialization of the CIAs

Load value for nclear interrupt"

Initialize ICR of CIA 1

Initialize ICR of CIA 2

Port A, CIA 1, matrix line 0

111 shot" initialization for timer

CRA of CIA 1 tmr A to "1 shot"

CRA of CIA 2 tmr A to "1 shot11

CRA of CIA 1 tmr B to " 1 shot"

CRA of CIA 2 tmr B to " 1 shot"

CIA register to input mode

Data direction reg. B of CIA 1

Data direction reg. B of CIA 2

Xreg to value for "output mode"

Data direction reg. A of CIA 1

Video controller to lower 16 K

ATN signal on port A, clr CIA 2

Set bits 0 to 5 to output

Data direction reg A of CIA 2

Initialize processor port data reg

With the default value $E3

Init. process port data dir reg

With default value $2F

Initialize PAL/NTSC ptr (PAL)

Wait until MSB of the raster line

Interrupt pointer is set

Comp value PAL/NTSC version

Compare low byte raster intrpt

Less than 8, then PAL version

Wait until MSB of the raster line

Interrupt is cleared

297

Abacus

E153:

E154:

E157:

E159:

E15C:

E15F:

E162:

E165:

E168:

E16A:

E16C:

E16E:

E170:

E173:

E176:

E177:

E179:

E17B:

E17E:

E181:

E183:

E185:

E187:

E18A:

E18D:

E18F:

E191:

E194:

E197:

E199:

E19C:

E19E:

E1A1:

E1A4:

E1A6:

E1A8:

E1A9:

E1AB:

ElAC:

E1AE:

Software

E8

8E

A9

8D

8D

8D

8D

8D

85

A9

85

A2

BD

9D

CA

10

A2

20

AD

29

F0

A2

20

2C

10

A2

20

AD

30

20

A9

0D

8D

A2

A0

88

DO

CA

DO

A9

03

00

37

39

OA

3A

36

99

03

9A

30

C7

00

F7

00

DC

00

07

05

3B

DC

03

05

3E

DC

04

15

27

80

04

04

FF

FF

FD

FA

00

OA

OA

OA

OA

OA

OA

E2

DO

El

D6

El

OA

El

OA

CO

OA

OA

INX

STX

LDA

STA

STA

STA

STA

STA

STA

LDA

STA

LDX

LDA

STA

DEX

BPL

LDX

JSR

LDA

AND

BEQ

LDX

JSR

BIT

BPL

LDX

JSR

LDA

BMI

JSR

LDA

ORA

STA

LDX

LDY

DEY

BNE

DEX

BNE

LDA

$0A03

$00

$0A37

$0A39

$0A0A

$0A3A

$0A36

* $99

$03

* $9A

$30

$E2C7,X

$D000,X

$E170

$00

$E1DC

$D600

$07

$E18A

$3B

$E1DC

$0A03

$E194

$3E

$E1DC

$0A04

$E1AE

$C027

$80

$0A04

$0A04

$FF

$FF

$E1A8

$E1A8

$00

C-128 Internals

Set PAL/NTSC ptr to NTSC($O)

Store PAL/NTSC version ptr

Init value for pointer

X-reg storage, bank operations

80 column VDC temp storage

Indirect IRQ vector (cassette)

Initialize IRQ temp pointer

Raster line for raster interrupt

Standard input device= keyboard

Set z-page storage for standard

Output device to 3 (=screen)

Transfer 49 bytes

Initialization table for VIC chip

Copy into VIC control registers

Loop/displacement counter -1

Loop until 49 values transferred

Set loop counter for VDC init

Initialize VDC registers

Read VDC status

Is bits 0-2 are cleared

Yes, skip init of VDC reg

Displacement ptr to VDC table

Initialize VDC registers

Check if PAL/NTSC version

Skip, if NTSC version

Displacement ptr to VDC table

Initialize VDC registers

Check NMI/reset status pointer

VDC already init, then skip

Routine INIT80: init 80-column

Set bit 7 in acc,combine value

With the NMI/VDC status

And write in the status flag

Loop counter high to high value

Loop counter low to low value

Decrement loop counter low

Loop low code? No, continue

Decrement loop counter high

Loop high done? No, continue

Init value for SID register

298

Abacus

E1B0:

E1B2:

E1B5:

E1B6:

E1B8:

E1BA:

E1BD:

E1BE:

E1C1:

E1C4:

E1C5:

E1C8:

E1CB:

E1CD:

E1D0:

E1D3:

E1D6:

E1D9:

Software

A2 18

9D 00 D4

CA

10 FA

A2 01

8E 1A DO

CA

8E 1C OA

8E OF OA

CA

8E 06 DC

8E 07 DC

A2 11

8E OF DC

20 C3 E5

20 D6 E5

20 C3 E5

4C 4E E5

LDX

STA

DEX

BPL

LDX

STX

DEX

STX

STX

DEX

STX

STX

LDX

STX

JSR

JSR

JSR

JMP

$18

$D400,X

$E1B2

$01

$D01A

$OA1C

$0A0F

$DC06

$DC07

$11

$DC0F

$E5C3

$E5D6

$E5C3

$E54E

E1DC:

E1DF:

E1E1:

E1E2:

E1E5:

E1E6:

E1E9:

E1EC:

E1EE:

E1EF:

BC F8 E2

30 OD

E8

BD F8 E2

E8

8C 00 D6

8D 01 D6

10 EE

E8

60

LDY

BMI

INX

LDA

INX

STY

STA

BPL

INX

RTS

$E2F8,X

$E1EE

$E2F8,X

$D600

$D601

$E1DC

E1FO:

E1F2:

E1F4:

E1F6:

E1F8:

E1FA:

A2 F5

AO FF

86 C3

84 C4

A9 C3

: 8D AA 02

LDX

LDY

STX

STY

LDA

STA

$F5

$FF

* $C3

* $C4

$C3

$02AA

%^'Ilo inieriiais

SID displacement & loop pointer

Clear SID register (low value)

Loop and displ pointer -1

Loop until 19 registers erased

Load X-reg with #1

Set IRQ mask register

Decrement X-reg to zero

Clear fast serial mode pointer

Clear RS-232 NMI status reg

Set X-reg to high value ($FF)

Place value in timer B low

Place value in timer B high

Code for "force load" & timer A

Start in the CIA control register

Test routine, if fast serial mode

Is recognized by the disk drive

And responds to the

Clock low signal and RTS

Initialize the VDC register

Get register selection from table

Check end criterium (Bit 7 = on)

Displacement to VDC table +1

Get register write value from tbl

Displacement to VDC table +1

Set VDC register selection port

Write VDC register data port

Jump to loop start

Displacement to VDC table +1

Return from subroutine

Check <CBM> code in RAM1

Initialize the 2-byte zero-page

Ptr addr $C3(lo) - $C4(hi) with

The start address of the

Kernal vector table ($FFF5)

Set FETVEC for fetch routine to

Start of the vector table

299

Abacus

E1FD:

E1FF:

E201:

E204:

E207:

E209:

E20A:

E20C:

E20E:

E210:

E212:

E214:

E216:

E218:

E21B:

E21E:

E21F:

E221:

Software

AO

A2

20

D9

DO

88

10

A2

AO

86

84

AO

A2

20

99

88

10

6C

02

7F

A2

C4

IB

F3

F8

FF

C3

C4

01

7F

A2

02

F5

02

02

E2

02

00

00

LDY

LDX

JSR

CMP

BNE

DEY

BPL

LDX

LDY

STX

STY

LDY

LDX

JSR

STA

DEY

BPL

JMP

$02

$7F

$02A2

$E2C4,Y

$E224

$E1FF

$F8

$FF

* $C3

* $C4

$01

$7F

$02A2

$0002,Y

$E216

($0002)

E224:

E22 6:

E229:

E22B:

E22D:

E230:

E233:

E235:

E238:

E23B:

E23C:

E23E:

E241:

A9

8D

A9

AO

8D

8C

A2

BD

9D

CA

DO

8E

60

40

00

24

E2

F8

F9

03

C3

F4

F7

00

FF

FF

FF

E2

FF

FF

LDA

STA

LDA

LDY

STA

STY

LDX

LDA

STA

DEX

BNE

STX

RTS

$40

$FF00

$24

$E2

$FFF8

$FFF9

$03

$E2C3,X

$FFF4,X

$E235

$FF00

C-128 Internals

Displacement for FETCH rout

Config. code (RAM 1 only)

FETCH rout: LDA from any bnk

Check for code <C> <M>

Not equal, then exit

Loop until three letters checked

Initialize the 2-byte zero-page

Ptr at addrs $C3 (lo) - $C4 (hi)

With the addr of kernal C-128

Mode Vector ($FFF8)

Displacement for FETCH rout

Config. code (RAM1 only)

FETCH rout: LDA from any bnk

Place entry address hi - lo in

Zero-page $02-$03. Loop

Until both addresses transferred

Indirect jump via zero page

Kernal vector: C128MODE

RAM 1, enable all system ROMs

And set configuration

Initialize the 2-byte kernal

Vector for the 128 mode with

The default value

$E224

Loop counter for 3 transfers

Load <C> <M> from table

And copy to the vector range of

RAM bank 1. Loop until the

Three letters are transferred

RAM 0, enable all system ROMs

Return from subroutine

300

Abacus Software C-128 Internals

****************************** Check if EXROM input on MCR

Serves to switch modes if C64

cartridge inserted

E242:

E245:

E247:

E249:

AD

29

C9

FO

05 D5

30

30

20

LDA

AND

CMP

BEQ

$D505

$30

$30

$E26B

Read MCR register of the MMU

Check if bit 5 set for EXROM

input

Yes, then no 64 cartridge present

E24B:

E24D:

E24F:

E251:

E253:

E255:

E258:

E25A:

E25B:

E25D:

E260:

A9

85

A9

85

A2

BD

95

CA

DO

8E

4C

E3

01

2F

00

08

62

01

F8

30

02

E2

DO

00

LDA

STA

LDA

STA

LDX

LDA

STA

DEX

BNE

STX

JMP

$E3

* $01

$2F

* $00

$08

$E262,X

* $01,X

$E255

$D030

$0002

E263:

E265:

E268:

A9

8D

6C

F7

05

FC

D5

FF

LDA

STA

JMP

$F7

$D505

($FFFC)

E2 6B:

E2 6D:

E270:

E272:

E275:

A2

8E

A9

9D

CA

03

CO

00

Cl

0A

0A

LDX

STX

LDA

STA

DEX

$03

$0AC0

$00

$0ACl,X

Kernal routine: GO64MODE

Configure system as C64

C-64 system values in

Data register processor port

C-64 system values in

Data direction reg processor port

8 bytes to be copied

Here the ROM original of the

Routine, which configures C-64

Is copied into zero page because

The routine can run only there

Set clock frequency to 1 MHz

To zero-page rout: config. C-64

This routine configures C-128

as a C-64. It can run only in the

zero page because all other areas

are switched off.

Write init value for C-64 system

In the MCR register of the MMU

Jump to RESET vector C-64

Function ROM test C-128 mode

Initialize loop and displ counter

For cartridge test

The first 4 bytes of the PAT

(Physical address table of the

Expansion card) are cleared here

301

Abacus

E276:

E278:

E27A:

E27C:

E27F:

E282:

E284:

E287:

E289:

E28B:

E28D:

E290:

E293:

E295:

E296:

E298:

E2 9A:

E2 9C:

E2 9E:

E2A1:

E2A4:

E2A7 :

E2A9:

E2AB:

E2AD:

E2AF:

E2B1:

E2B3:

E2B6:

E2B9:

E2BB:

Software

10

85

A0

AE

BD

85

BD

85

A6

A9

20

D9

DO

88

CO

BO

A6

A9

20

AE

9D

C9

DO

A5

A4

85

84

20

CE

10

60

FA

9E

09

CO

BC

9F

CO

02

02

9E

DO

BD

21

07

EF

02

9E

DO

CO

Cl

01

OB

9E

9F

04

03

CD

CO

BF

OA

E2

E2

F7

E2

F7

OA

OA

02

OA

BPL

STA

LDY

LDX

LDA

STA

LDA

STA

LDX

LDA

JSR

CMP

BNE

DEY

CPY

BCS

LDX

LDA

JSR

LDX

STA

CMP

BNE

LDA

LDY

STA

STY

JSR

DEC

BPL

RTS

$E272

* $9E

$09

$0AC0

$E2BC,

* $9F

$E2C0,

* $02

* $02

$9E

$F7D0

$E2BD,

$E2B6

$07

$E289

* $02

$9E

$F7D0

$0AC0

$OAC1,

$01

$E2B6

* $9E

* $9F

* $04

* $03

$02CD

$0AC0

$E27A

X

X

Y

X

C-128 Internals

E2BC: CO 80 CO 80

($00 initialized)

Low addr value for cartridge test

Displacement to cart code(CBM)

Displacement cntr for cart check

Get high addr value from table

And place it in zero page

Get bank vaL for test from table

And place it in z-page bank byte

Get bank code from zero page

Get addr $9E as VETVEC in ace

INDFET:LDA(fetvec),Y any bk

Test 1 character for "CBM" code

Not equal, next bank/address

Continue test for "CBM" code

If 3 code chars are recognized

Then continue, else in test loop

Get bank code of current test

Get addr $9E as FETVEC in ace

INDFET: LDA(fetvec),Y any bk

Get F ROM displacement pointer

ID table of expansion card

Check expansion indicated

No, then skip to next test

Low of entry address in ace

High of entry address in Y-reg

Low of entry address in PC low

High of entry address in PC hi

JSRFAR: JSR to any bk+RTS

Loop/displacement counter -1

Not zero, then continue test

Return from subroutine

High addresses for cartridge test

$C000, $8000, $C000, $8000

302

Abacus Software C-128 Internals

E2C0: 04 04 08 08

E2C4: 43 42 4D

E2C7: 00 00 00 00 00 00 00 00

E2CF: 00 00 00 00 00 00 00 00

E2D7: 00 IB FF 00 00 00 08 00

E2DF: 14 FF 01 00 00 00 00 00

E2E7: 0D OB 01 02 03 01 02 00

E2EF: 01 02 03 04 05 06 07 FF

E2F7: FC

Bank numbers for cartridge test

inROM,inROM,exROM,exROM

Code for cartridge indication

Intialization table for VIC regs

E2F8:

E300:

E308:

E310:

E318:

E320:

E328:

E330:

E332:

E333:

E335:

E336:

E33A:

00

04

08

OC

14

19

ID

16

FF

19

FF

04

FF

7E

20

00

00

08

40

07

78

47

27

01

05

09

0D

15

1A

22

07

50

00

07

00

00

F0

7D

20

02 66

06 19

0A 20

0E 00

17 08

IB 00

23 64

.Byte

.Byte

.Byte

03 '

07

0B

OF

18

1C

24

$FF

$FF

$FF

49

ID

07

00

20

20

05

Initialization table for VDC regs

VDCtabl

Separator

VDC tab 2

Separator

VDC tab 3

Separator

****************************** Kernal routine: TALK

E33B:

E33D:

E33E:

E340:

09

2C

09

20

40

20

EC E7

ORA

.Byte

ORA

JSR

$40

$2C

$20

$E7EC

Set bit 6 for TALK

Skip to $E340

Set bit 5 for listen

Wait for end of RS-232 transfer

303

Abacus Software C-128 Internals

E343:

E344:

E346:

E348:

E349:

E34B:

E34E:

E350:

E352:

E353:

E355:

E358:

E35B:

E35E:

E360:

E362:

E365:

E367:

E36A:

E36D:

E36E:

E370:

E371:

E373:

E374:

E377:

E379:

E37C:

E37F:

E382:

48

24

10

38

66

20

46

46

68

85

20

20

AD

29

DO

20

A9

8D

20

8A

A2

CA

DO

AA

AD

09

8D

20

20

20

94

0A

A3

8C

94

A3

95

73

57

00

08

12

D6

FF

OC

BC

14

FD

00

08

00

73

4E

57

E3

E5

E5

DD

E5

DC

E5

DD

DD

E5

E5

E5

PHA

BIT

BPL

SEC

ROR

JSR

LSR

LSR

PLA

STA

JSR

JSR

LDA

AND

BNE

JSR

LDA

STA

JSR

TXA

LDX

DEX

BNE

TAX

LDA

ORA

STA

JSR

JSR

JSR

* $94

$E352

* $A3

$E38C

* $94

* $A3

* $95

$E573

$E557

$DD00

$08

$E374

$E5D6

$FF

$DC0C

$E5BC

$14

$E370

$DD00

$08

$DD00

$E573

$E54E

$E557

Kernal routine: LISTN

Save Talk/Listn marker on stack

Another byte to output?

No, then continue

Set carry for rotation

Set flag for EOI

Output byte to serial bus

Erase character in buffer marker

Clear flag for EOI again

Get old ace contents back

Store byte to output in zero page

SEI, 1 MHz, turn sprites off

Output data high

Check if the ATN signal is set

On data port A of CIA 2

Not set, then skip

Pulse for fast serial mode

I/O data buffer for serial

Set transfer to high value

Wait for response from bus

Store X-reg contents in ace

Set loop counter to 20

Decrement loop counter by 1

Wait until loop counted down

Recreate old X-reg contents

Read port A of CIA 2

Set ATN lo signal & write back

to Port A of CIA 2

Clk freq. 1MHz, turn sprites off

Output clock low

Output data high

304

Abacus Software C-128 Internals

****************************** Delay loop about 1 millisecond

Store X-reg contents in ace

Set loop counter to 184

Decrement loop counter by 1

Loop until counter = 0

Restore X-reg contents

E385:

E386:

E388:

E389:

E38B:

8A

A2

CA

DO

AA

B8

FD

TXA

LDX

DEX

BNE

TAX

$B8

$E388

E38C:

E38F:

E392:

E395:

E397:

E39A:

E39D:

E3A0:

E3A2:

E3A4:

E3A7 :

E3A9:

E3AC:

E3AE:

E3B1:

E3B4:

E3B6:

E3B7:

E3BA:

E3BC:

E3BE:

E3C0:

E3C3:

E3C4:

E3C6:

E3C8:

E3CB:

E3CD:

E3CF:

E3D2:

20 73 E5

20 57 E5

20 69 E5

90 03

4C 28 E4

2C 0D DC

20 45 E5

24 A3

10 0A

20 69 E5

90 FB

20 69 E5

B0 FB

AD 00 DD

CD 00 DD

DO F8

48

AD 0D DC

29 08

F0 05

A9 CO

8D 1C 0A

68

10 E8

09 10

8D 00 DD

29 08

DO 13

2C 1C 0A

10 0E

JSR

JSR

JSR

BCC

JMP

BIT

JSR

BIT

BPL

JSR

BCC

JSR

BCS

LDA

CMP

BNE

PHA

LDA

AND

BEQ

LDA

STA

PLA

BPL

ORA

STA

AND

BNE

BIT

BPL

$E573

$E557

$E569

$E39A

$E428

$DC0D

$E545

$A3

$E3AE

$E569

$E3A4

$E569

$E3A9

$DD00

$DD00

$E3AE

$DC0D

$08

$E3C3

$C0

$OA1C

$E3AE

$10

$DD00

$08

$E3E2

$OA1C

$E3E2

Byte on serial bus (prepare)

Clock freq. 1 MHZ, sprites off

Output data high

Get bit from serial bus into carry

Data not low, then OK and skip

"Device not present11 - sys status

Test CIA interrupt control reg.

Output clock high

Zero-page pointer for EOI set?

No, then skip

Get bit from serial bus into carry

Wait for data low signal

Get bit from serial bus into carry

Wait for data high signal

Here data is read from port A

Of CIA 2

Data read are stored on the stack

Check interrupt control register

Is timer A on "one shot"?

Yes, then skip

Set Control bits 6 and 7 in sys

tem pointer for fast serial mode

Get data read back from stack

Bit 7 cleared, then skip

Set bit 4 for elk output on serial

bus and write in port A

Check if bit 3 is set

No, then skip

Check bit 7, serial mode pointer

Bit 7 cleared, then skip

305

Abacus

E3D4:

E3D7:

E3D9:

E3DC:

E3DF:

Software

20

A5

8D

20

4C

D6

95

OC

BC

12

E5

DC

E5

E4

JSR

LDA

STA

JSR

JMP

$E5D6

* $95

$DC0C

$E5BC

$E412

E3E2:

E3E4:

E3E6:

E3E9:

E3EC:

E3EE:

E3EF:

E3F1:

E3F3:

E3F5:

E3F8:

E3FA:

E3FD:

E400:

E401:

E402:

E403:

E404:

E407:

E409:

E40B:

E40E:

E410:

E412:

E413:

E414:

E416:

E419:

E41B:

E41C:

E41D:

E420:

A9

85

AD

CD

DO

0A

90

66

BO

20

DO

20

20

EA

EA

EA

EA

AD

29

09

8D

ce

DO

8A

48

A2

20

BO

68

AA

4C

CA

08

A5

00

00

F8

34

95

05

60

03

57

45

00

DF

10

00

A5

D4

22

69

05

9F

DD

DD

E5

E5

E5

DD

DD

E5

E5

LDA

STA

LDA

CMP

BNE

ASL

BCC

ROR

BCS

JSR

BNE

JSR

JSR

NOP

NOP

NOP

NOP

LDA

AND

ORA

STA

DEC

BNE

TXA

PHA

LDX

JSR

BCS

PLA

TAX

JMP

DEX

$08

* $A5

$DD00

$DD00

$E3E6

A

$E425

* $95

$E3FA

$E560

$E3FD

$E557

$E545

$DD00

$DF

$10

$DD00

* $A5

$E3E6

$22

$E569

$E420

$E59F

C-128 Internals

Impulse for fast serial mode

Get stored byte and write in

CIA input/output register

Wait for response from bus

Byte output over serial bus

Byte on serial bus (output)

Initialize counter for number of

Bits to send with 8

Here data is read from port A

Of CIA 2

Data shifted into the carry flag

Output data high,output timeout

Prepare bit for output

Check if bit is set

No, then output data low

And jump to clock high output

Output data high

Output clock high

No Operation

No Operation

No Operation

No Operation

Read port A of CIA 2

Bit 5:Clear data output serial bus

Bit 4:Set clock output serial bus

Write in data port A

Decrement bit counter by 1

Output additional bit, then loop

Copy contents of X-reg to ace

And store X-reg on stack

High impulse counter to #34

Get 1 bit from serial bus to carry

Data high, then skip

Get old X-reg contents from

stack and restore

Reset clock freq. and sprites

Decrement data high counter

306

Abacus

E421:

E423:

E424:

E425:

E427:

E428:

E42A:

E42B:

E42E:

E430:

E433:

E434:

E437:

E43A:

E43B:

Software

DO

68

AA

A9

2C

A9

48

AD

29

8D

68

20

20

18

4C

F3

03

80

1C

7F

1C

57

9F

35

0A

OA

F7

E5

E5

BNE

PLA

TAX

LDA

.Byte

LDA

PHA

LDA

AND

STA

PLA

JSR

JSR

CLC

JMP

$E416

$03

$2C

$80

$OA1C

$7F

$OA1C

$F757

$E59F

$E535

C-128 Internals

Not yet 22 high pulses, continue

Get old X-reg contents f/ stack

Restore X-reg contents

Code for system status: Time out

Skip to $E42A

Code status:Device not present

Store status code on stack

Test the fast serial mode pointer

Mask out bit 7, only fast/slow

Write in fast-mode flag

Get status error code

Set new system status

Reset clock freq. and sprites

Set indicator for OK

Turn off device with Unlsn

E43E:

E441:

E443:

E445:

E448:

E449:

E44A:

E44D:

E450:

E452:

E454:

E457:

E459:

E45C:

E45F:

E462:

E464:

E465:

E467:

E468:

E46A:

20

A9

85

2C

8A

48

20

20

10

A2

AD

29

8D

AD

CD

DO

0A

10

CA

DO

A5

73

00

A5

0D

45

69

FB

0D

00

DF

00

00

00

F8

ID

F2

A5

E5

DC

E5

E5

DD

DD

DD

DD

JSR

LDA

STA

BIT

TXA

PHA

JSR

JSR

BPL

LDX

LDA

AND

STA

LDA

CMP

BNE

ASL

BPL

DEX

BNE

LDA

$E573

$00

* $A5

$DC0D

$E545

$E569

$E44D

$0D

$DD00

$DF

$DD00

$DD00

$DD00

$E45C

A

$E484

$E45C

* $A5

Kernal routine: ACPTR

Get byte from serial bus

System elk 1MHz, sprites off

Clear the zero-page ptr for the

serial EOI indicator

Read bit 7 of the CIA ISR

Store current cont of the X-reg

Via the ace on the stack

Clock signal on port A

Get bit from serial bus into carry

Wait for data high signal

Initialize loop counter with #13

Read data port A of CIA 2

Bit 6: clear "serial bus pulse on"

And write in data port

Read data port A of CIA 2 and

A bit arrives over the bus

On the port

Shift data bit into the carry flag

Get data byte from bus

Decrement loop counter by 1

Loop not zero, then skip

Test zero-page EOI pointer

307

Abacus

E46C:

E46E:

E471:

E474:

E476:

E479:

E47B:

E47D:

E47E:

E47F:

E481:

E484:

E486:

E489:

E48B:

E48D:

E490:

E493:

E495:

E496:

E498:

E49A:

E49D:

E4A0:

E4A2:

E4A3:

E4A5:

E4A6:

E4A8:

E4AB:

E4AE:

E4B0:

E4B1:

E4B3:

E4B5:

E4B8:

E4BA:

E4BC:

E4BF:

E4C0:

Software

DO OF

20 60

20 45

A9 40

20 57

E6 A5

DO D5

68

AA

A9 02

4C 2A

A2 08

AD OD

29 08

DO 28

AD 00

CD 00

DO F8

OA

10 EE

66 A4

AD 00

CD 00

DO F8

OA

30 F5

CA

FO 17

AD 00

CD 00

DO F8

OA

10 F5

30 E3

AD OC

85 A4

A9 CO

8D 1C

68

AA

E5

E5

F7

E4

DC

DD

DD

DD

DD

DD

DD

DC

OA

BNE

JSR

JSR

LDA

JSR

INC

BNE

PLA

TAX

LDA

JMP

LDX

LDA

AND

BNE

LDA

CMP

BNE

ASL

BPL

ROR

LDA

CMP

BNE

ASL

BMI

DEX

BEQ

LDA

CMP

BNE

ASL

BPL

BMI

LDA

STA

LDA

STA

PLA

TAX

$E47D

$E560

$E545

$40

$F757

* $A5

$E452

$02

$E42A

$08

$DC0D

$08

$E4B5

$DD00

$DD00

$E48D

A

$E486

* $A4

$DD00

$DD00

$E49A

A

$E49A

$E4BF

$DD00

$DD00

$E4A8

A

$E4A8

$E498

$DC0C

* $A4

$C0

$OA1C

C-128 Internals

For #0, EOI received, else skip

Data low signal on serial bus

Clock high signal on serial bus

Code for status: EOI line

Reset system status

EOI pnter to time error if timeout

Get data byte to EOI

Restore stored X-reg contents

via the ace from the stack

Code status: timeout for reading

Reset system status

Set counter for 8 data bits

Read interrupt control register

Test if timer, clock, or bus

Interrupt. Yes, then skip

Read data port A of CIA 2 and

Wait until a bit arrives over

The port

Shift data bit into the carry

No, wait until data are valid

Data bit in bit storage

Read data port of CIA 2 and

Wait until a bit arrives over

The port

Shift data bit into the carry flag

No, then wait

Counter for data bit number -1

8 data bits arrived, then skip

Read data port A of CIA 2 and

Wait until a bit arrives over

The port

Shift data bit into the carry flag

Jump if bit received is "0"

Jump if bit received is " 1"

Store contents of I/O data buffer

In the zero page

Set bits 6 and 7 in the sys flag

For the fast serial mode

Restore old X-reg contents via

The ace from the stack

308

Abacus

E4C1:

E4C4:

E4C6:

E4C8:

E4CB:

E4CE:

E4D0:

E4D1:

Software

20

24

50

20

20

A5

18

60

60

90

03

38

9F

A4

E5

E5

E5

JSR

BIT

BVC

JSR

JSR

LDA

CLC

RTS

$E560

* $90

$E4CB

$E538

$E59F

* $A4

C-128 Internals

E4D2:

E4D4:

E4D7:

E4DA:

E4DC:

E4DF:

85

20

AD

29

8D

60

95

7C

00

F7

00

E3

DD

DD

STA

JSR

LDA

AND

STA

RTS

* $95

$E37C

$DD00

$F7

$DD00

E4E0:

E4E2:

E4E5:

E4E7:

E4E9:

E4EC:

E4EF:

E4F2:

E4F5:

E4F8:

E4FB:

E4FD:

E4FE:

E500:

85

20

24

30

20

20

20

20

AD

CD

DO

0A

30

4C

95

7C

90

4C

73

60

D7

45

00

00

F8

F5

9F

E3

E5

E5

E4

E5

DD

DD

E5

STA

JSR

BIT

BMI

JSR

JSR

JSR

JSR

LDA

CMP

BNE

ASL

BMI

JMP

* $95

$E37C

* $90

$E535

$E573

$E560

$E4D7

$E545

$DD00

$DD00

$E4F5

A

$E4F5

$E59F

Data low signal on serial bus

Test STATUS for set EOI bit

No EOF found, then continue

Shut device off - Unlsn routine

Reset clock freq and sprites

Get data byte in the accumulator

Set indicator for OK

Return from subroutine

Kernal routine: SECND

Send sec. address after LISTEN

Store sec. address in zero page

Output with attention (ATN)

Read data port A of CIA 2

Mask out bit 3 and take the ATN

Signal back to the serial bus

Return from subroutine

Kernal routine: TKSA

Store secondary add in zero page

Output with attention (ATN)

Test STATUS for set EOF bit

EOF encounter, to Unlsn routine

Clock freqlMHz, sprites off

Data low signal on serial bus

Entry in SECND routine

Clock high signal on serial bus

Read data port A of CIA 2 and

Wait until a bit arrives over the

Port

Shift data bit into the carry

And wait for data high

Reset clock freq and sprites

309

Abacus Software C-128 Internals

E503:

E505:

E507:

E508:

E50A:

E50C:

E50D:

E510:

E511:

E513:

E514:

JL JLJL JL JL-
r\ r\ r\ r\ r\ 4

E515:

E518:

E51B:

E51E:

E520:

E523:

E525:

24

30

38

66

DO

48

20

68

85

18

60

20

20

AD

09

8D

A9

2C

94

05

94

05

8C

95

t**7

73

4E

00

08

00

5F

E3

t***:

E5

E5

DD

DD

BIT

BMI

SEC

ROR

BNE

PHA

JSR

PLA

STA

CLC

RTS

JSR

JSR

LDA

ORA

STA

LDA

.Bvt

* $94

$E50C

* $94

$E511

$E38C

* $95

$E573

$E54E

$DD00

$08

$DD00

$5F

e $2C

E52 6:

E528:

E529:

E52C:

E52E:

E531:

E532:

E535:

E538:

E539:

E53B:

E53C:

E53E:

E53F:

A9

48

AD

29

8D

68

20

20

8A

A2

CA

DO

AA

20

3F

1C

7F

1C

43

D7

0A

FD

45

0A

v0A

E3

E4

E5

LDA

PHA

LDA

AND

STA

PLA

JSR

JSR

TXA

LDX

DEX

BNE

TAX

JSR

$3F

$OA1C

$7F

$OA1C

$E343

$E4D7

$0A

$E53B

$E545

Kernal routine: CIOUT

Output another byte?

Yes, then to output loop

Set carry for rotation

Set flag for buffered byte

Skip output loop

Save the byte on the stack

Output buffered byte on stack

Get byte from the stack

Place in zero-page output storage

Carry set for MOK" indicator

Return from subroutine

Kernal routine: UNTLK

Reset clock frequency

Clock low signal to port A

Read data port A of CIA 2

Set bit 3 in this value and

Output ATN lo signal on the bus

Load code for UNTLK in ace

Skip to $E528

Kernal routine: UNLSN

Load code for UNLSN in ace

And store on stack

Status pointer for nfast serial11

Mask out bit 7

And write back

Restore old ace contents

Kernal routine: LISTN

Reset ATN, high

Store X-reg contents in ace

Time loop for 40 microseconds

Decrement loop counter by 1

Wait until loop processed

Restore old X-reg contents

Clock high signal on port A

310

Abacus Software C-128 Internals

E542: 4C 57 E5 JMP $E557

Data high signal on port A

Clock high signal

E545:

E548:

E54A:

E54D:

AD

29

8D

60

00

EF

00

DD

DD

LDA

AND

STA

RTS

$DD00

$EF

$DD00

E54E:

E551:

E553:

E556:

AD

09

8D

60

00

10

00

DD

DD

LDA

ORA

STA

RTS

$DD00

$10

$DD00

E557:

E55A:

E55C:

E55F:

AD

29

8D

60

00

DF

00

DD

DD

LDA

AND

STA

RTS

$DD00

$DF

$DD00

E560:

E563:

E565:

E568:

AD

09

8D

60

00

20

00

DD

DD

LDA

ORA

STA

RTS

$DD00

$20

$DD00

E569:

E56C:

E56F:

E571:

E572:

AD

CD

DO

0A

60

00

00

F8

DD

DD

LDA

CMP

BNE

ASL

RTS

$DD00

$DD00

$E569

A

Kead data port A or ua i

Clear bit 4 for clock output on

serial bus and write in port A

Return from subroutine

Clock low signal

Read data port A of CIA 2

Set bit 4 for clock output on

serial bus and write in port A

Return from subroutine

Data high signal

Read data port A of CIA 2

Clear bit 5 for data output on

serial bus and write in port A

Return from subroutine

Data Lo Signal

Read data port A of CIA 2

Set bit 5 for data output on serial

Bus and write in port A

Return from subroutine

Get a bit from serial bus to carry

Read data port A of CIA 2 and

Wait until a bit arrives over

The port

Bit received (bit 7) into carry

Return from subroutine

311

Abacus Software C-128 Internals

E573:

E574:

E577:

E579:

E57C:

E57E:

E581:

E584:

E587:

E58A:

E58C:

E58F:

E592:

E595:

E597:

E598:

E59A:

E59B:

E59D:

E59E:

78

2C

30

2C

30

AD

8D

AD

8D

A9

8D

8D

AD

F0

8A

A2

CA

DO

AA

60

3A

25

37

20

30

37

15

38

00

15

30

38

07

00

FD

0A

0A

DO

OA

DO

OA

DO

DO

OA

SEI

BIT

BMI

BIT

BMI

LDA

STA

LDA

STA

LDA

STA

STA

LDA

BEQ

TXA

LDX

DEX

BNE

TAX

RTS

$0A3A

$E59E

$0A37

$E59E

$D030

$0A37

$D015

$0A38

$00

$D015

$D030

$0A38

$E59E

$00

$E59A

E59F:

E5A2:

E5A4:

E5A7:

E5A9:

E5AC:

E5AF:

E5B2:

E5B5:

E5B7:

E5BA:

E5BB:

2C

30

2C

10

AD

8D

AD

8D

A9

8D

58

60

3A

16

37

11

38

15

37

30

00

37

OA

OA

OA

DO

OA

DO

OA

BIT

BMI

BIT

BPL

LDA

STA

LDA

STA

LDA

STA

CLI

RTS

$0A3A

$E5BA

$0A37

$E5BA

$0A38

$D015

$0A37

$D030

$00

$0A37

Set system clock freq. to 1MHz

And turn all sprites off

Disable all system interrupts

Test interrupt storage

Bit 7 set, then return

Check clock frequency

Bit 7 set, then return

VIC register for clock frequency

Save in system storage

Enable VIC registers for sprites

Save in system storage

Init status for 1 MHz, no sprites

Turn all sprites off

Set clock frequency to 1 MHz

Were sprites on?

No, then return

Store X-reg contents in ace

Delay loop for 1.3 milliseconds

Decrement loop counter by 1

Process entire delay loop

Restore old X-reg contents

Return from subroutine

Reset clock frequency and sprite

pointers to their original status

Test interrupt storage

Bit 7 set, then return

Check clock frequency storage

Frequency not changed, skip

Write the stored value of sprite

Enable register back

Write the stored value of system

Clock frequency back

Clear temp storage for

System clock frequency

Enable all system interrupts

Return from subroutine

312

Abacus Software C-128 Internals

a*****************************

E5BC:

E5BF:

E5C1:

E5C3:

E5C6:

E5C8:

E5CA:

E5CD:

E5D0:

E5D2:

E5D5:

AD

29

FO

AD

29

09

8D

AD

29

8D

60

0D

08

F9

0E

80

08

OE

05

F7

05

DC

DC

DC

D5

D5

LDA

AND

BEQ

LDA

AND

ORA

STA

LDA

AND

STA

RTS

$DC0D

$08

$E5BC

$DC0E

$80

$08

$DC0E

$D505

$F7

$D505

E5D6:

E5D9:

E5DB:

E5DE:

E5E0:

E5E3:

E5E5:

E5E8:

E5EA:

E5ED:

E5F0:

E5F2:

E5F4:

E5F7:

E5FA:

*****•>*\ f\ r\ /\ Z\ /

E5FB:

E5FD:

AD

09

8D

A9

8D

A9

8D

A9

8D

AD

29

09

8D

2C

60

^ £ £ £ ^

90

B0

05

08

05

7F

OD

00

05

04

04

OE

80

55

OE

OD

C6

D7

D5

D5

DC

DC

DC

DC

DC

DC

fc -k -k k -i\ ^ ^ ^ i

LDA

ORA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

AND

ORA

STA

BIT

RTS

U JL JL JL JL JL
\ ^ ^\ ^\ ^\ ^\

BCC

BCS

$D505

$08

$D505

$7F

$DC0D

$00

$DC05

$04

$DC04

$DC0E

$80

$55

$DC0E

$DC0D

JLJLJL.JL.JLJL.
^\ ^\ ^\ f\ ^ ^

$E5C3

$E5D6

Wait for response from bus

Get CIA interrupt control reg.

Wait until bit 4 (SRQ input from

Serial bus) is cleared

Read control register A ofCIA

Eliminate bit 7 for 50 Hz freq.

Set timer to mode toggle and

"One shot" and start timer

Mask out the control bit for fast

Serial mode in mode config. reg

OftheMMU

Return from subroutine

Fast pulse on serial bus

Set the control bit for the fast

Serial mode in mode config reg

OftheMMU

Clear code for interrupt

To interrupt control register

Load timer A high in CIA 2 with

the high value #0

Load timer A low in CIA 2 with

the low value #4

Read control register A ofCIA

Eliminate bit 7 for 50 HZ freq

Set timer to force load, toggle

Serial bus off and start timer A

Read interrupt control register

Return from subroutine

Kernal routine: FSTMOD

Wait - response from serial bus

Fast pulse on serial bus

313

Abacus Software

E5FF:

E601:

E603:

E605:

E607:

E609:

E60B:

E60C:

E60D:

E60F:

E611:.

E613:

E615:

E616:

E618:

E61A:

A5 B4

FO 47

30 3F

46 B6

A2 00

90 01

CA

8A

45 BD

85 BD

C6 B4

FO 06

8A

29 04

85 B5

60

LDA

BEQ

BMI

LSR

LDX

BCC

DEX

TXA

EOR

STA

DEC

BEQ

TXA

AND

STA

RTS

* $B4

$E64A

$E644

* $B6

$00

$E60C

* $BD

* $BD

* $B4

$E61B

$04

* $B5

E61B:

E61D:

E620:

E622:

E624:

E626:

E628:

E62A:

E62B:

E62D:

E630:

E632:

E634:

E636:

E638:

E63A:

E63C:

E63E:

E640:

A9 20

2C 11 OA

FO 14

30 1C

70 14

A5 BD

DO 01

CA

CS B4

AD 10 OA

10 E3

C6 B4

DO DF

E6 B4

DO FO

A5 BD

FO ED

DO EA

70 E9

LDA

BIT

BEQ

BMI

BVS

LDA

BNE

DEX

DEC

LDA

BPL

DEC

BNE

INC

BNE

LDA

BEQ

BNE

BVS

$20

$OA11

$E636

$E640

$E63A

* $BD

$E62B

* $B4

$0A10

$E615

* $B4

$E615

* $B4

$E62A

* $BD

$E62B

$E62A

$E62B

C-128 Internals

RS-232 output

Number of bits to send

Is byte completely transferred?

Is stop bit required?

Shift next bit into carry

Initialize X-reg as ind. with $00

Bit cleared?

No, then set X-reg to $FF

Copy bit cleared indicator to ace

Combine with parity status

Save again in zero-page parity

Decrement bit counter by 1

All bits transferred, continue

Copy X-reg contents into ace

Isolate bit 2

And put in output register

Return from subroutine

Check transmit parity

Set bit 5 in ace for parity

Check RS-232 command reg.

Op. mode without parity, skip

Op. mode with set parity?

Op. mode for uneven parity?

Parity equal one?

No, then skip

Set parity to $FF

Set bit counter to $FF

Get RS-232 control reg. in ace

Are two stop bits required?

Set bit counter to $FE

Not zero, calculate stop bits

Bit counter +1, no parity

Not zero, calculate stop bits

Get parity value from zero page

Output a zero bit for 0

Not zero, then output 1-bit

Routine: output 0-bit

314

Abacus

E642:

E644:

E646:

E648:

Software

50 E6

E6 B4

A2 FF

DO CB

BVC

INC

LDX

BNE

$E62A

* $B4

$FF

$E615

E64A:

E64D:

E64E:

E650:

E653:

E655:

E657:

E659:

E65B:

E65D:

E660:

E662:

E665:

E668:

E66A:

E66C:

E66E:

E671:

AD 11

4A

90 07

2C 01

10 ID

50 IE

A9 00

85 BD

85 B5

AE 15

8 6 B4

AC 1A

CC IB

F0 13

Bl CA

85 B6

EE 1A

60

OA

DD

OA

OA

OA

OA

LDA

LSR

BCC

BIT

BPL

BVC

LDA

STA

STA

LDX

STX

LDY

CPY

BEQ

LDA

STA

INC

RTS

$OA11

A

$E657

$DD01

$E672

$E675

$00

* $BD

* $B5

$0A15

* $B4

$OA1A

$OA1B

$E67D

($CA),Y

* $B6

$OA1A

E672:

E674:

E675:

E677:

E67A:

E67D:

E67F:

E682:

A9 40

2C

A9 10

0D 14

8D 14

A9 01

8D 0D

4D OF

OA

OA

DD

OA

LDA # $40

-Byte $2C

LDA

ORA

STA

LDA

STA

EOR

$10

$0A14

$0A14

$01

$DD0D

$0A0F

C-128 Internals

Routine: output 1-bit-fixed parity

Increment bit counter by 1

Put code value- stop bit in X-reg

Unconditional jump

3-line / X-line handshake test

Load ace with RS-232 cmd reg

Shift bit 0 into carry flag

Skip 3-line handshake read

Read port B of CIA 2

Is DATA SET READY (DSR)

signal missing

Is CLEAR TO SEND (CTS)

signal missing?

Clear z-page buffer for RS-232

Parity ($00) and the zero page

Storage for the start bit to send

Copy number of bits to transfer

Into zero-page as counter

Comp index to start of output

buffer with end. If all bytes are

transferred then done.

Get data byte from RS-232

buffer and pass in storage

Index: incr start of output buffer

Return from subroutine

Set NMI status for RS-232

Code for DATA SET READY

(DSR) missing

Skip to $E677

Code for CLEAR TO SEND

(CTS) missing

Combine with RS-232 status reg

And put in status register

Load ace with $01 and clear the

NMI for timer A

Combine w/ RS-232 NMT status

315

Abacus

E685:

E687:

E68A:

E68D:

Software

09 80

8D OF OA

8D OD DD

60

ORA

STA

STA

RTS

$80

$0A0F

$DD0D

E68E:

E690:

E692:

E695:

E697:

E698:

E69A:

E69B:

E69C:

A2 09

A9 20

2C 10 OA

FO 01

CA

50 02

CA

CA

60

LDX

LDA

BIT

BEQ

DEX

BVC

DEX

DEX

RTS

$09

$20

$0A10

$E698

$E69C

C-128 Internals

Reverse flag for RS-232 & place

value in the RS-232 NMI status

Allow all further NMIs

Return from subroutine

Calculate num. RS-232 data bits

Default value to 8 data bits

Check value for num of data bits

Check RS-232 control register

Bit 5 cleared?

Decrement number of data bits

Bit 6 cleared?

Decrement number of data bits

Decrement number of data bits

Return from subroutine

E69D:

E69F:

E6A1:

E6A3:

E6A5:

E6A7:

E6A9:

E6AB:

E6AD:

E6AF:

E6B1:

A6

DO

C6

F0

30

A5

45

85

46

66

60

A9

33

A8

3A

0D

A7

AB

AB

A7

AA

LDX

BNE

DEC

BEQ

BMI

LDA

EOR

STA

LSR

ROR

RTS

* $A9

$E6D4

* $A8

$E6DF

$E6B4

* $A7

* $AB

* $AB

* $A7

* $AA

E6B2:

E6B4:

E6B6:

E6B8:

E6BB:

E6BC:

C6

A5

F0

AD

0A

A9

A8

A7

6B

10 0A

01

DEC

LDA

BEQ

LDA

ASL

LDA

* $A8

* $A7

$E723

$0A10

A

$01

Process bit received

Check if it is a start bit

No, skip

Decrement bit counter by 1

All bits received, then continue

If stop bits expected, then skip

Get received bit in ace

And combine for parity

Place parity value in zero page

Shift received bit into carry flag

And in input buffer

Return from subroutine

Set start bit pointer when all

stop bits have been received

Decrement bit counter by 1

Get stop bit value in ace and

Check if it is zero. Skip

RS-232 control register in ace

Number of stop bits into carry

Addition value num of stop bits

316

Abacus

E6BE:

E6C0:

E6C2:

E6C4:

E6C7:

E6CA:

E6CD:

E6CF:

E6D1:

Software

65 A8

DO EF

A9 90

8D OD

OD OF

8D OF

85 A9

A9 02

4C 7F

DD

OA

OA

E6

ADC

BNE

LDA

STA

ORA

STA

STA

LDA

JMP

* $A8

$E6B1

$90

$DD0D

$0A0F

$0A0F

* $A9

$02

$E67F

E6D4:

E6D6:

E6D8:

E6DA:

E6DC:

E6DE:

A5 A7

DO EA

85 A9

A9 01

85 AB

60

LDA

BNE

STA

LDA

STA

RTS

* $A7

$E6C2

* $A9

$01

* $AB

C-128 Internals

Add data bits and stop bits

Not all stop bits received, skip

RXD over flag received in ace

And enable NMI

Combine w/ RS-232 NMI status

And place in RS-232 NMI status

Set flag for start bit

Init. ace with 2 for transmission

And clear the NMI for timer B

Check for RS-232 start bit

Get start bit value in ace

Not zero, skip. Else reset the

Zero-page start bit flag and reset

the zero-page ptr for RS-232

Reset input parity

Return from subroutine

E6DF:

E6E2:

E6E3:

E6E6:

E6E8:

E6EB:

E6EC:

E6EE:

E6F1:

E6F3:

E6F5:

E6F6:

E6F7:

E6F9:

E6FB:

E6FD:

E700:

E702:

E704:

AC

C8

CC

F0

8C

88

A5

AE

E0

F0

4A

E8

DO

91

A9

2C

F0

30

A5

18

19

2A

18

AA

15

09

04

F8

C8

20

11

B0

AD

A7

0A

0A

0A

0A

0A

LDY

INY

CPY

BEQ

STY

DEY

LDA

LDX

CPX

BEQ

LSR

INX

BNE

STA

LDA

BIT

BEQ

BMI

LDA

$OA18

$0A19

$E712

$0A18

* $AA

$0A15

$09

$E6F9

A

$E6F1

<$C8),Y

$20

$0All

$E6B2

$E6B1

* $A7

Process received byte

Index to the start of RS-232

Increment input buffer by 1

Compare with end. If buffer,

Then set appropriate status

Write buffer index

And decrement by 1 again

Get received bit from zero page

Number of data bits in X-reg

8 bits, 1 stop bit received?

Yes, then everything OK

Shift bits in correct position

Increment data bit counter by 1

Jump to byte adjustment

Write byte in input buffer

Control value for parity check

Test RS-232 command register

Transfer is without parity

Fixed bit value for parity

Recevied parity bit in ace

317

Abacus

E706:

E708:

E70A:

E70C:

E70D:

E70F:

E711:

E712:

E714:

E715:

E717:

E718:

E71A:

E71D:

E720:

Software

45 AB

FO 03

70 A5

2C

50 A2

A9 01

2C

A9 04

2C

A9 80

2C

A9 02

0D 14

8D 14

4C C2

OA

OA

E6

EOR

BEQ

BVS

* $AB

$E70D

$E6B1

.Byte $2C

BVC

LDA

$E6B1

$01

.Byte $2C

LDA # $04

.Byte $2C

LDA # $80

.Byte $2C

LDA

ORA

STA

JMP

$02

$0A14

$OA14

$E6C2

E723:

E725:

E727:

E729:

E72B:

E72E:

E72F:

E731:

E733:

E736:

E738:

E73A:

E73D:

E73F:

E741:

E744:

E746:

E749:

E74B:

E74E:

E751:

E753:

A5 AA

DO Fl

FO EC

85 9A

AD 11

4A

90 29

A9 02

2C 01

10 ID

DO 20

AD OF

29 02

DO F9

2C 01

70 FB

AD 01

09 02

8D 01

2C 01

70 07

30 F9

OA

DD

OA

•DD

DD

DD

DD

LDA

BNE

BEQ

STA

LDA

LSR

BCC

LDA

BIT

BPL

BNE

LDA

AND

BNE

BIT

BVS

LDA

ORA

STA

BIT

BVS

BMI

* $AA

$E718

$E715

* $9A

$OA11

A

$E75A

$02

$DD01

$E755

$E75A

$0A0F

$02

$E73A

$DD01

$E741

$DD01

$02

$DD01

$DD01

$E75A

$E74E

C-128 Internals

Compare with calculated parity

Equal, then continue with OK

Equal parity, continue with OK

Skip to $E70F

Unequal paritycontinue w/ OK

Code for parity error in ace

Skip to $£714

Input buffer full of code in ace

Skipto$E717

Break command received in ace

Skip to $E71A

Load error code in Ace.

Combine code w/ RS-232 status

And place in RS-232 status reg

Jump: receive the next byte

RS-232 CKOUT,output RS-232

Get received byte in ace

Framing error

Break command received

Place device num in zero page

Load RS-232 command register

Shift bit 0 (handshake) into carry

Jump for 3-line handshake

Code DATA SET READY test in

ace. Read port B of CIA 2

No DSR signal, then error

No Request To Send signal

Get RS-232 NMI status in ace

When data-receive is active, then

Wait, until reception is done

Read port B of CIA 2

Wait for Clear To Send signal

Read port B CIA 2 and set bit 2

For Request To Send signal

Write in port B

Read port B CIA2 and wait for

Clear To Send signal

Poll Data Set Ready

318

Abacus Software C-128 Internals

E755:

E757:

E75A:

E75B:

A9 40

8D 14 0A

18

60

LDA

STA

CLC

RTS

$40

$0A14

E75C:

E75F:

E7 62:

E763:

E766:

E768:

E7 6B:

E7 6C:

E7 6E:

E770:

E773:

E774:

E77 6:

E778:

E77B:

E77E:

E781:

E784:

E787:

E789:

E78C:

E78F:

E791:

E794:

20 70 E7

AC IB 0A

C8

CC 1A OA

FO F4

8C IB OA

88

A5 9E

91 CA

AD OF OA

4A

BO IE

A9 10

8D OE DD

AD 16 OA

8D 04 DD

AD 17 OA

8D 05 DD

A9 81

20 7F E6

20 4A E6

A9 11

8D OE DD

60

JSR

LDY

INY

CPY

BEQ

STY

DEY

LDA

STA

LDA

LSR

BCS

LDA

STA

LDA

STA

LDA

STA

LDA

JSR

JSR

LDA

STA

RTS

$E770

$OA1B

$OA1A

$E75C

$OA1B

$9E

($CA),Y

$0A0F

A

$E794

$10

$DD0E

$0A16

$DD04

$0A17

$DD05

$81

$E67F

$E64A

$11

$DD0E

E795: 85 99

E797: AD 11 OA

E7 9A: 4A

STA * $99

LDA $OA11

LSR A

Code - missing Data Set Ready

Write signal in RS-233 status

Set carry for OK indicator

Return from subroutine

Output in RS-232 Buffer

CTS = Clear to send

DSR = Data set read

Start transfer is necessary

Index end RS-232 output buffer

Get in X-reg and increment by 1

Comp with start of output buffer

Buffer full, then wait

Set new index to output buffer

And decrement this pointer by 1

Get byte to output in ace

And write in output buffer

Copy RS-232 NMI flag into ace

Test if bit 0 is set

Sending already?

Initialize timer A with $10

And then start it

Set the 2-byte timer for the

Transmit baud rate in

$DD04-$DD05

Code timer A underflow NMI

NMI on underflow of timer A

Chk CTS+DSR, enable transfer

Initialize timer A with $11

And start it

Return from subroutine

RS-232 CHKIN, Set RS-232

input

Place device num. in zero-page

RS-232 command register in ace

Shift bit 0 (handshake) into carry

319

Abacus

E79B:

E79D:

E79F:

E7A1:

E7A3:

E7A6:

E7A8:

E7AA:

E7AD:

E7AE:

E7B0:

E7B3:

E7B5:

E7B8:

E7BB:

E7BD:

E7BF:

E7C1:

E7C2:

Software

90

29

F0

A9

2C

10

F0

AD

4A

BO

AD

29

8D

AD

29

F0

A9

18

4C

28

08

24

02

01

AD

22

OF

FA

01

FD

01

01

04

F9

90

7F

DD

OA

DD

DD

DD

E6

BCC

AND

BEQ

LDA

BIT

BPL

BEQ

LDA

LSR

BCS

LDA

AND

STA

LDA

AND

BEQ

LDA

CLC

JMP

$E7C5

$08

$E7C5

$02

$DD01

$E755

$E7CC

$0A0F

A

$E7AA

$DD01

$FD

$DD01

$DD01

$04

$E7B8

$90

$E67F

C-128 Internals

3-line handshake, then continue

Test duplex operation

Full duplex, then continue

Code for DSR signal test

Test port B of CIA 2 for DSR

Missing, then set status and exit

Test Ready to Send signal

RS-232 NMI status flag in ace

Is send operation active, then

Wait until transfer finished

Read port B of CIA and

Eliminate bit 0 - Request to Send

Return signal on port B

Read port B of CIA 2 and

Check DTR signal

Not present, then wait

Get NMI mask for ftflagM in ace

Clear carry as OK indicator

Enable RS-232 NMI

E7C5:

E7C8:

E7CA:

E7CC:

E7CD:

AD

29

F0

18

60

OF 0A

12

F3

LDA

AND

BEQ

CLC

RTS

$0A0F

$12

$E7BF

E7CE:

E7D1:

E7D4:

E7D7:

E7D9:

E7DB:

E7DE:

E7E0:

E7E3:

AD

AC

CC

F0

29

8D

Bl

EE

60

14

19

18

0B

F7

14

C8

19

0A

0A

0A

0A

0A

LDA

LDY

CPY

BEQ

AND

STA

LDA

INC

RTS

$0A14

$OA19

$OA18

$E7E4

$F7

$OA14

($C8),Y

$0A19

RS-232 CHKIN for 3-line

handshake

Get RS-232 NMI status in ace

If the RS-232 is not yet active

Then start

Clear carry as OK indicator

Return from subroutine

GET from RS-232

Get RS-232 status byte in ace

Index end RS-232 input buffer

Compwith start of input buffer

If equal, then buffer empty: Skip

Mask out bit 3 (buffer empty)

And clear in RS-232 status

Read 1 byte from RS-232 buffer

Index RS-232 input buffer + 1

Return from subroutine

320

Abacus Software C-128 Internals

a*****************************

E7E4:

E7E6:

E7E9:

E7EB:

09

8D

A9

60

08

14 OA

00

ORA

STA

LDA

RTS

$08

$OA14

$00

GET RS-232 if buffer empty

Set bit 3 (marker - buffer empty)

In RS-232 status

Pass $00 as character read

Return from subroutine

E7EC:

E7ED:

E7F0:

E7F2:

E7F5:

E7F7 :

E7F9:

E7FB:

E7FE:

E800:

E803:

E804:

48

AD

F0

AD

29

DO

A9

8D

A9

8D

68

60

OF

11

OF

03

F9

10

OD

00

OF

OA

OA

DD

OA

PHA

LDA

BEQ

LDA

AND

BNE

LDA

STA

LDA

STA

PLA

RTS

$0A0F

$E803

$0A0F

*03

$E7F2

$10

$DD0D

$00

$0A0F

.***•**************************

E805:

E806:

E809:

E80A:

E80C:

E80E:

E811:

E813:

E815:

E818:

E81B:

E81E:

E81F:

E821:

E823:

E825:

98

2D

AA

29

FO

AD

29

05

8D

AD

8D

8A

29

FO

29

FO

OF

01

28

00

FB

B5

00

OF

OD

12

OD

02

06

OA

DD

DD

OA

DD

TYA

AND

TAX

AND

BEQ

LDA

AND

ORA

STA

LDA

STA

TXA

AND

BEQ

AND

BEQ

$0A0F

$01

$E836

$DD00

$FB

* $B5

$DD00

$0A0F

$DD0D

$12

$E830

$02

$E82D

Wait for end of RS-232

Save ace contents on stack

Get RS-232 NMI flag

Not set, then OK and continue

Read RS-232 NMI flag again

Bit 0 = send, bit 1 = receive

Wait for end

Load ace with $10

Interrupt via t!flagM line

RS-232 NMI flag

Set status to "OK"

Restore ace contents

Return from subroutine

NMI routine for RS-232

Interrupt Control Register (ICR)

Combine with RS-232 NMI flag

And store result in X-reg

Mask bits 1-7 and check if

Send operation is active. no:Skip

Load ace with data port

Clear bit 2 (TXD) and pass the

Bit to send

Store in data port

Copy RS-232 NMI flag in ace

And write again into ICR

ICR/RS-232 NMI combine ace

Isolate bits 1 and 4

Not set, start byte reception

Isloate bit 1, call of timer B

Not set, the start bit

321

Abacus

E827:

E82A:

E82D:

E830:

E833:

E836:

E837:

E839:

E83B:

E83E:

E841:

E842:

E844:

E846:

E849:

E84C:

E84F:

Software

20

4C

20

20

4C

8A

29

F0

20

4C

8A

29

F0

20

AD

8D

60

78

30

A9

FF

49

02

06

78

49

10

03

A9

OF

OD

E8

E8

E8

E5

E8

E8

E8

E8

OA

DD

JSR

JMP

JSR

JSR

JMP

TXA

AND

BEQ

JSR

JMP

TXA

AND

BEQ

JSR

LDA

STA

RTS

$E878

$E830

$E8A9

$E5FF

$E849

$02

$E841

$E878

$E849

$10

$E849

$E8A9

$0A0F

$DD0D

C-128 Internals

Process received bit

Start reception of byte

Preparation for recept. next byte

Start reception of byte

Return from interrupt

Store X-reg contents in ace

Data reception?

No, the skip processing

Process received bit

Return from interrupt

Restore old X-reg contents

Check if a start bit expected

No, then continue

Prepare next bit reception

Load RS-232 NMI flag

Copy in ICR of CIA 2

Return from subroutine

****************************** Timer constants RS-232 baud

rate. Table 1 forNTSC version

E850:

E852:

E854:

E856:

E858:

E85A:

E85C:

E85E:

E860:

E862:

Cl

3E

C5

74

ED

45

F0

46

B8

71

27

1A

11

0E

OC

06

02

01

00

00

(=

(=

(=

(=

(=

(=

(=

(=

(=

(=

10177)

6718)

4549)

3700)

3309)

1605)

752)

326)

184)

113)

50 Baud

75 Baud

110 Baud

134.5 Baud

150 Baud

300 Baud

600 Baud

1200 Baud

1800 Baud

2400 Baud

****************************** Timer constant for RS-232 baud

rate. Table 2 for PAL version

E864:

E866:

E868:

E86A:

E86C:

19

44

1A

E8

70

26

19

11

0D

OC

(=

(=

(=

(=

(=

9753)

6468)

4378)

3560)

3184)

50 Baud

75 Baud

110 Baud

134.5 Baud

150 Baud

322

Abacus Software C-128 Internals

E86E:

E870:

E872:

E874:

E876:

06 06

Dl 02

37 01

AE 00

69 00

(=

(=

(=

(=

1542)

736)

311)

174)

105)

E878:

E87B:

E87D:

E87F:

E882:

E884:

E887:

E88A:

E88D:

E890:

E893:

E895:

E898:

E89B:

E8 9E:

E8A0:

E8A3:

E8A6:

AD 01 DD

29 01

85 A7

AD 06 DD

E9 28

6D 16 0A

8D 06 DD

AD 07 DD

6D 17 0A

8D 07 DD

A9 11

8D OF DD

AD OF OA

8D OD DD

A9 FF

8D 0 6 DD

8D 07 DD

4C 9D E6

LDA

AND

STA

LDA

SBC

ADC

STA

LDA

ADC

STA

LDA

STA

LDA

STA

LDA

STA

STA

JMP

$DD01

$01

$A7

$DD06

$28

$0A16

$DD06

$DD07

$OA17

$DD07

$11

$DD0F

$0A0F

$DD0D

$FF

$DD0 6

$DD07

$E69D

E8A9:

E8AC:

E8AF:

E8B2:

E8B5:

E8B7:

E8BA:

E8BC:

E8BF:

E8C2:

E8C4:

AD 12 OA

8D 06 DD

AD 13 OA

8D 07 DD

A9 11

8D OF DD

A9 12

4D OF OA

8D OF OA

A9 FF

8D 06 DD

LDA

STA

LDA

STA

LDA

STA

LDA

EOR

STA

LDA

STA

$0A12

$DD06

$0A13

$DD07

$11

$DD0F

$12

$0A0F

$0A0F

$FF

$DD06

300 Baud

600 Baud

1200 Baud

1800 Baud

2400 Baud

Input NMI routine for RS-232

Read data port B of CIA 2

Isolate bit for receive data

And in Z-P RS-232 input bit flag

Get low value of CIA 2 timer B

And subtract 28 from it

Add full-bit time baud rate high

And reset timer B

Get high value of CIA 2 timer B

Add full-bit time baudrate high

And reset timer B high

Write $11 in control register of

CIA 2 = Start timer B

Get RS-232 NMI status in ace

And set CIA inteirupt control reg

Initialization value for timer B

Set timer B low to high value

Set timer B high to high value

Process received bit

NMI routine for RS-232 output

RS-232 user baud rate in ace

Ad in timer low of CIA 2

RS-232 user baud rate in ace

And in timer B high of CIA 2

Write $11 in control register of

CIA 2 = start timer

Invert bits 0, 1 and 4 of RS-232

NMI flag. This value

Back in the NMI flag

Initialization value for timer B

Set timer B low to high value

323

Abacus

E8C7:

E8CA:

E8CD:

E8CF:

Software

8D 07 DD

AE 15 0A

86 A8

60

STA

LDX

STX

RTS

$DD07

$0A15

* $A8

E8D0:

E8D2:

E8D3:

E8D6:

E8D7:

E8D9:

E8DB:

E8DD:

E8DF:

E8E1:

E8E3:

E8E5:

E8E7:

E8E9:

E8EB:

E8ED:

E8EF:

E8F0:

E8F2:

E8F4:

E8F6:

E8F9:

E8FB:

E8FD:

E900:

E901:

E903:

E905:

E907:

E909:

E90B:

E90C:

E90E:

A5 93

48

20 F2 E9

68

85 93

BO 3D

AO 00

Bl B2

C9 05

FO 34

C9 01

FO 08

C9 03

FO 04

C9 04

DO El

AA

24 9D

10 22

AO 63

20 22 F7

AO 05

Bl B2

20 D2 FF

C8

CO 15

DO F6

A5 Al

69 02

A4 91

C8

DO 04

C5 Al

LDA

PHA

JSR

PLA

STA

BCS

LDY

LDA

CMP

BEQ

CMP

BEQ

CMP

BEQ

CMP

BNE

TAX

BIT

BPL

LDY

JSR

LDY

LDA

JSR

INY

CPY

BNE

LDA

ADC

LDY

INY

BNE

CMP

* $93

$E9F2

* $93

$E918

$00

($B2),Y

$05

$E917

$01

$E8EF

$03

$E8EF

$04

$E8D0

* $9D

$E916

$63

$F722

$05

($B2),Y

$FFD2

$15

$E8FB

* $A1

$02

* $91

$E912

* $A1

C-128 Internals

Set timer B high to high value

Number of bits to send

In z-page: Counter RS-232 Bits

Return from subroutine

Read program header from tape

Save load/verify pointer on sys

Stack via the accumulator

Routine:read data block tape

Get load/verify flag from stack

And back to zero page

If error occurred, return

Set displacement to tape buffer

Get byte of read data block

Was it and EOT marker?

Yes, then return

Header type BASIC program?

Yes, evaluate correspondingly

Header type machine lang prg?

Yes then evaluate appropriately

Header type for data block?

No, then read in

Store header type in X-reg

Check kernal status flag

Ctrl messages not allowed, skip

Displace to "FOUND" message

Output control message

Set displace to start of filename

Read character from tape buffer

Kernal BSOUT: Output a char

Increment displace pointer by 1

Max filename length =16 char

Not yet reached, continue

Middle-value time byte in ace

Delay loop for 8.5 seconds

Check z-page stop / C= key flag

Increment this value by 1

Key pressed, then continue

Check the 8.5 second delay loop

324

Abacus

E910:

E912:

E914:

E916:

E917:

E918:

Software

DO F7

CO FO

FO BA

18

88

60

BNE

CPY

BEQ

CLC

DEY

RTS

$E909

$F0

$E8D0

C-128 Internals

E919:

E91B:

E91E:

E920:

E922:

E923:

E925:

E926:

E928:

E929:

E92B:

E92C:

E92E:

E930:

E932:

E933:

E935:

E937:

E939:

E93A:

E93C:

E93E:

E93F:

E941:

E943:

E944:

E946:

E948:

E949:

85

20

90

A5

48

A5

48

A5

48

A5

48

AO

A9

91

88

DO

A5

91

C8

A5

91

C8

A5

91

C8

A5

91

C8

A5

9E

80 E9

5F

C2

Cl

AF

AE

BF

20

B2

FB

9E

B2

Cl

B2

C2

B2

AE

B2

AF

STA

JSR

BCC

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

LDY

LDA

STA

DEY

BNE

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

LDA

* $9E

$E980

$E97F

* $C2

* $C1

* $AF

* $AE

$BF

$20

($B2),Y

$E930

* $9E

($B2),Y

* $C1

($B2),Y

* $C2

($B2),Y

* $AE

($B2)fY

* $AF

Time not up, continue waiting

Was the space key pressed?

Yes, then read header

Set indicator for OK

Old stop / C= key flag value

Return from subroutine

Write data block on tape

Write header to tape, header type

in ace: 3=mach. lang.,l=BASIC

Put header type in zero page

Get tape buffer addr.- zero page

Address invalid, then skip

Put start address high in ace

And save on stack

Put start address low in ace

And save on stack

Put end address high into ace

And save on stack

Put end address low in ace

And save on stack

Get tape buffer length for loop

Load ace with char for space

Clear tape buffer

Loop until the entire length given

In Y is cleared

Get the header type

At 1st position in tape buffer

Displacement to tape buffer +1

Get start add low from zero page

And put it in the tape buffer

Displacement to tape buffer + 1

Get start address high from Z-P

And put it in the tape buffer

Displacement to tape buffer + 1

Get end address low from Z-P

And put it in the tape buffer

Displacement to tape buffer + 1

Get end address high from Z-P

325

Abacus

E94B:

E94D:

E94E:

E950:

E952:

E954:

E956:

E958:

E95A:

E95D:

E95F:

E961:

E963:

E965:

E967:

E96A:

E96C:

E96E:

E971:

E972:

E973:

E975:

E976:

E978:

E979:

E97B:

E97C:

E97E:

E97F:

Software

91 B2

C8

84 9F

AO 00

84 9E

A4 9E

C4 B7

F0 OD

20 AE F7

A4 9F

91 B2

E6 9E

E6 9F

DO ED

20 87 E9

A9 69

85 AB

20 1C EA

A8

68

85 AE

68

85 AF

68

85 Cl

68

85 C2

98

60

STA

INY

STY

LDY

STY

LDY

CPY

BEQ

JSR

LDY

STA

INC

INC

BNE

JSR

LDA

STA

JSR

TAY

PLA

STA

PLA

STA

PLA

STA

PLA

STA

TYA

RTS

($B2),Y

* $9F

$00

* $9E

* $9E

* $B7

$E967

$F7AE

* $9F

($B2),Y

* $9E

* $9F

$E954

$E987

$69

* $AB

$EA1C

* $AE

* $AF

* $C1

* $C2

C-128 Internals

•••a**************************

E980:

E982:

E984:

E986:

A6 B2

A4 B3

CO 02

60

LDX * $B2

LDY * $B3

CPY # $02

RTS

And put it in the tape buffer

Displacement to tape buffer + 1

Save displ. in tape buffer

Clear cntr for length of filename

In zero page

Get counter for filename length

And compare with actual length

All letters in buffer, then skip

Get letters from filename

Get displ. to tape buffer

Letter of the filename in buffer

Counter for filename length + 1

Displacement to tape buffer + 1

Loop for next letter

Start and address of tape buffer

Store check sum data and header

Block ($69) in zero page

Write block to tape

Save current ace contents

Get end address high from stack

And place in zero page again

Get end address low from stack

And store in zero page again

Get start address high from stack

And store in zero page again

Get start address low from stack

And store in zero page again

Get ace contents back

Return from subroutine

Get tape buffer address and

check for validity

Start of tape buffer in X-reg

Start of tape buffer in Y-reg

Zero page and stack not allowed

Return from subroutine

326

Abacus Software C-128 Internals

****************************** Tape end addr = start addr + 192

Get tape buffer address

Start of tape buffer low in ace

And in Z-P I/O start addfess low

Clear carry for addition

End address=start address +192

New end address low in Z-P

Start of tape buffer high in ace

and in Z-P I/O start address high

End addr high=start address hi +

carry, end address high in Z-P

Return from subroutine

E987:

E98A:

E98B:

E98D:

E98E:

E990:

E992:

E993:

E995:

E997:

E999:

20

8A

85

18

69

85

98

85

69

85

60

80 E9

Cl

CO

AE

C2

00

AF

JSR

TXA

STA

CLC

ADC

STA

TYA

STA

ADC

STA

RTS

$E980

#

*

#

*

$C1

$co

$AE

$C2

$00

$AF

E99A:

E99D:

E99F:

E9A1:

E9A3:

E9A5:

E9A7:

E9A9:

E9AB:

E9AE:

E9B0:

E9B2:

E9B4:

E9B6:

E9B8:

E9BA:

E9BC:

E9BD:

20

B0

A0

84

A0

84

C4

F0

20

A4

Dl

DO

E6

E6

A4

DO

18

60

DO E8

IE

05

9F

00

9E

B7

11

AE F7

9F

B2

E6

9E

9F

9E

EB

JSR

BCS

LDY

STY

LDY

STY

CPY

BEQ

JSR

LDY

CMP

BNE

INC

INC

LDY

BNE

CLC

RTS

$E8D0

$E9BD

$05

• $9F

$00

* $9E

* $B7

$E9BC

$F7AE

* $9F

($B2),Y

$E99A

* $9E

* $9F

* $9E

$E9A7

Seach tape header for name

Search for next tape header

IF EOT found, then return

Displace to name in tape buffer

Store in zero page

Init. the counter for the length

Of the filename in the zero page

Compare length of target name

If equal, continue evaluation

Get character of target name

Displ. to filenames in tape buffer

Compare with target character

Not equal, then not found

Filename legnth counter +1

Filename displ. to tape buffer +1

Filename legnth counter in Y-reg

Next character comparison

Set indicator for OK

Return from subroutine

327

Abacus Software C-128 Internals

kkkkk;

E9BE:

E9C1:

E9C3:

E9C5:

E9C7:

kkkki

20

E6

A4

CO

60

It******:

80 E9

A6

A6

CO

kkkkkk

JSR

INC

LDY

CPY

RTS

kkkkkkkk

$E980

*■ $A6

* $A6

$C0

Increment tape buffer pointer

Get the tape buffer address

Z-P cassette buffer address +1

And compare to

Maximum value 192

Return from subroutine

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

E9C8:

E9CB:

E9CD:

E9CF:

E9D2:

E9D5:

E9D8:

E9DA:

E9DC:

££££££

E9DF:

E9E1:

E9E3:

E9E5:

E9E7:

E9E8:

20

F0

AO

20

20

20

DO

AO

4C

kkkz

A9

24

DO

24

18

60

DF

1A

IB

22

8F

DF

F8

6A

22

10

01

02

01

E9

F7

EA

E9

F7

k kk ki

JSR

BEQ

LDY

JSR

JSR

JSR

BNE

LDY

JMP

kk k k k k

LDA

BIT

BNE

BIT

CLC

RTS

$E9DF

$E9E7

$1B

$F722

$EA8F

$E9DF

$E9D2

$6A

$F722

k k k-k kk#\ ^\ /\ ^% ^\ ^\

$10

* $01

$E9E7

* $01

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

E9E9:

E9EC:

E9EE:

E9F0:

20 DF E9

FO F9

AO 2E

DO DD

JSR $E9DF

BEQ $E9E7

LDY # $2E

BNE $E9CF

Wait for button on datasette

Check if button pressed

Button pressed, OK & continue

Displ. to "Press Play on Tape11

inY. Output control message

Test for stop-key interruption

Check if key pressed

No, then to delay loop

Displacement for "OK" message

Output control message

Check if tape button pressed

Set bit 4 for button test

Check data reg. processor port

Not pressed,then exit

Check again

Yes: zero flag=l, no zero flag=O

Return from subroutine

Wait for "record & play" keys

Check if tape button is pressed

Button pressed, OK & continue

Displ. to "Press R & P on Tape"

Button delay loop/stop key chck

328

Abacus Software C-128 Internals

E9F2:

E9F4:

E9F6:

E9F8:

££££££

E9FB:

E9FE:

EAOO:

EA01:

EA03:

EA05:

EA07:

EA09:

EAOB:

EAOD:

EAOF:

EA11:

EA13:

A9

85

85

20

***i

20

BO

78

A9

85

85

85

85

85

85

A9

A2

DO

00

90

93

87 E9

K******1

C8 E9

IF

00

AA

B4

BO

9E

9F

9C

90

OE

11

LDA

STA

STA

JSR

k*****

JSR

BCS

SEI

LDA

STA

STA

STA

STA

STA

STA

LDA

LDX

BNE

$00

* $90

* $93

$E987

$E9C8

$EA1F

$00

* $AA

* $B4

* $B0

* $9E

* $9F

* $9C

$90

$0E

$EA26

EA15: 20 87 E9

EA18: A9 14

EA1A: 85 AB

JSR $E987

LDA # $14

STA * $AB

EA1C:

EA1F:

EA21:

EA22:

EA24:

EA2 6:

EA28:

EA2B:

EA2C:

20 E9 E9

BO 7A

78

A9 82

A2 08

AO 00

8C 1A DO

88

8C 19 DO

JSR

BCS

SEI

LDA

LDX

LDY

STY

DEY

STY

$E9E9

$EA9B

$82

$08

$00

$D01A

$D019

Read data block from tape

System status with indicator

Initialize for everything OK

Clear Load/Verify pointer

Get tape buffer addr/end address

Load program from tape

Wait for button on datasette

STOP key pressed, return

Disbale all system interrupts

Init. value for IRQ storage

Tape-read mode input byte

storage. Tape temp pointer

Cassette time constant

Casettes error pass 1

Cassette error pass 2

Tape flag for byte recived

IRQ on pin "flag"

Number of IRQ vector ($EAEB)

Write data block to tape

Write tape buffer to tape

Load tape buffer address

Set length of the WRITE leader

Store in zero page

Write data block to tape

Wait for record & play

STOP pressed, return

Disable all system interrupts

IRQ on underflow of timer B

Number of IRQ vector ($EE2E)

Set interrupt mask register CIA

To #0 (Interrupt disable)

Decrement Y-reg to $FF and set

Interrupt Request Register

329

Abacus

EA2F:

EA32 :

EA35:

EA37:

EA3A:

EA3C:

EA3F:

EA42:

EA45:

EA46:

EA48:

EA4B:

EA4C:

EA4E:

EA51:

EA54:

EA57:

EA5A:

EA5D:

EA60:

EA63:

EA65:

EA67:

EA6A:

EA6C:

EA6E:

EA70:

EA72:

EA74:

EA7 6:

EA77:

EA7 9:

EA7A:

EA7C:

Software

8D OD

AD OE

09 19

8D OF

29 91

8D OB

20 EC

AD 11

A8

29 10

8D 39

98

29 6F

8D 11

20 74

AD 14

8D 09

AD 15

8D OA

20 9B

A9 02

85 BE

20 5A

A5 01

29 IF

85 01

85 CO

A2 FF

AO FF

88

DO FD

CA

DO F8

58

DC

DC

DC

OA

E7

DO

OA

DO

E5

03

OA

03

OA

EE

ED

STA

LDA

ORA

STA

AND

STA

JSR

LDA

TAY

AND

STA

TYA

AND

STA

JSR

LDA

STA

LDA

STA

JSR

LDA

STA

JSR

LDA

AND

STA

STA

LDX

LDY

DEY

BNE

DEX

BNE

CLI

$DC0D

$DC0E

$19

$DC0F

$91

$0A0B

$E7EC

$D011

$10

$0A39

$6F

$D011

$E574

$0314

$0A09

$0315

$0A0A

$EE9B

$02

* $BE

$ED5A

* $01

$1F

* $01

* $C0

$FF

$FF

$EA7 6

$EA74

EA7D:

EA80:

EA83:

AD OA

CD 15

18

OA

03

LDA

CMP

CLC

$0A0A

$0315

C-128 Internals

Reset IRQ mask

Load CIA control reg A, timer B

"One shot" and start

Control reg.B, IRQ on timer B

Set time compare pointer for tape

Operations

Wait for end of R-232 transfer

Copy VIC control reg. into ace

And into Y-reg

Set bit 4, screen on

Store value in VDC temp storage

Old value back into ace

Clear bit 8 of raster comparison

And turn the screen off

Clock to 1 MHz and sprites off

IRQ vector low address in IRQ

Temp storage for tape operations

IRQ vector high address in IRQ

Temp storage for tape operations

Reset IRQ vector for tape operat

Number of data blocks to reaed

Store in zero page

Initialize bit counter, serial I/O

Turn cass. motor on by setting

4th bit of the processor port data

Register

Set pointer for tape motor

Counter for delay loop high

Counter for delay loop low

X and Y regs are decremented

From 65535 to 0 to create the

Necessary delay

For tape operations

Enable interrupt for tape I/O

Wait for tape I/O end

Compare with tape IRQ vector

with normal IRQ pointer high
Set indicator for OK

330

Abacus

EA84:

EA86:

EA89:

EA8C:

■k -k-k -k -k -k/\ /\ r\ r\ w\ #1

EA8F:

EA92:

EA93:

EA95:

EA98:

EA99:

EA9A:

EA9B:

EA9D:

EAAO:

k k -k -k -k-^\ /\ r\ w\ r» »

EAA1:

EAA3:

EAA5:

EAA6:

EAA7:

EAA8:

EAAA:

EAAB:

EAAD:

EAAF:

EAB1:

EAB3:

EAB5:

EAB6:

EAB8:

EAB9:

EABB:

EABC:

EABD:

EACO:

Software

FO

20

20

4C

-.■kk-kk

20

18

DO

20

38

68

68

A9

8D

60

k kk ki

86

A5

OA

OA

18

65

18

65

85

A9

24

30

2A

06

2A

06

2A

AA

AD

C9

15

8F

3D

7D

kk-k

El

OB

57

00

OA

kkk;

Bl

BO

BO

Bl

Bl

00

BO

01

Bl

Bl

06

16

EA

F6

EA

k-k-k-fi

FF

EE

OA

kkkkz

DC

BEQ

JSR

JSR

JMP

:kkk-kk-

JSR

CLC

BNE

JSR

SEC

PLA

PLA

LDA

STA

RTS

kkkkk*

STX

LDA

ASL

ASL

CLC

ADC

CLC

ADC

STA

LDA

BIT

BMI

ROL

ASL

ROL

ASL

ROL

TAX

LDA

CMP

$EA9B

$EA8F

$F63D

$EA7D

kkkkkki

$FFE1

$EAA0

$EE57

$00

$0A0A

kk kk kk

* $B1

* $B0

A

A

* $B0

* $B1

* $B1

$00

* $B0

$EAB6

A

* $B1

A

* $B1

A

$DC0 6

$16

C-128 Internals

IRQ vectors equal, then done

Check if STOP key pressed

If pressed, set flag

Continue to wait for end

Test for STOP key

Kernal STOP: Test for stop key

Set indicator for everything OK

STOP not pressed, RTS exit

Motor off, set normal IRQ

Set carry for error

Get return address form stack

And clear

Load code for "interrupt" in ace

And set indicator for normal IRQ

Return from subroutine

Prepare cassette synchronization

Store X-reg contents in Z-P

Timing constant for tape in ace

The timing constant is multiplied

By the factor 4

Clear carry for addition

Add timing constant (corres. *5)

Clear carry for addition

Add old X-reg contents & place

This value in the zero page

Load low value for timer A

Check if timing constant >128

Yes, then skip alignment

The inti value for timer A is

Multiplied by 4 by rotating the

Contents of the ace in connection

With shifting of tape timing

constant

Store high of timer value in X

Low value CIA 1 timer B in ace

Change timer B high to 63755

331

Abacus

EAC2:

EAC4:

EAC6:

EAC9:

EACA:

EACD:

EADO:

EAD3:

EAD6:

EAD9:

EADC:

EADE:

EAEO:

EAE2:

EAE3:

EAE5:

EAE6:

EAE9:

EAEA:

Software

90 F9

65 Bl

8D 04 DC

8A

6D 07 DC

8D 05 DC

AD OB OA

8D OE DC

8D OD OA

AD OD DC

29 10

FO 09

A9 EA

48

A9 E9

48

4C C8 EE

58

60

BCC

ADC

STA

TXA

ADC

STA

LDA

STA

STA

LDA

AND

BEQ

LDA

PHA

LDA

PHA

JMP

CLI

RTS

$EABD

* $B1

$DC04

$DC07

$DC05

$0A0B

$DC0E

$0A0D

$DC0D

$10

$EAE9

$EA

$E9

$EEC8

EAEB:

EAEE:

EAFO:

EAF1:

EAF4:

EAF7:

EAF9:

EAFB:

EAFC:

EAFF:

EBO2:

EB04:

EB07:

EBOA:

EBOD:

EBOE:

EB1O:

EB12:

AE 07 DC

AO FF

98

ED 06 DC

EC 07 DC

DO F2

86 Bl

AA

8C 06 DC

8C 07 DC

A9 19

8D OF DC

AD OD DC

8D OC OA

98

E5 Bl

86 Bl

4A

LDX

LDY

TYA

SBC

CPX

BNE

STX

TAX

STY

STY

LDA

STA

LDA

STA

TYA

SBC

STX

LSR

$DC07

$FF

$DC06

$DC07

$EAEB

* $B1

$DC06

$DC07

$19

$DC0F

$DC0D

$0A0C

* $B1

* $B1

A

C-128 Internals

Yes, then loop to timer read

Add low for initialization

And set in timer A low

Add high value of the init in ace

With carry to timer B high

And set in timer A high

Copy init. value from tape time

Constant to start timer A

Reset timer A flag

Interrupt Control Register in ace

Check negative edge on FLAG

No, wait for negative edge

Place the contents of zero page

Locations $EA and $E9 on the

Sys stack as quasi return address

Simulate the intemipt call

Enable all system interrupts

Return from subroutine

Interrupt routine for tape read

CIA 1 timer B hi in X-reg

Init Y-reg with with high value

And for subtraction in ace

Subtract timer B low of #255

Is timer B high decremented?

Yes, back to time comparison

Place timer B high in zero page

Time low since last signal in X

Timer B low to high value

Timer B high to high value

Set timer B mode

And start timer B

Interrupt Control Register in ace

And in systetm storage for tape

Initialize ace with #255

Subtract timer B high from #255

Store elapsed time in zero page

The value stored in the ace

332

Abacus

EB13:

EB15:

EB16:

EB18:

EB1A:

EB1B:

EB1D:

EB1F:

EB21:

EB23:

EB25:

EB28:

EB2A:

EB2C:

EB2E:

EB30:

EB32:

EB34:

EB36:

EB37:

EB39:

EB3B:

EB3D:

EB3F:

EB41:

EB43:

EB45:

EB47:

EB4A:

EB4C:

EB4E:

EB50:

EB52:

EB54:

EB56:

EB58:

EB59:

EB5B:

EB5D:

EB5F:

Software

66 Bl

4A

66 Bl

A5 BO

18

69 3C

C5 Bl

BO 4A

A6 9C

FO 03

4C IF EC

A6 A3

30 IB

A2 00

69 30

65 BO

C5 Bl

BO 1C

E8

69 26

65 BO

C5 Bl

BO 17

69 2C

65 BO

C5 Bl

90 03

4C CF EB

A5 B4

FO ID

85 A8

DO 19

E6 A9

BO 02

C6 A9

38

E9 13

E5 Bl

65 92

85 92

ROR

LSR

ROR

LDA

CLC

ADC

CMP

BCS

LDX

BEQ

JMP

LDX

BMI

LDX

ADC

ADC

CMP

BCS

INX

ADC

ADC

CMP

BCS

ADC

ADC

CMP

BCC

JMP

LDA

BEQ

STA

BNE

INC

BCS

DEC

SEC

SBC

SBC

ADC

STA

$B1

A

$B1

* $B0

$3C

* $B1

$EB6B

* $9C

$EB28

$EC1F

* $A3

$EB47

$00

$30

* $B0

* $B1

$EB52

$26

* $B0

* $B1

$EB56

$2C

* $B0

* $B1

$EB4A

$EBCF

* $B4

$EB6B

* $A8

$EB6B

* $A9

$EB58

* $A9

$13

* $B1

* $92

* $92

C-128 Internals

For the elapsed time

Is divided by the

Factor 4

Get timing constant from z-page

Clear carry for addition

Add #60 to timing constant

> time since last signal?

Yes, then no information, skip

Was a byte received

No, then skip

Continue byte-receive routine

Was byte read entirely?

Yes, then evaluate

Code for short pulse X-reg (0)

Set ace for pulse read

And add timing constant

Short time pulse received?

Yes, then skip long pulse

Code for long pule in X-reg (1)

Set ace for pulse read

And add timing constant

Long time pulse received?

Yes, skip other pulse duration

Check if the previous time

Pulse was stil longer. If so,

It is a byte header pulse

No, then skip processing

Process received byte

Check if timer A is enables

No, then skip

Set pointer for MREAD ERROR"

Jump to timer interrupt read

Pntr for pulse-length change +1

Skip change decrement

Pntr for pulse length change -1

Set carry for subtraction

From read value #19, as well as

Subtract elapsed time

Add zero page storage for timing

Correction flag and store

333

Abacus

EB61:

EB63:

EB65:

EB67:

EB69:

EB6B:

EB6D:

EB6F:

EB72:

EB74:

EB7 6:

EB7 9:

EB7B:

EB7D:

EB7F:

EB82:

EB84:

EB8 6:

EB88:

EB8A:

EB8D:

EB8F:

EB91:

EB94:

EB96:

EB98:

EB9A:

EB9C:

EB9D:

EB9F:

EBA1:

EBA3:

EBA5:

EBA7:

EBA8:

EBAA:

EBAC:

EBAE:

EBBO:

EBB2:

Software

A5 A4

49 01

85 A4

F0 2B

86 C5

A5 B4

F0 22

AD OC

29 01

DO 05

AD OD

DO 16

A9 00

85 A4

8D OD

A5 A3

10 30

30 BF

A2 A6

20 Al

A5 9B

DO B9

4C 33

A5 92

FO 07

30 03

C6 BO

2C

E6 BO

A9 00

85 92

E4 C5

DO OF

8A

DO AO

A5 A9

30 BD

C9 10

90 B9

85 96

OA

OA

OA

EA

FF

LDA

EOR

STA

BEQ

STX

LDA

BEQ

LDA

AND

BNE

LDA

BNE

LDA

STA

STA

LDA

BPL

BMI

LDX

JSR

LDA

BNE

JMP

LDA

BEQ

BMI

DEC

* $A4

$01

* $A4

$EB94

* $C5

* $B4

$EB91

$0A0C

$01

$EB7B

$0A0D

$EB91

$00

* $A4

$0A0D

* $A3

$EBB6

$EB47

$A6

$EAA1

* $9B

$EB4A

$FF33

* $92

$EB9F

$EB9D

* $B0

.Byte $2C

INC

LDA

STA

CPX

BNE

TXA

BNE

LDA

BMI

CMP

BCC

STA

* $D0

$00

* $92

* $C5

$EBB6

$EB4A

* $A9

$EB6B

$10

$EB6B

* $96

C-128 Internals

Invert the zero page flag for the

Reception of both pulses

And store in zero page again

Both pulses received, then skip

Store signal received in z-page

Check if timer A is enabled

No, then terminate interrupt

Get contents of ICR in ace

Was it a timer A interrupt

Yes, then skip

Check if timer A is run down

No, then terminate interrupt

Clear the zero-page flag for

Pulse count (low value)

Set pointer for timer A timeout

Check is byte is completely read

No, then skip

Yes, process correspondingly

Initialization value for timer A

Prepare tape for reading

Zero-page parity byte in ace

Not zero, then parity error

Back to kernal interrupt

Timing correction pointer in ace

Flag cleared, then skip

Smaller then zero, skip dec

Z-page timing constant -1

Skip to $EB9F

Z-page timing constant +1

Z-page pointer timing constant

Erase correction (low value)

Compare pulse received with

previous Not equal, OK & skip

Check if short pulse received

No, then read error. Skip

Pulse length change pntr in ace

Negative value, then skip

16 short pulses received?

No, then for negative value

Yes, EOB flag received

334

Abacus

EBB4:

EBB 6:

EBB7:

EBB9:

EBBB:

EBBD:

EBBF:

EBC1:

EBC3:

EBC5:

EBC7:

EBC9:

EBCC:

EBCF:

EBD1:

EBD3:

EBD5:

EBD7:

EBD9:

EBDB:

EBDE:

EBEO:

EBE2:

EBE3:

EBE5:

EBE7:

EBE8:

EBE9:

EBEC:

EBEE:

EBFO:

EBF2:

EBF4:

EBF6:

EBF8:

EBFA:

EBFC:

EBFE:

ECO1:

EC03:

Software

BO

8A

45

85

A5

FO

C6

30

46

66

A2

20

4C

A5

FO

A5

FO

A5

30

4C

46

A9

38

E5

65

OA

AA

20

E6

A5

DO

A5

FO

85

A9

85

A9

8D

85

A5

B5

9B

9B

B4

D2

A3

C5

C5

BF

DA

Al

33

96

04

B4

07

A3

03

56

Bl

93

Bl

BO

Al

9C

B4

11

96

26

A8

00

96

81

OD

B4

96

EA

FF

EB

EA

DC

BCS

TXA

EOR

STA

LDA

BEQ

DEC

BMI

LSR

ROR

LDX

JSR

JMP

LDA

BEQ

LDA

BEQ

LDA

BMI

JMP

LSR

LDA

SEC

SBC

ADC

ASL

TAX

JSR

INC

LDA

BNE

LDA

BEQ

STA

LDA

STA

LDA

STA

STA

LDA

$EB6B

* $9B

* $9B

* $B4

$EB91

* $A3

$EB88

* $C5

$BF

$DA

$EAA1

$FF33

* $96

$EBD7

* $B4

$EBDE

* $A3

$EBDE

$EB56

* $B1

$93

* $B1

* $B0

A

$EAA1

* $9C

* $B4

$EC03

* $96

$EC1C

* $A8

$00

* $96

$81

$DC0D

* $B4

* $96

C-128 Internals

Unconditional jump

Put received bit in ace

Compare witb tape parity

Store in tape parity again

Check if timer A is enabled

No, then end interrupt

Zero-page storage for bit cntr -1

Parity bit received? Yes, skip

No, then bit read into

Zero-page storage for tape data

Initialization value for timer A

Prepare cassette synchronization

Back to IRQ routine

Check if EOB received

No, skip timer read

Check if timer A enabled

No, skip bit counter test

Check if Z-P bit cntr is negative

Yes, wait for byte header

Process long pulse,no header

byte. Halve the elapsed time

since the last negativce edge and

Subtract this value

From the constant #147

Add zero-page timing constant

And double this value

To X-reg, init value for timer A

Prepare cassette synchronization

Set Z-P pointer:l!byte received"

Check if timer A enabled

Yes, then skip

Check if EOB received

No, to normal IRQ routine

Set z-page display for read error

Clear z-page storage for EOB

marker, (low value)

Code value for timer A enable

Enable interrupt for timer A

Set z-page flag, timer A possible

Copy z-page for received EOB

335

Abacus

EC05:

EC07:

EC09:

ECOB:

ECOD:

ECOF:

EC12:

EC14:

EC16:

EC18:

EC1A:

EC1C:

EC1F:

EC22:

EC24:

EC2 6:

EC29:

EC2B:

EC2D:

EC2F:

EC31:

EC33:

EC35:

EC37:

EC39:

EC3B:

EC3C:

EC3E:

EC40:

EC43:

EC45:

EC47:

EC49:

EC4C:

EC4E:

EC50:

EC52:

EC54:

EC56:

EC58:

Software

85

FO

A9

85

A9

8D

A5

85

A5

05

85

4C

20

85

A2

20

A5

FO

85

A9

24

10

A5

DO

A6

CA

DO

A9

20

DO

A9

85

4C

70

DO

A5

DO

A5

DO

A5

B5

09

00

B4

01

OD

BF

BD

A8

A9

B6

33

5A

9C

DA

Al

BE

02

A7

OF

AA

17

B5

OC

BE

OB

08

57

04

00

AA

33

31

18

B5

F5

B6

Fl

A7

DC

FF

ED

EA

F7

FF

STA

BEQ

LDA

STA

LDA

STA

LDA

STA

LDA

ORA

STA

JMP

JSR

STA

LDX

JSR

LDA

BEQ

STA

LDA

BIT

BPL

LDA

BNE

LDX

DEX

BNE

LDA

JSR

BNE

LDA

STA

JMP

BVS

BNE

LDA

BNE

LDA

BNE

LDA

* $B5

$EC12

$00

* $B4

$01

$DC0D

* $BF

* $BD

* $A8

* $A9

* $B6

$FF33

$ED5A

* $9C

$DA

$EAA1

* $BE

$EC2F

* $A7

$0F

* $AA

$EC4C

* $B5

$EC45

* $BE

$EC49

$08

$F757

$EC49

$00

* $AA

$FF33

$EC7F

$EC68

* $B5

$EC49

* $B6

$EC49

* $A7

C-128 Internals

In flag for valid EOB

No EOB marker, then skip

Control code for timer A disable

Put in appropriate z-page pointer

Control code, disabling timer A

Interrupts in CIA control register

Z-page shift register, READ in

Z-page storage for read byte

Combine Z-P pointer for read

error with pulse change pointer

Place in error code of byte

Back to normal IRQ call

Set bit counter for serial output

Pointer: reset "byte received11

Initialization value for timer A

Prepare cassette synchronization

Check if number of remaining

blocks is zero. If so, skip

Reset number of blocks to read

Mask value for count before read

Test pointer, reading from tape

If all characters received, end

Test if valid EOB received

Yes, then skip

Is the number of blocks

remaining to be read = 1 ?

No, to normal IRQ call

Set bit 3 in A for "long block"

Reset system status pointer

Uncond. jump normal IRQ rout

Z-P pointer, "reading from tape"

Set to "scan" (low value)

Back to normal IRQ routine

Skip for tape read pointer "read"

Skip for tape read pointer"count"

Check if EOB received

Yes, back to normal IRQ routine

Test if byte-read error occurred

Yes, back to normal IRQ routine

Get number of blocks to read yet

336

Abacus

EC5A:

EC5B:

EC5D:

EC5F:

EC61:

EC62:

EC64:

EC66:

EC68:

EC6A:

EC6C:

EC6E:

EC70:

EC73:

EC75:

EC77:

EC7 9:

EC7B:

EC7D:

EC7F:

EC81:

EC83:

EC85:

EC88:

EC8A:

EC8D:

EC90:

EC92:

EC95:

EC97:

EC98:

EC9A:

EC9C:

EC9E:

ECAO:

ECA3:

ECA5:

ECA7:

ECA9:

ECAB:

Software

4A

A5

30

90

18

BO

29

85

C6

DO

A9

.85

20

A9

85

FO

A9

85

DO

A5

FO

A9

20

A9

4C

20

90

4C

A6

CA

FO

A5

FO

AO

20

C5

FO

A9

85

A5

BD

03

18

15

OF

AA

AA

DD

40

AA

51

00

AB

DO

80

AA

CA

B5

OA

04

57

00

OC

B7

03

OA

A7

2E

93

OD

00

CC

BD

04

01

B6

B6

ED

F7

ED

EE

ED

F7

LSR

LDA

BMI

BCC

CLC

BCS

AND

STA

DEC

BNE

LDA

STA

JSR

LDA

STA

BEQ

LDA

STA

BNE

LDA

BEQ

LDA

JSR

LDA

JMP

JSR

BCC

JMP

LDX

DEX

BEQ

LDA

BEQ

LDY

JSR

CMP

BEQ

LDA

STA

LDA

A

* $BD

$EC62

$EC7 9

$EC7 9

$0F

* $AA

* $AA

$EC49

$40

* $AA

$ED51

$00

* $AB

$EC49

$80

* $AA

$EC49

* $B5

$EC8D

$04

$F757

$00

$ED0C

$EEB7

$EC95

$ED0A

* $A7

$ECC8

* $93

$ECAB

$00

$F7CC

* $BD

$ECAB

$01

* $B6

* $B6

C-128 Internals

And shift bit 0 into carry flag

Get read byte from zero page

If it is a count byte, then skip

More than one block read, skip

Reset carry flag pointer

Skip if only one block read

Mask out upper nibble (bits 4-7)

Store as count value, counter -1

And check if all sync bytes

received .No, to normal IRQ

Setbit 6 in the ace and the z-page

Tape read pointer to: "read"

Copy input/output start address

Clear zero page pointer for read

Checksum (set to low value)

Back to normal IRQ routine

Set bit 7 in ace and the zero page

Tape read pointer to: "end"

Back to normal IRQ routine

Check ifEOB marker set

No, then skip

Set bit 2 in A for short block

Reset system status pointer

Code for read pointer to "scan"

Set and jump absolute

Check if end reached

No, then continue as normal

To read end for a block

Is the number of blocks left to

Read=l?

Yes, pass 2 (correction pass)

Test if verify marker set

No, then skip

Set displacment comparison, #0

Fetch routine for LSV calls

Compare with byte read

Both equal, then OK and skip

Code for character read error

In zero page tape temp pointer

Test tape temp pointer for error

337

Abacus

ECAD:

ECAF:

ECB1:

ECB3:

ECB5:

ECB7:

ECB9:

ECBC:

ECBE:

ECC1:

ECC2:

ECC3:

ECC5:

ECC8:

ECCA:

ECCC:

ECCE:

ECDO:

ECD3:

ECD5:

ECD7:

ECDA:

ECDC:

ECDE:

ECEO:

ECE2:

ECE4:

ECE6:

ECE9:

ECEB:

ECED:

ECEE:

ECFO:

ECF2:

ECF4:

ECF6:

ECF9:

ECFB:

ECFD:

ECFF:

Software

FO 4C

A2 3D

E4 9E

90 3F

A6 9E

A5 AD

9D 01

A5 AC

9D 00

E8

E8

86 9E

4C FB

A6 9F

E4 9E

FO 37

A5 AC

DD 00

DO 30

A5 AD

DD 01

DO 29

E6 9F

E6 9F

A5 93

FO OC

AO 00

20 CC

C5 BD

FO 18

C8

84 B6

A5 B6

FO 07

A9 10

20 57

DO OA

A5 93

DO 06

A8

01

01

EC

01

01

F7

F7

BEQ

LDX

CPX

BCC

LDX

LDA

STA

LDA

STA

INX

INX

STX

JMP

LDX

CPX

BEQ

LDA

CMP

BNE

LDA

CMP

BNE

INC

INC

LDA

BEQ

LDY

JSR

CMP

BEQ

INY

STY

LDA

BEQ

LDA

JSR

BNE

LDA

BNE

TAY

$ECFB

$3D

* $9E

$ECF4

* $9E

* $AD

$0101,X

* $AC

$0100,X

* $9E

$ECFB

* $9F

* $9E

$ED05

* $AC

$0100,X

$ED05

* $AD

$0101,X

$ED05

• $9F

• $9F

* $93

$ECF0

$00

$F7CC

* $BD

$ED05

* $B6

* $B6

$ECFB

$10

$F757

$ED05

* $93

$ED05

C-128 Internals

No error occurred, then skip

Check if 31 errors encountered

While reading

Yes, then not correctable

Displ. for add read error in stack

Get address byte of error low

And store error address on stack

Get address byte of error high

And store error address on stack

Increment error addr-displ. ptr +

Error number-counter by 2

And place in error counter

Continue as if no error occurred

Check if all read errors

Corrected

Yes, then continue

Get current addr. byte low value

Compare w/ error addr byte low

Not equal, then skip

Get current addr byte high value

Compare with address byte high

Not equal, then skip

Increment the z-page correction

counter for pass 2 by 2

Check if verify marker set

No, then set

Displacement for fetch routine

Fetch routien for LSV calls

Read byte equal memory byte?

Yes, then skip

Incremern displacement pointer

And put in z-page error pointer

Check if error occurred

No, then skip

Set bit 4 -read error not corrected

Reset system status pointer

Unconditional jump

Check if verify marker set

Yes, then skip

Set displacement pointer to #0

338

Abacus

EDOO:

ED02:

ED05:

EDO 8:

EDOA:

EDOC:

EDOE:

EDOF:

ED11:

ED14:

ED17:

ED19:

ED1A:

ED1C:

EDIE:

ED20:

ED22:

ED24:

ED26:

ED28:

ED2A:

ED2D:

ED30:

ED32:

ED34:

ED37:

ED39:

ED3B:

ED3E:

ED41:

ED43:

ED45:

ED47:

ED49:

ED4B:

ED4E:

Software

A5

20

20

DO

A9

85

78

A2

8E

AE

A6

CA

30

86

C6

FO

A5

DO

85

FO

20

20

AO

84

20

45

85

20

20

90

A5

45

FO

A9

20

4C

BD

BC

Cl

44

80

AA

01

OD

OD

BE

02

BE

A7

08

9E

28

BE

24

57

51

00

AB

CC

AB

AB

Cl

B7

Fl

AB

BD

05

20

57

33

F7

EE

DC

DC

EE

ED

F7

EE

EE

F7

FF

LDA

JSR

JSR

BNE

LDA

STA

SEI

LDX

STX

LDX

LDX

DEX

BMI

STX

DEC

BEQ

LDA

BNE

STA

BEQ

JSR

JSR

LDY

STY

JSR

EOR

STA

JSR

JSR

BCC

LDA

EOR

BEQ

LDA

JSR

JMP

* $BD

$F7BC

$EEC1

$ED4E

$80

* $AA

$01

$DC0D

$DC0D

* $BE

$ED1E

* $BE

* $A7

$ED2A

* $9E

$ED4E

* $BE

$ED4E

$EE57

$ED51

$00

* $AB

$F7CC

* $AB

* $AB

$EEC1

$EEB7

$ED34

* $AB

* $BD

$ED4E

$20

$F757

$FF33

C-128 Internals

Get byte into ace

STASH rout, for LSV routines

Incr input/output start address

Back to normal IRQ routine

Code for read pointer to "end11

Set tape read pntr according, ace

Disable all system interrupts

Code, value for int. of timer A

Disable in ICR

Reset interrupt pointer

Test if number of blocks

remaining to process is zero

Yes, then skip

Store new number in zero page

Decrement z-page block counter

Block counter = 0, then skip

Check if error encountered in

pass 1. Yes, then skip

Number of blocks to process: 0

Back to normal IRQ routine

Routine: end tape I/O

Copy start addr in load pointer

Clear the z-page ptr for chksum

Set displacement to zero

FETCH routine for LSV operat.

Combine memory byte with

chksum & store in chksum pntr

Increment input/output start addr

Check if end address reached

Not end address, then continue

Compare the generate checksum

With the checksum read

Equal, then OK and continue

Set bit 5 (checksum error)

Reset system status pointer

Back to normal IRQ routine

339

Abacus Software C-128 Internals

ED51:

ED53:

ED55:

ED57:

ED59:

A5

85

A5

85

60

C2

AD

Cl

AC

LDA

STA

LDA

STA

RTS

* $C2

* $AD

* $C1

* $AC

Copy input/output start address

Get input/output

Store high value in z-page $AD

Get input/output start addr low

Store low value in z-page $AC

Return from subroutine

Set bit counter for serial output

ED5A:

ED5C:

ED5E:

ED60:

ED 62:

ED64:

ED66:

ED68:

A9

85

A9

85

85

85

85

60

08

A3

00

A4

A8

9B

A9

LDA

STA

LDA

STA

STA

STA

STA

RTS

$08

* $A3

$00

* $A4

* $A8

* $9B

* $A9

ED69:

ED6B:

ED6C:

ED6E:

ED70:

ED72:

ED74:

ED77:

ED7A:

ED7D:

ED7F:

ED82:

ED84:

ED8 6:

ED88:

ED8A:

A5

4A

A9

90

A9

A2

8D

8E

AD

A9

8D

A5

49

85

29

60

BD

60

02

B0

00

06

07

0D

19

OF

01

08

01

08

DC

DC

DC

DC

LDA

LSR

LDA

BCC

LDA

LDX

STA

STX

LDA

LDA

STA

LDA

EOR

STA

AND

RTS

* $BD

A

$60

$ED72

$B0

$00

$DC06

$DC07

$DC0D

$19

$DC0F

* $01

$08

* $01

$08

Counter for 8 bits to transfer

Initialize in zero page

Set the high byte of the 2 byte

Zero page counter to $00

Clear tape read error flag

Initialize parity for tape

Initialize tape zero read flag

Return from subroutine

Write a bit to tape

Bit to output from z-page to ace

And bit to output (0) in carry

Set time for "O-bitI!

Set timer and output

Set time for "1-bit"

Low value for timer high byte

CIA1 timer B low byte -bit time

CIA1 timer B hi-byte low value

Clear interrupt flag

Load timer B, "one shot" & start

CIA control reg. IRQ at timer

Inverse value for output bit

Invert in processor port and

Put back in processor port

Save current signal

Return from subroutine

340

Abacus Software C-128 Internals

ED8B:

ED8C:

ED8E:

*****^

ED90:

ED 92:

ED94:

ED96:

ED98:

ED9B:

ED9D:

ED9F:

EDA1:

EDA3:

EDA6:

EDA8:

EDAA:

EDAD:

EDAF:

EDB1:

EDB3:

EDB6:

EDB8:

EDBA:

EDBC:

EDBE:

EDCO:

EDC2:

EDC4:

EDC6:

EDC8:

EDCA:

EDCC:

EDCF:

EDD1:

EDD3:

38

66

30

tkkki

A5

DO

A9

A2

20

DO

E6

A5

10

4C

A5

DO

20

DO

E6

DO

20

DO

A5

49

85

FO

A5

49

85

29

45

85

4C

46

C6

A5

B6

3C

:kki

A8

12

10

01

74

2F

A8

B6

29

IB

A9

09

70

ID

A9

19

69

14

A4

01

A4

OF

BD

01

BD

01

9B

9B

33

BD

A3

A3

c ** * 7

ED

EE

ED

ED

FF

SEC

ROR

BMI

kkkkkk^ r\ r\ r\ w\ w\

LDA

BNE

LDA

LDX

JSR

BNE

INC

LDA

BPL

JMP

LDA

BNE

JSR

BNE

INC

BNE

JSR

BNE

LDA

EOR

STA

BEQ

LDA

EOR

STA

AND

EOR

STA

JMP

LSR

DEC

LDA

* $B6

$EDCC

kkkkkk:f\ w\ f\ rK 4T\ r\ 4

* $A8

$EDA6

$10

$01

$ED74

$EDCC

* $A8

* $B6

$EDCC

$EE1B

* $A9

$EDB3

$ED70

$EDCC

* $A9

$EDCC

$ED69

$EDCC

* $A4

$01

* $A4

$EDCF

* $BD

$01

* $BD

$01

* $9B

* $9B

$FF33

* $BD

* $A3

* $A3

Set pointer for block written

Set carry for rotation

Negate block written flag

Interrupt return

Interrupt routine for tape write

Check if byte pulse written

Yes then skip byte pulse write

Low value for byte freq in ace

High value for byte freq in X

Write "byte" pulse to tape

If first half wave, to normal IRQ

Set pointer for pulse written

Test "block written" pointer

Yes, then back to normal IRQ

Block finished, continue write

Check if longer pulse written

Yes, then skip long pulse

Write long pulse to tape

If first half wave, to normal IRQ

Set pointer for pulse written

Back to normal IRQ routine

Write one bit to tape

If first half wave, to normal IRQ

Invert the zero-page bit pulse

Pointer and

Save it again

If #0, write both pulses

Invert bit 0 of the zero-page bit

Shift storage

And save again

Eliminate current bit & combine

With parity bit of the byte

And store in parity flag

Back to normal IRQ routine

Shift bit out and decrement the

Zero-page bit counter by 1

Is end reached already?

341

Abacus

EDD5:

EDD7:

EDD9:

EDDC:

EDDD:

EDDF:

EDE1:

EDE3:

EDE5:

EDE7:

EDE9:

EDEB:

EDED:

EDEF:

EDF1:

EDF3:

EDF6:

EDF8 :

EDFA:

EDFC:

EDFE:

EEOO :

EE02:

EE04:

EE07:

EE09:

EEOB:

EEOD:

EE1O:

EE12:

EE14:

EE16:

EE18:

EE1B:

EE1D:

EE1F:

EE22:

EE24:

EE26:

EE28:

Software

FO

10

20

58

A5

FO

A2

86

C6

A6

EO

DO

09

85

DO

20

90

DO

E6

A5

85

BO

AO

20

85

45

85

20

DO

A5

49

85

4C

C6

DO

20

A9

85

A2

78

3B

F3

5A

A5

12

00

C5

A5

BE

02

02

80

BD

D9

B7

OA

91

AD

C5

BD

CA

00

CC

BD

C5

C5

Cl

BA

9B

01

BD

33

BE

03

BO

50

A7

08

ED

EE

F7

EE

FF

EE

BEQ

BPL

JSR

CLI

LDA

BEQ

LDX

STX

DEC

LDX

CPX

BNE

ORA

STA

BNE

JSR

BCC

BNE

INC

LDA

STA

BCS

LDY

JSR

STA

EOR

STA

JSR

BNE

LDA

EOR

STA

JMP

DEC

BNE

JSR

LDA

STA

LDX

SEI

$EE12

$EDCC

$ED5A

* $A5

$EDF3

$00

* $C5

* $A5

* $BE

$02

$EDEF

$80

* $BD

$EDCC

$EEB7

$EE02

$ED8B

* $AD

* $C5

* $BD

$EDCC

$00

$F7CC

* $BD

* $C5

* $C5

$EEC1

$EDCC

* $9B

$01

* $BD

$FF33

* $BE

$EE22

$EEB0

$50

* $A7

$08

C-128 Internals

Yes, then generate parity. Skip

No, then back to normal IRQ

Set bit counter for serial output

Enable all system interrupts

Check if sync bytes written

Yes, then skip

Clear the checksum storage for

the read buffer (low value)

Decremernt sync counter by 1

Check if the first block

Is already written

No, then skip

Set bit 7 in sync byte

And in zero page bit shift storage

Back to normal IRQ routine

Check if end address reached

Not reached, continue write

Set "block written11 pointer

Current address byte +1

Get buffer checksum from Z-P

Store value in bit shift storage

Back to normal IRQ routine

Set displacement pointer to #0

FETCH routine for LSV operat

Bring char in bit shift storage

Combine with checksum storage

And store again

Incr input/output start address

Back to normal IRQ routine

Invert parity bit of byte from

Z-P and copy into the bit-shift

Storage

Back to the normal IRQ routine

Check if all bits written

No, then skip

Turn recorder motor off

Initialize zero-page counter for

The "shorts"

Displacement for IRQ #1 (write)

Disable all system interrupts

342

Abacus Software C-128 Internals

EE2 9: 20 9B EE JSR $EE9B

EE2C: DO EA BNE $EE18

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

EE2E:

EE30:

EE33:

EE35:

EE37:

EE39:

EE3C:

EE3E:

EE40:

EE42:

EE45:

EE46:

EE48:

EE4A:

EE4C:

EE4F:

EE51:

EE53:

EE55:

•k-k-k-k-k:

EE57:

EE58:

EE59:

EE5C:

EE5F:

EE61:

EE64:

EE67:

EE69:

EE6C:

EE6E:

EE71:

EE74:

A9

20

DO

C6

DO

20

C6

10

A2

20

58

E6

A5

FO

20

A2

86

86

DO

kk k k:

08

78

AD

OD

29

8D

2C

30

2C

10

AD

8D

AD

78

72

E3

A7

DF

5A

AB

D8

OA

9B

AB

BE

49

51

09

A5

B6

82

k kk 7

11

39

7F

11

3A

16

37

11

38

15

37

ED

ED

EE

ED

^ ^ ^ ^:

DO

OA

DO

OA

OA

OA

DO

OA

LDA

JSR

BNE

DEC

BNE

JSR

DEC

BPL

LDX

JSR

CLI

INC

LDA

BEQ

JSR

LDX

STX

STX

BNE

kkkkkk" *» ^V ^\ ^\ ^\

PHP

SEI

LDA

ORA

AND

STA

BIT

BMI

BIT

BPL

LDA

STA

LDA

$78

$ED72

$EE18

* $A7

$EE18

$ED5A

* $AB

$EE18

$0A

$EE9B

* $AB

* $BE

$EE95

$ED51

$09

* $A5

* $B6

$EDD9

JU JL JL JL JL JL
^ ^ W ^ ^ ^

$D011

$0A39

$7F

$D011

$0A3A

$EE7F

$0A37

$EE7F

$0A38

$D015

$0A37

Set the IRQ vectors

Back to the normal IRQ routine

Write the header (IRQ #1)

Code for "header pulse11 in ace

And write header pulse

If first half wave, to normal IRQ

Decrement header counter by 1

No end, to normal IRQ routine

Set bit counter for serial output

Dur. of short before & after data

No end, to normal IRQ routine

Displacement for IRQ #2 (write)

Set the IRQ vector

Enable all system interrupts

Decrement duration of shorts

Check if all blocks written

Yes, then skip

Copy input/output end address

Reset the zero-page counter for

the Sync with #9 and reset the

"block written" pointer

Unconditional jump

End recorder operation

Save processor status on stack

Disable all system interrupts

Contents of VIC control reg in A

Combine with VDC temp pointer

Turn screen off

And write value in VIC reg

Check IRQ storage

Bit 7 set, then skip

Check clock frequency storage

Bit 7 cleared, then no update

Get status for sprites

And set sprite display register

Get saved clock frequency and

343

Abacus

EE77:

EE7A:

EE7C:

EE7F:

EE82:

EE85:

EE88:

EE8A:

EE8D:

EE90:

EE93:

EE94:

Software

8D 30

A9 00

8D 37

20 BO

20 B8

AD 0A

FO 09

8D 15

AD 09

8D 14

28

60

DO

OA

EE

El

OA

03

OA

03

STA

LDA

STA

JSR

JSR

LDA

BEQ

STA

LDA

STA

PLP

RTS

$D030

$00

$0A37

$EEB0

$E1B8

$0A0A

$EE93

$0315

$0A09

$0314

C-128 Internals

Set system back to old value

Clear storage for

System clock frequency

Turn cassette motor off

Set timing and CIAs to standard

Is interrupt vector to standard?

Yes, then exit

Sys IRQ vector high to standard

Get IRQ address low

Sys IRQ vector low to standard

Get processor status back

Return from subroutine

EE95: 20 57 EE JSR $EE57

EE98: 4C 33 FF JMP $FF33

EE9B:

EE9E:

EEA1:

EEA4:

EEA7:

BD

8D

BD

8D

60

A0

14

Al

15

EE

03

EE

03

LDA

STA

LDA

STA

RTS

$EEA0,

$0314

$EEA1,

$0315

X

X

EEA8:

EEAA:

EEAC:

EEAE:

*****}^\ ^\ ^\ /\ /\ 9

EEB0:

EEB2:

EEB4:

EEB6:

2E

90

65

EB

k * ** •

A5

09

85

60

EE

ED

FA

EA

01

20

01

($EE2E)

($ED90)

($FA65)

($EAEB)

LDA *

ORA #

STA *

RTS

$01

$20

$01

Terminate tape operation

End recorder operation

Back to normal IRQ routine

Set the IRQ vector

X-indexed IRQ lo-addr f/ table

Copy into sys IRQ vector low

X-indexed IRQ high addr f/ table

Copy into sys IRQ vector high

Return from subroutine

Table of IRQ vectors

IRQ #1: Write to tape (header)

IRQ #2: Write to tape (buffer)

Normal IRQ for keyboard read

IRQ for reading from tape

Turn recorder motor off

Status of processor port data reg

In ace, set bit 5 and

Turn the recorder motor off

Return from subroutine

344

Abacus Software C-128 Internals

EEB7:

EEB8:

EEBA:

EEBC:

EEBE:

EECO:

* ** * * -iw\ f\ f\ /\ /\ /

EEC1:

EEC3:

EEC5:

EEC7:

38

A5

E5

A5

E5

60

^ ^ ^ ^:

E6

DO

E6

60

AC

AE

AD

AF

t. JL JL JL JL JL
^ ^ rt ^ ^ 7\

AC

02

AD

SEC

LDA

SBC

LDA

SBC

RTS

JL JL. JL. JL .A. ^ ^
T* X X X X X X

INC

BNE

INC

RTS

* $AC

* $AE

* $AD

* $AF

JL, JL JL JL JL JL
X X X X X X

* $AC

$EEC7

* $AD

EEC8:

EEC 9:

EECA:

EECC:

EECD:

08

68

29 EF

48

4C 17 FF

PHP

PLA

AND # $EF

PHA

JMP $FF17

EEDO:

EED2:

EED4:

EED6:

EED8:

EEDA:

EEDC:

EEDE:

EEEO:

EEE2:

EEE4:

A5 01

29 10

FO OA

AO 00

84 CO

A5 01

09 20

DO 08

A5 CO

DO 06

A5 01

LDA

AND

BEQ

LDY

STY

LDA

ORA

BNE

LDA

BNE

LDA

* $01

* $10

$EEE0

* $00

* $C0

* $01

* $20

$EEE8

* $C0

$EEEA

* $01

Check if end address reached

If end address > start addr. C=O

Set carry for subtraction

Low of I/O start address in ace

Subtract low of I/O end address

High of I/O start address in ace

Subtract high of I/O end address

Return from subroutine

Incr. input/output start address

Low value of I/O start addr.+ 1

No overflow in low value, exit

High value of I/O address + 1

Return from subroutine

Clear break flag in processor

status

Put processor status on stack

And copy back into ace

Clear break flag

And put status back on stack

Jump to kernal IRQ routine

Check cassette recorder keys

(IRQ)

Get processor port data register

And test if key pressed

No key pressed, then exit

Indicator for cassette recorder

Reset OFF in zero-page tape flag

Get processor port data register

And set bit for motor off

Unconditional jump

Check z-page tape flag for motor

If motor on, then skip

Get processor port data register

345

Abacus Software C-128 Internals

EEE6: 2 9 DF

EEE8: 85 01

EEEA: 60

AND # $DF

STA * $01

RTS

EEEB:

EEED:

EEEF:

EEF1:

EEF3:

EEF5:

EEF6:

******#\ f\ r% 7\ r% r^

EEF9:

device

EEFB:

EEFD:

EEFF:

EF02:

EF04:

EF05:

A5

DO

A5

05

F0

78

4C

■k-k-ki

C9

DO

84

20

A4

18

60

99

OA

DO

Dl

OF

06 CO

fc******:

02

18

97

CE E7

97

LDA

BNE

LDA

ORA

BEQ

SEI

JMP

CMP

BNE

STY

JSR

LDY

CLC

RTS

* $99

$EEF9

* $D0

* $D1

$EF04

$C006

$02

$EF15

* $97

$E7CE

• $97

EF06:

EF08:

EF0A:

EFOC:

EFOE:

EF10:

EF12:

EF15:

EF17:

EF19:

EF1B:

A5 99

DO OB

A5 EC

85 E9

A5 EB

85 E8

4C 09 CO

C9 03

DO 09

85 D6

A5 E7

LDA

BNE

LDA

STA

LDA

STA

JMP

CMP

BNE

STA

LDA

* $99

$EF15

* $EC

* $E9

* $EB

* $E8

$C009

* $03

$EF22

* $D6

* $E7

And clear bit for motor on

Write back into processor port

Return from subroutine

Kernal routine: GETIN

Read a character

Load ace with current input dev.

Not keyboard, then continue

Num. of char in keyboard buffer

Combine with function key pntr

No char there, then "OK" exit

Disable all system interrupts

Get char from keyboard buffer

GETIN evaluation not RS-232

Check if RS-232 is the input

Not RS-232, to BASIN routine

Store current contents of Y-reg

GETIN routine of RS-232

Get old contents of Y-reg back

Set marker for everything OK

Return from subroutine

Kernal routine: BASIN

Read character

Load ace with current input dev.

Not keyboard, then continue

Get current cursor column in ace

In z-page start of input column

Get current cursor line in ace

In zero page start of input line

Get character from screen

Check if input device is screen

Not screen, then continue

In zero-page pointer for input/get

Load right window-border in ace

346

Abacus

EF1D:

EF1F:

EF22:

EF24:

EF2 6:

EF28:

EF2A:

EF2D:

EF2F:

EF30:

EF33:

EF35:

EF37:

EF39:

EF3C:

EF3E:

EF40:

EF41:

Software

85 EA

4C 09

BO 38

C9 02

F0 3F

86 97

20 48

BO 16

48

20 48

BO OD

DO 05

A9 40

20 57

C6 A6

A6 97

68

60

CO

EF

EF

F7

STA

JMP

BCS

CMP

BEQ

STX

JSR

BCS

PHA

JSR

BCS

BNE

LDA

JSR

DEC

LDX

PLA

RTS

* $EA

$C009

$EF5C

$02

$EF67

* $97

$EF48

$EF45

$EF48

$EF42

$EF3C

$40

$F757

* $A6

* $97

EF42:

EF43:

EF44:

EF45:

EF47:

AA

68

8A

A6 97

60

TAX

PLA

TXA

LDX

RTS

* $97

C-128 Internals

In zero page for end of input line

Get character from screen

Dev>3, read char from serial bus

Input device 2 (RS-232) set?

Yes, then get char from RS-232

Save current contents of X-reg

Read a character from cassette

Exit from routine: Read cassette

Save ace contents on stack

Read a character from cassette

Error occurred, then skip

Last character read from tape?

Put EOF marker in ace

And set STATUS accordingly

Decrement tape buffer pointer

Get X-reg contents back

Get ace contents back from stack

Return from subroutine

Error occurred reading from tape

Put error number in X-reg

Get character

Put error number in ace

Restore x-reg contents

Return from subroutine

EF48:

EF4B:

EF4D:

EF50:

EF52:

EF54:

EF56:

EF58:

EF5A:

EF5B:

20

DO

20

B0

A9

85

F0

Bl

18

60

BE E9

0B

F2 E9

09

00

A6

F0

B2

JSR

BNE

JSR

BCS

LDA

STA

BEQ

LDA

CLC

RTS

$E9BE

$EF58

$E9F2

$EF5B

$00

* $A6

$EF48

($B2),Y

Read a character from cassette

Increment tape buffer pointer

Still chars in buffer, then read

Read next block from cassette

STOP key pressed, then stop

Load ace with $00 & in z-page

Storage for cassette buffer pntr

Get next character

Read a character from the buffer

Set indicator for "OK"

Return from subroutine

347

Abacus Software C-128 Internals

EF5C:

EF5E:

EF60:

EF63:

EF65:

EF66:

A5

DO

4C

A9

18

60

90

03

3E E4

0D

LDA

BNE

JMP

LDA

CLC

RTS

* $90

$EF63

$E43E

$0D

EF67:

EF6A:

EF6C:

EF6E:

EF70:

EF73:

EF75:

EF77:

20

BO

C9

DO

AD

29

DO

FO

FD EE

F9

00

F6

14 OA

60

EC

EE

JSR

BCS

CMP

BNE

LDA

AND

BNE

BEQ

$EEFD

$EF65

$00

$EF66

$OA14

$60

$EF63

$EF67

EF7 9:

EF7A:

EF7C:

EF7E:

EF80:

EF81:

48

A5

C9

DO

68

4C

9A

03

04

OC CO

PHA

LDA

CMP

BNE

PLA

JMP

* $9A

$03

$EF84

$C00C

EF84:

EF86:

EF87:

EF8A:

EF8B:

EF8C:

EF8E:

90

68

4C

4A

68

85

8A

04

03 E5

9E

BCC

PLA

JMP

LSR

PLA

STA

TXA

$EF8A

$E503

A

* $9E

Get character from serial bus

Load system status in ace

Status not OK, then exit

Kernal ACPTR: get byte from

serial bus

Load code for <CR> in ace

Set indicator for OK

Return from subroutine

Get character from RS-232

Read a byte from RS-232

Error occurred, then exit

Was character read a zero-byte?

No, then OK exit

Load RS-232 status in ace

Data set ready (DSR) missing?

Yes, then return <CR> code

No, then new read attempt

Kernal routine: BSOUT

(character out)

Store character to output

Get curent output device

Is it the screen (3)?

No, then skip screen output

Get character to output

In routine: Char output screen

BSOUT output not to screen

Output to RS-232 / Datassette

Get character

BSOUT output to serial PA> 3)

Test if RS-232 or datasette

Get character to output

And store in zero page

Save current contents of X-reg

348

Abacus

EF8F:

EF90:

EF91:

EF92:

EF94:

EF97:

EF99:

EF9C:

EF9E:

EFAO:

EFA2:

EFA4:

EFA5:

EFA7:

EFA9:

EFAB:

EFAC:

EFAD:

EFAE:

EFAF:

EFBO:

EFB2:

EFB4:

EFB6:

Software

48

98

48

90

20

DO

20

BO

A9

AO

91

C8

84

A5

91

18

68

A8

68

AA

A5

90

A9

60

23

BE E9

OE

15 EA

OE

02

00

B2

A6

9E

B2

9E

02

00

PHA

TYA

PHA

BCC

JSR

BNE

JSR

BCS

LDA

LDY

STA

INY

STY

LDA

STA

CLC

PLA

TAY

PLA

TAX

LDA

BCC

LDA

RTS

$EFB7

$E9BE

$EFA7

$EA15

$EFAC

$02

$00

($B2),Y

* $A6

* $9E

($B2),Y

* $9E

$EFB6

$00

C-128 Internals

On stack via ace

Save current contents of Y-reg

On stack via ace

Jump to the RS-232 output

Increment tape buffer pointer

Buffer not full, char in buffer

Write buffer to tape

If STOP key pressed, stop

Set control byte for data block

Set displacement to tape buffer

And write control byte to buffer

Increment the displacement to

the tape buffer and store in Z-P

Character to output from Z-P

Write in output buffer

Set indicator for OK

Restore old values from stack

Restore Y-reg contents

Restore

X-reg contents

Get character to output

Everything OK, then return

Hag for "STOP" key pressed

Return from subroutine

EFB7: 20 5F E7 JSR $E75F

EFBA: 4C AB EF JMP $EFAB

EFBD:

EFBF:

EFC2:

EFC4:

EFC6:

EFC8:

EFCA:

A6

20

F0

A6

E0

B0

E6

B8

02 F2

2F

98

0A

26

98

LDX

JSR

BEQ

LDX

CPX

BCS

INC

* $B8

$F202

$EFF3

* $98

$0A

$EFF0

* $98

Output RS-232 character

Write character in RS-232 buffer

Clean up stack and return

Kernal routine: OPEN

Open a logical file

Get logical file number in X-reg

Find LFN in LFN table

Found, then output error

Get number of open files

Max of 10 open are possible

More than 10 open> then error

Number of open files +1

349

Abacus

EFCC:

EFCE:

EFD1:

EFD3:

EFD5:

EFD7:

EFDA:

EFDC:

EFDF:

EFE1:

EFE3:

EFE5:

EFE7:

EFE9:

EFEB:

EFEE:

EFEF:

Software

A5

9D

A5

09

85

9D

A5

9D

F0

C9

F0

90

C9

F0

20

18

60

B8

62

B9

60

B9

76

BA

6C

0D

02

5B

OF

03

03

CB

03

03

03

FO

LDA

STA

LDA

ORA

STA

STA

LDA

STA

BEQ

CMP

BEQ

BCC

CMP

BEQ

JSR

CLC

RTS

* $B8

$0362,X

* $B9

$60

* $B9

$0376,X

* $BA

$036C,X

$EFEE

$02

$F040

$EFF6

$03

$EFEE

$F0CB

C-128 Internals

Get logical file number in ace

Enter LFN in LFN table

Get secondary address in ace

Set Print, Input, Get in SA

And store in SA mem again

Enter SA in SA table

Load device address in ace

GA in GA-Table

Was it the keyboard (0), skip

Check if RS-232 selected as dev

Yes, then skip to RS-232

Less than 2, it is tape OPEN

Check if screen selected as dev

Yes, then skip

Open file on serial bus

Set marker for everything OK

Return from subroutine

350

Abacus Software C-128 Internals

EFFO:

EFF3:

EFF6:

EFF9:

EFFB:

EFFE:

F000:

F002:

F004:

F007:

F009:

FOOC:

FOOE:

F010:

F013:

F015:

F017:

F01A:

F01D:

F01F:

F021:

F023:

F026:

F028:

F02A:

F02D:

F02F:

F031:

F033:

F035:

F037:

F039:

F03B:

F03C:

F03E:

F03F:

4C

4C

20

BO

4C

A5

29

DO

20

BO

20

A5

FO

20

90

FO

4C

20

90

FO

BO

20

BO

A9

20

A9

A4

CO

FO

AO

A9

91

98

85

18

60

7C

7F

80

03

94

B9

OF

IF

C8

36

OF

B7

OA

9A

18

28

85

DO

OE

IE

F4

E9

17

04

19

BF

B9

60

07

00

02

B2

A6

F6

F6

E9

F6

E9

F5

E9

F6

E8

E9

E9

JMP

JMP

JSR

BCS

JMP

LDA

AND

BNE

JSR

BCS

JSR

LDA

BEQ

JSR

BCC

BEQ

JMP

JSR

BCC

BEQ

BCS

JSR

BCS

LDA

JSR

LDA

LDY

CPY

BEQ

LDY

LDA

STA

TYA

STA

CLC

RTS

$F67C

$F67F

$E980

$EFFE

$F694

* $B9

$0F

$F023

$E9C8

$F03F

$F50F

* $B7

$F01A

$E99A

$F02D

$F03F

$F685

$E8D0

$F02D

$F03F

$F017

$E9E9

$F03F

$04

$E919

$BF

* $B9

$60

$F03C

$00

$02

($B2),Y

* $A6

Open routine for tape operation

I/O error #1 (Too many files)

I/O error #2 (File open)

Get tape buffer start address

Carry set, then valid address

I/O error #9 (Illegal device num)

Get secondary address in ace

Mask out upper nibble (4-7) l

Not zero, wait for record & play

Wait for key on datasette

Invaid, then carry = 1, RTS

Message "SEARCHING FOR"

Length of filename in ace

No filename present, then skip

Find corresponding tape header

Not found, then continue

Return with carry set

I/O error #4 (File not found)

Find next header on cassette

If found then continue

Return w/ carry on because EOT

Cont search because a PRG file

Wait for record & play buttons

STOP key pressed, then stop

Control code-data header in ace

Write tape header to cassette

Pointer to end of tape buffer in A

Get secondary address in Y-reg

SA code for print, input, or get?

Yes, then set pointer and RTS

Set displacement for tape buffer

Control byte for data block

Write into cassette buffer

Copy displacement from Y to A

And set zero page tape buffer

Set indicator for OK

Return from subroutine

351

Abacus Software

F040:

F043:

F046:

F048:

F04A:

F04D:

F050:

F051:

F053:

F055:

F058:

F05B:

F05E:

F060:

F062:

F063:

F064:

F067:

F069:

F06C:

F06F:

F072:

F075:

F078:

F07B:

F07E:

F081:

F082:

F083:

F086:

F087:

F088:

F089:

F08B:

20

8C

C4

F0

20

99

C8

CO

DO

20

8E

AD

29

FO

OA

AA

AD

DO

BC

BD

4C

BC

BD

8C

8D

AD

OA

AA

AD

2A

A8

8A

69

8D

BO

14

B7

OB

AE

10

04

Fl

8E

15

10

OF

1C

03

09

4F

4E

78

63

62

13

12

12

13

C8

16

FO

OA

F7

OA

E6

OA

OA

OA

E8

E8

FO

E8

E8

OA

OA

OA

OA

OA

JSR

STY

CPY

BEQ

JSR

STA

INY

CPY

BNE

JSR

STX

LDA

AND

BEQ

ASL

TAX

LDA

BNE

LDY

LDA

JMP

LDY

LDA

STY

STA

LDA

ASL

TAX

LDA

ROL

TAY

TXA

ADC

STA

$F0B0

$0A14

* $B7

$F055

$F7AE

$0Al0,Y

$04

$F046

$E68E

$0A15

$0A10

$0F

$F07E

A

$0A03

$F072

$E84F,X

$E84E,X

$F078

$E863,X

$E862,X

$0A13

$0A12

$0A12

A

$0A13

A

$C8

$OA16

C-128 Internals

RS-232 Open

Reset CIAs

Clear Z-P RS-232 status byte

Compare with lengh of filename

Equal zero, calculate data bits

Get 1 byte for RS-232 register

Init. RS-232 control register,

Command register, and the

User baud rate

Loop until 4 values transferred

Calculate number of data bits

Storage number of bits to send

Load RS-232 control register

Isolate bits for baud rate

Determine code value - baud rate

Multiply by 2 for table displace

Copy to X-reg for index

Get PAL/NTSC pointer

Not NTSC version, then skip

Timer constant RS-232 b-rate

NTSC Hi

Timer constant RS-232 b-rate

NTSC Lo

Skip to save baud rate

Timer constant RS-232 b-rate

PAL Hi

Timer constant RS-232 b-rate

PALLo

Store high value of baud rate

Store low value of baud rate

Get low value baud rate

And multiply by 2

Store value in X-reg

Get high value of baudrate

And multiply by 2

Store value in Y-reg

Low val code determine in ace

Add decimal 200

Store timer val transmit baud rate

352

Abacus

F08E:

F08F:

F091:

F094:

F097:

F098:

F09A:

F09D:

F09E:

FOAO:

F0A3:

F0A6:

F0A9:

FOAC:

FOAF:

Software

98

69

8D

AD

4A

90

AD

OA

BO

20

AD

8D

AD

8D

60

00

17

11

09

01

03

55

18

19

IB

1A

OA

OA

DD

E7

OA

OA

OA

OA

TYA

ADC

STA

LDA

LSR

BCC

LDA

ASL

BCS

JSR

LDA

STA

LDA

STA

RTS

$00

$OA17

$OA11

A

$F0A3

$DD01

A

$F0A3

$E755

$0A18

$OA19

$OA1B

$OA1A

FOBO:

F0B2:

F0B5:

F0B7:

FOBA:

FOBD:

FOBF:

FOC2:

F0C5:

FOC7:

FOCA:

A9

8D

A9

8D

8D

A9

OD

8D

AO

8C

60

7F

OD

06

03

01

04

00

00

00

OF

DD

DD

DD

DD

DD

OA

LDA

STA

LDA

STA

STA

LDA

ORA

STA

LDY

STY

RTS

$7F

$DD0D

$06

$DD03

$DD01

$04

$DD00

$DD00

$00

$0A0F

FOCB:

FOCD:

FOCF:

F0D1:

FOD3:

F0D4:

A5

30

A4

DO

18

60

B9

04

B7

02

LDA

BMI

LDY

BNE

CLC

RTS

* $B9

$F0D3

* $B7

$F0D5

C-128 Internals

High val code determine in ace

Add decimal 000

Store timer value - transmit rate

Get RS-232 command register

Check for 3-line handshake

Yes, then skip DSR test

Check ifDATA SET READY

(DSR) signal missing

No, then skip

Set status for DSR

Set start of RS-232 input buffer

equal to end of input buffer

Set start of RS-232 out. buffer

equal to end of output buffer

Return from subroutine

Reset CIAs to RS-232

Value for Mclr interrupts" in ace

Reset IRQs

Set bits 1 and 2 to output

Data direction register port B

Port register port B

Set bit 2 of data port A (CIA 2)

For the RS-232 data output

(TXD Signal)

Load Y with $00 and clear the

RS-232 NMI flag

Return from subroutine

Open file on serial bus

Load secondary address in ace

If bit 7 set for "CLOSE", exit

Get length of filename

Not zero, then continue

Clear carry for OK indicator

Return from subroutine

353

Abacus Software C-128 Internals

a*****************************

F0D5:

F0D7:

F0D9:

FODB:

FODE:

FOEO:

F0E2:

F0E4:

F0E6:

F0E9:

FOEB:

FOED:

FOEE:

FOEF:

F0F2:

F0F4:

F0F6:

F0F8:

FOFB:

FOFE:

FOFF:

F1O1:

F103:

A9

85

A5

20

24

30

A5

09

20

A5

10

68

68

4C

A5

FO

AO

20

20

C8

C4

DO

4C

00

90

BA

3E

90

OB

B9

FO

D2

90

05

88

B7

OD

00

AE

03

B7

F5

BO

E3

E4

F6

F7

E5

F5

LDA

STA

LDA

JSR

BIT

BMI

LDA

ORA

JSR

LDA

BPL

PLA

PLA

JMP

LDA

BEQ

LDY

JSR

JSR

INY

CPY

BNE

JMP

$00

* $90

* $BA

$E33E

* $90

$F0ED

* $B9

$F0

$E4D2

* $90

$F0F2

$F688

* $B7

$F103

$00

$F7AE

$E503

* $B7

$F0F8

$F5B0

F106:

F109:

F10B:

F10E:

F110:

F112:

F114:

F116:

F118:

F11A:

F11D:

20

DO

20

FO

C9

FO

BO

C9

DO

4C

A6

02 F2

3E

12 F2

13

03

OF

11

02

03

95 E7

B9

JSR

BNE

JSR

BEQ

CMP

BEQ

BCS

CMP

BNE

JMP

LDX

$F202

$F149

$F212

$F123

$03

$F123

$F127

$02

$F11D

$E795

* $B9

Send filename on serial bus

Set the status byte to the

Marker $00 (= everything OK)

Load device address in ace

Wait for end of RS-232 transfer

Test STATUS for set EOF bit

If EOF, then output error

Load secondary address in ace

Set control nibble in SA

Rout. SECND: SA for LISTEN

Load system STATUS in ace

If OK, continue as normal

Remove RTS address from stack

Remove RTS address from stack

I/O error #5 (Device not present)

Get length of filename

No name given, then skip

DispL to first char of filename

Read 1 character of filename

Krnal CIOUT: byte to serial bus

Increment displacement pointer

Displacement = filename length?

No, then continue to output

UNLSN on serial bus and RTS

Kernal routine: CHKIN

Set input channel

Search for LFN in LFN table

I/O error #3 (File not found)

ResetLFN,DA,SA

DA = 0, then set standard

Is it the DA 3 (= screen)?

Yes, then set screen for standard

Greater than 3, then serial eval.

Check if RS-232 selected

No, then it was the datasette

To RS-233 input

Get secondary address in X-reg

354

Abacus

F11F:

F121:

F123:

F125:

F126:

Software

EO 60

DO 20

85 99

18

60

CPX

BNE

STA

CLC

RTS

$60

$F143

* $99

C-128 Internals

a*****************************

F127:

F128:

F12B:

F12D:

F12F:

F131:

F133:

F136:

F138:

F13B:

F13C:

F13E:

F140:

F143:

F146:

F149:

AA

20

24

30

A5

10

20

10

20

8A

24

10

4C

4C

4C

4C

3B

90

11

B9

05

E9

03

EO

90

E3

88

8B

8E

82

E3

E4

E4

F6

F6

F6

F6

TAX

JSR

BIT

BMI

LDA

BPL

JSR

BPL

JSR

TXA

BIT

BPL

JMP

JMP

JMP

JMP

$E33B

* $90

$F140

* $B9

$F138

$E4E9

$F13B

$E4E0

* $90

$F123

$F688

$F68B

$F68E

$F682

F14C:

F14F:

F151:

F154:

F156:

F158:

F15A:

F15C:

F15E:

F160:

F163:

F165:

20

DO

20

F0

C9

FO

BO

C9

DO

4C

A6

EO

02 F2

F8

12 F2

FO

03

OF

11

02

03

29 E7

B9

60

JSR

BNE

JSR

BEQ

CMP

BEQ

BCS

CMP

BNE

JMP

LDX

CPX

$F202

$F149

$F212

$F146

$03

$F169

$F16D

$02

$F163

$E729

* $B9

$60

Is the secondary address = 0?

I/O error #6 (Not input file)

In Z-P for standard input device

Set indicator for OK

Return from subroutine

Evaluation for CHKIN on serial

Store device address in X

Rout. TALK: cmd to serial bus

Test STATUS for set EOF bit

Bit 7 set = "Device not present"

Load secondary address in ace

Send secondary addr. for TALK

Wait for clock signal

Skip output of TALK sec. addr.

Routine TKSA: sec addr for talk

Get device addr. back from ace

Test STATUS for set EOF bit

Everthing OK, set input device

I/O error #5 (Device not present)

I/O error #6 (Not input file)

I/O error #7 (Not output file)

I/O error #3 (File not open)

Kernal routine: CKOUT

Set output channel

Search for LFN in LFN table

I/O Eerror #3 (File not open)

Reset LFN, DA, SA

I/O error #7 (Not output file)

Compare with DAA 3 (= screen)

Yes, then set as standard output

DA > 3, then serial evaluation

Check if RS-232 selected

No, then skip

To RS-232 output

Get secondary address in X-reg

Is the secondary address = 0?

355

Abacus Software C-128 Internals

F167: fo dd beq $F146 I/O error #7 (Not output file)

F169: 85 9A sta * $9A In Z-P for standard out device

F16B: 18 clc Set indicator for OK

F16C: 60 rts Return from subroutine

****************************** Evaluation for CKOUT on serial

f 16D: aa tax Dev addr. for LISTN in X-reg

F16E: 20 3E E3 jsr $E33E Rout LISTN: cmd to serial

F171: 24 90 bit * $90 Test STATUS for set EOF bit

F173: 30 cb bmi $Fi40 I/O error #5 (Device not present)

F175: A5 B9 lda * $B9 Load secondary address in ace

F177: 10 05 bpl $F17E OPEN/CLOSE bit clr, then skip

F179: 20 D7 E4 jsr $E4D7 Reset ATN signal

F17C: do 03 bne $F181 Skip output of listen sec. addr

F17E: 20 D2 E4 jsr $E4D2 Rout SECND: sec. addr for listn

F181: 8a txa Device address back in ace

F182: 24 90 bit * $90 Test status for set EOF bit

F184: 10 E3 bpl $F169 Everything OK, then RTS

F186: 30 B8 bmi $fi 4 o I/O error #5 (Device not present)

****************************** Kernal routine* CLOSE

Close a file

F188: 66 92 ror * $92 Rotate carry as marker, Z-P flag

F18A: 20 07 F2 jsr $F207 Search for LFN in LFN table

F18D: do dc bne $F16B Not found, then OK return

F18F: 20 12 F2 jsr $F212 LFN,DA,SA renew corn tables

F192: 8a txa Table displacement pointer

F193: 48 pha Save on stack

F194: A5 ba lda * $ba Load device address in ace

F196: fo 4c beq $fie4 Addressed device the keyboard?

F198: C9 03 cmp # $03 Check if device addressed was

F19A: fo 48 beq $fie4 Screen (3)Yes, then skip

F19C: bo 31 bcs $ficf Was it a device on the serial bus?

F19E: C9 02 cmp # $02 Was it the RS-232?

fiaO: do 07 bne $fia9 No, then close on cassette

F1A2: 68 pla Get the displacement to the table

F1A3: 20 E5 fi jsr $fie5 Delete file entry from table

F1A6: 4c bo fo jmp $fobo Reset CIAs and RTS

356

Abacus Software

F1A9:

F1AB:

F1AD:

F1AF:

F1B2:

F1B4:

F1B5:

F1B8:

F1BB:

F1BD:

F1BE:

F1C0:

A5 B9

29 OF

FO 35

20 80 E9

A9 00

38

20 8C EF

20 15 EA

90 04

68

A9 00

60

LDA

AND

BEQ

JSR

LDA

SEC

JSR

JSR

BCC

PLA

LDA

RTS

* $B9

$0F

$F1E4

$E980

$00

$EF8C

$EA15

$F1C1

$00

C-128 Internals

Close a tape file

Load secondary address in ace

Mask out upper nibble (4-7)

Delete file entry from table

Get tape buffer address & check

Set marker for close and

Set control marker carry

Write character in buffer

Write buffer to tape

All OK, continue with tape close

Get character output back

Replace with CHR$(0)

Return from subroutine

F1C1:

F1C3:

F1C5:

F1C7:

F1C9:

F1CC:

F1CF:

F1D1:

F1D3:

F1D5:

F1D7:

FID 9:

F1DB:

F1DD:

F1DF:

F1E1:

A5 B9

C9 62

DO ID

A9 05

20 19 E9

4C E4 Fl

24 92

10 0E

A5 BA

C9 08

90 08

A5 B9

29 OF

C9 OF

F0 03

20 9E F5

LDA

CMP

BNE

LDA

JSR

JMP

BIT

BPL

LDA

CMP

BCC

LDA

AND

CMP

BEQ

JSR

$B9

$62

$F1E4

$05

$E919

$F1E4

$92

$F1E1

$BA

$08

$F1E1

$B9

$0F

$0F

$F1E4

$F59E

F1E4:

F1E5:

F1E6:

68

AA

C6 98

PLA

TAX

DEC * $98

Delete file entry

Load secondary address in ace

Lower nibble of the SA = 2?

Delete file entry from table

Set control byte for EOT header

Write data block to tape

Delete file entry from table

Check tape time constant

Less than 128, then send close

Load device address into ace

Was it a disk drive (8-15)

No, then skip disk close

Load secondary address into ace

Mask out upper nibble (bits 4-7)

Was cmd channel (15) opened

then delete file entry from table

Send CLOSE cmd to device

Delete file entry from table

Get displacement to table

Copy displacement from A to X

Number of open files - 1

357

Abacus

F1E8:

F1EA:

F1EC:

F1EE:

F1F1:

F1F4:

F1F7:

F1FA:

F1FD:

F200:

F201:

Software

E4

FO

A4

B9

9D

B9

9D

B9

9D

18

60

98

14

98

62

62

6C

6C

76

76

03

03

03

03

03

03

CPX

BEQ

LDY

LDA

STA

LDA

STA

LDA

STA

CLC

RTS

* $98

$F200

* $98

$0362,Y

$0362,X

$036C,Y

$036C,X

$0376,Y

$0376,X

F202:

F204:

F206:

F207:

F209:

F20A:

F20C:

F20F:

F211:

A9

85

8A

A6

CA

30

DD

DO

60

00

90

98

05

62

F8

03

LDA

STA

TXA

LDX

DEX

BMI

CMP

BNE

RTS

$00

* $90

* $98

$F211

$0362,X

$F209

F212:

F215:

F217:

F21A:

F21C:

F21F:

F221:

BD

85

BD

85

BD

85

60

62

B8

76

B9

6C

BA

03

03

03

LDA

STA

LDA

STA

LDA

STA

RTS

$0362,X

* $B8

$0376,X

* $B9

$036C,X

* $BA

C-128 Internals

Was the table entry found the

Last table entry? Then exit

Get num. of open files for displ.

Get last entry from LFN table

And copy to free position

Get last entry in DA table

And copy to free position

Get last entry from SA table

And copy to free position

Set indicator for OK

Return from subroutine

Search for LFX in X in LFN

table

Clear status byte and

Set indicator for everything OK

Copy target for LFN in ace

Get number of open files

Dec by 1, because used as index

All comparisons negative, exit

Cmp with byte from LFN table

Not equal, then next comparison

Return from subroutine

LFN,DA,SA corresponding to

the X-reg

Get displacement to tables

The logical file number specified

by X-reg in z-page byte for LFN

The secondary address specified

by X-reg in z-page byte for SA

The device address specified by 1

X-reg in zero-page byte for DA

Return from subroutine

358

Abacus Software C-128 Internals

F222: A9 00

F224: 85 98

LDA # $00

STA * $98

F226:

F228:

F22A:

F22C:

F22F:

F231:

F233:

F236:

F238:

F23A:

F23C:

A2

E4

BO

20

E4

BO

20

86

A9

85

60

03

9A

03

26 E5

99

03

15 E5

9A

00

99

LDX

CPX

BCS

JSR

CPX

BCS

JSR

STX

LDA

STA

RTS

$03

* $9A

$F22F

$E526

* $99

$F236

$E515

* $9A

$00

* $99

F23D:

F23F:

F241:

F243:

F245:

F247:

F24(:

F24A:

F24C:

F24E:

F250:

F252:

F254:

F255:

F257:

F25A:

F25C:

85

C5

DO

A9

85

2C

C5

DO

A9

85

A5

A6

CA

30

DD

DO

BD

BA

9A

05

03

9A

99

04

00

99

BA

98

OD

6C 03

F8

62 03

STA

CMP

BNE

LDA

STA

* $BA

* $9A

$F248

$03

* $9A

.Byte $2C

CMP

BNE

LDA

STA

LDA

LDX

DEX

BMI

CMP

BNE

LDA

$99

$F250

$00

* $99

* $BA

* $98

$F264

$036C,X

$F254

$0362,X

Kernal routine: CLALL

Reset all open files

Load ace with 0 and in zero-page

Storage for number of open files

Kernal routine: CLRCH

Reset input/output channel

Load code for device screen (3)

Cmp with current output dev in

CLRCH rout - dev on serial bus

Rout UNLSNxmd to serial bus

Cmp with current input device in

CLRCH rout dev on serial bus

Rout UNTLKxmd to serial bus

Set screen as output device and

The keyboard as the standard

Input device

Return from subroutine

Set standard I/O devices

In Z-P byte for current dev addr

Cmp with current output device

Not equal, cmp with input dev

Load ace with dev addr for

Screen (3) & set as output device

Skip to $F24A

Cmp with current input device

Not equal, search in DA table

Load ace with code for keybaord

(0) and set the keyboard as input

Load device address in ace

Number of open files in X-reg

Decremnt by 1, used as index

All comparions negative, exit

Cmp with table for dev addr.

Not found, then next compare

Get LFN for corresponding DA

359

Abacus Software C-128 Internals

F25F:

F2 62:

F264:

20

90

60

C3

EC

FF JSR

BCC

RTS

$FFC3

$F250

F265:

F2 67:

F269:

F2 6C:

F2 6E:

F270:

F272:

F274:

F276:

F278:

86

84

6C

85

A9

85

A5

C9

BO

4C

C3

C4

30

93

00

90

BA

04

03

26

03

F3

STX

STY

JMP

STA

LDA

STA

LDA

CMP

BCS

JMP

* $C3

* $C4

($0330)

* $93

$00

* $90

* $BA

$04

$F27B

$F32 6

F27B:

F27E:

F280:

F283:

F285:

F287:

F289:

F28B:

F28E:

F290:

F293:

F296:

F298:

F2 9B:

F2 9D:

F29F:

F2A1:

F2A3:

F2A6:

F2A8:

AD

29

8D

A6

86

A4

DO

4C

84

20

20

BO

4C

A4

84

A9

85

20

A5

20

1C

BE

1C

B9

9E

B7

03

1A

9F

OF

Al

03

9B

9F

B7

60

B9

CB

BA

3B

OA

OA

F3

F5

F3

F3

FO

E3

LDA

AND

STA

LDX

STX

LDY

BNE

JMP

STY

JSR

JSR

BCS

JMP

LDY

STY

LDA

STA

JSR

LDA

JSR

$OA1C

$BE

$OA1C

* $B9

* $9E

* $B7

$F28E

$F31A

* $9F

$F50F

$F3A1

$F2 9B

$F39B

* $9F

* $B7

$60

* $B9

$F0CB

* $BA

$E33B

Kernal CLOSE: close file

If cany clear, next close

Return from subroutine

Kernal routine: LOAD

Load file in a memory range

Place start address low in z-page

Place start addr. high in z-page

Vector points LOADSP ($F26C)

Zero-page flag, LOAD/VERIFY

Load ace with $00 and

Set status to everything OK

Load device address in ace

Check for valid device address

Dev addr greater than 4 is valid

Check for datasette, else invalid

Load routine from serial bus

Read sys pointer for fast serial

Mode & eliminate bit 6 (1 = fast,

0 = slow)

Get secondary address in X-reg

And store in zero page $9F

Get length of filename

Not zero, skip error message

I/O error #8 (Missing filename)

Store length of filenames

Output "Searching for" message

Chk filenames & fast serialmode

Carry set, then OK. Skip

Set load end address and RTS

Length of filename in Y-reg and

In z-page for length of filename

SA 0, high nibble for Input/Get

In zero-page for sec. address

Send talk command to serial bus

Load device address in ace

Rout TALK: cmd to serial bus

360

Abacus

F2AB:

F2AD:

F2B0:

F2B3:

F2B5:

F2B8:

F2BA:

F2BC:

F2BD:

F2BE:

F2C0:

F2C2:

F2C4:

F2C6:

F2C8:

F2CA:

F2CC:

F2CF:

F2D1:

F2D3:

F2D5:

F2D8:

F2DA:

F2DD:

F2DE:

F2E0:

F2E1:

F2E2:

F2E4:

F2E5:

F2E7:

F2E9:

F2EB:

F2ED:

F2F0:

F2F2:

F2F4:

F2F6:

F2F9:

F2FB:

Software

A5

20

20

85

20

85

A5

4A

4A

BO

A5

DO

A5

85

A5

85

20

A9

25

85

20

FO

20

AA

A5

4A

4A

BO

8A

A4

FO

85

AO

20

C5

FO

A9

20

DO

20

B9

EO E4

3E E4

AE

3E E4

AF

90

57

9E

08

C3

AE

C4

AF

33 F5

FD

90

90

El FF

49

3E E4

90

EB

93

12

BD

00

C9 F7

BD

OA

10

57 F7

03

BF F7

LDA

JSR

JSR

STA

JSR

STA

LDA

LSR

LSR

BCS

LDA

BNE

LDA

STA

LDA

STA

JSR

LDA

AND

STA

JSR

BEQ

JSR

TAX

LDA

LSR

LSR

BCS

TXA

LDY

BEQ

STA

LDY

JSR

CMP

BEQ

LDA

JSR

BNE

JSR

* $B9

$E4E0

$E43E

* $AE

$E43E

* $AF

* $90

A

A

$F317

* $9E

$F2CC

* $C3

* $AE

* $C4

* $AF

$F533

$FD

* $90

* $90

$FFE1

$F323

$E43E

* $90

A

A

$F2CF

* $93

$F2FB

* $BD

$00

$F7C9

* $BD

$F2FE

$10

$F757

$F2FE

$F7BF

C-128 Internals

Load secondary address into ace

Rout TKSA: Sec add* for TALK

Get a byte from serial bus

Place start address in zero page

Get a byte from serial bus

Store start addr high in z-page

Load system status in ace

Shift timeout bit right

Shift timeout bit into carry

Timeout for read, File not found

Get stored secondary address

Not equal to 0, then skip

Copy the start address given by

The X and Y registers for the

Load command from $C3,$C4

To $AE,$AF

Disp. control message on screen

Mask out read timeout bit from

Status and write back

To status

Kernal STOP: test for STOP key

To interruption of load routine

Kernal routine: ACPTR

Store ace contents in X

Load system STATUS in ace

Eliminate the "read timeout" bit

From the status byte

If timeout, then new read attempt

Restore old ace contents

Test z-page load/verify pointer

If zero, then it's load

Store in zero page parity buffer

Displac pointer for FETCH rout

FETCH rout for LSV operations

Compare with Z-P parity buffer

If equal, then OK and skip

Not equal, then OK and skip

Kernal STATUS: Set sys status

Not OK, then skip store

Indsta routine via Z-P $AE-$AF

361

Abacus

F2FE:

F300:

F302:

F304:

F306:

F308:

F30A:

F30C:

F30E:

F311:

F314:

F317:

F31A:

F31D:

F320:

F323:

F326:

F328:

F32A:

F32D:

F32F:

F332:

F334:

F337:

F339:

F33B:

F33E:

F340:

F342:

F344:

F347:

F349:

F34B:

F34C:

F34E:

F350:

F352:

F354:

F356:

F358:

Software

E6

DO

E6

A5

C9

FO

24

50

20

20

4C

4C

4C

4C

4C

4C

C9

DO

20

90

20

BO

20

A5

FO

20

90

FO

BO

20

FO

BO

38

A5

29

DO

EO

FO

EO

DO

AE

08

AF

AF

FF

16

90

Cl

15 E5

9E F5

9B F3

85 F6

91 F6

94 F6

97 F6

B5 F5

01

F3

80 E9

EE

C8 E9

6C

OF F5

B7

09

9A E9

OB

5E

D3

DO E8

57

CC

90

10

4E

01

11

03

DD

INC

BNE

INC

LDA

CMP

BEQ

BIT

BVC

JSR

JSR

JMP

JMP

JMP

JMP

JMP

JMP

CMP

BNE

JSR

BCC

JSR

BCS'

JSR

LDA

BEQ

JSR

BCC

BEQ

BCS

JSR

BEQ

BCS

SEC

LDA

AND

BNE

CPX

BEQ

CPX

BNE

* $AE

$F30A

* $AF

* $AF

$FF

$F320

* $90

$F2CF

$E515

$F59E

$F39B

$F685

$F691

$F694

$F697

$F5B5

$01

$F31D

$E980

$F31D

$E9C8

$F3A0

$F50F

* $B7

$F344

$E99A

$F34B

$F3A0

$F317

$E8D0

$F3A0

$F317

* $90

$10

$F3A0

$01

$F367

$03

$F337

C-128 Internals

Low byte of memory pointer +1

No overflow, then skip

High byte of memory pointer +1

Check if high byte points in $

$FF00 range. If yes, then jump

To error output

Test STATUS for set EOF bit

No EOF yet, then continue

Rout UNTLK: cmd to serial bus

Send Unlistn- Close to serial bus

Clear carry and return

I/O error #4 (File not found)

I/O error #8 (Missing filename)

I/O error #9 (Illegal device num)

I/O error #10

Jump, LOAD routine interrupted

Is it a load from Datassette?

No, then I/O error #9

Get and check tape buffer addr.

Tape buffer address illegal, error

Wait for button on recorder

Interrupt STOP key, then RTS

Output SEARCH FOR filename

Z-P storage for filename length

Length =0, skip name search

Seach for tape header after name

OK, then continue

Interrupt STOP key, then RTS

I/O error #4 (File not found)

Read program header from tape

Interrupt STOP key, then RTS

I/O error #4 (File not found)

Marker: Set error found

Load system status in ace

Eliminate bit 4 for read error

Bit 4 set (read error), then RTS

Code, header type#l BASIC prg

If it is a BASIC program, skip

Code, header type #3 (ML prg)

If not #1 or #3, continue search

362

Abacus

F35A:

F35C:

F35E:

F360:

F361:

F363:

F365:

F367:

F369:

F36B:

F36D:

F36F:

F371:

F373:

F374:

F376:

F378:

F37A:

F37C:

F37D:

F37E:

F37F:

F381:

F383:

F384:

F386:

F388:

F38A:

F38C:

F38E:

F390:

F392:

F394:

F397:

F39A:

Software

AO 01

Bl B2

85 C3

C8

Bl B2

85 C4

BO 04

A5 B9

DO EF

AO 03

Bl B2

AO 01

Fl B2

AA

AO 04

Bl B2

AO 02

Fl B2

A8

18

8A

65 C3

85 AE

98

65 C4

85 AF

C9 FF

FO 94

A5 C3

85 Cl

A5 C4

85 C2

20 33 F5

20 FB E9

24

LDY

LDA

STA

INY

LDA

STA

BCS

LDA

BNE

LDY

LDA

LDY

SBC

TAX

LDY

LDA

LDY

SBC

TAY

CLC

TXA

ADC

STA

TYA

ADC

STA

CMP

BEQ

LDA

STA

LDA

STA

JSR

JSR

$01

($B2),Y

* $C3

<$B2),Y

* $C4

$F36B

* $B9

$F35A

$03

($B2),Y

$01

($B2),Y

$04

<$B2),Y

$02

($B2),Y

* $C3

* $AE

* $C4

* $AF

$FF

$F320

* $C3

* $C1

* $C4

* $C2

$F533

$E9FB

.Byte $24

C-128 Internals

Displacement to cassette buffer

Get start addr low from buffer

And copy it to load addr ptr low

Displacement in cass buffer +1

Get start addr high from buffer

& copy it in load addr ptr high

Unconditional jump for ML prg

Load secondary address in ace

Is it 0 (append)? No, then skip

Displacement to cassette buffer

Get end address low from buffer

Displacement to cassette buffer

Subtract start addr low from end

Addr & store low value in X reg

Displacement to cassette buffer

Get end addr high from buffer

Displacement to cassette buffer

Subtract start addr high from end

Addr & store high value in Y-reg

Clear carry for addition

Program length low back in ace

Memory start addr + prg length

Place in pointer for end addr low

Program length high back in ace

Memory start addr + prg length

Place in pntr for end addr high

Does end addr extend into

$FF00. Yes, then I/O error #0

Copy the memory start address

low into z-page load pointer low

Copy the memory start addr high

Into the z-page load pointer high

Output LOADING/VERIFYING

Load program from tape

Skip to $F39C

363

Abacus Software C-128 Internals

F39B:

F39C:

F39E:

F3A0:

18

A6

A4

60

AE

AF

CLC

LDX

LDY

RTS

* $AE

* $AF

F3A1:

F3A3:

F3A6:

F3A8:

F3AA:

F3AC:

F3AE:

F3B0:

F3B3:

F3B5:

F3B8:

F3BA:

F3BD:

F3BF:

F3C2:

F3C3:

F3C4:

F3C7:

F3C9:

F3CC:

F3CF:

F3D0:

F3D2:

F3D5:

F3D8:

F3D9:

F3DB:

F3DD:

F3E0:

F3E3:

A0 00

20 AE F7

C9 24

F0 F6

A6 BA

A0 OF

A9 00

20 38 F7

85 B7

20 CO FF

A6 B8

20 C9 FF

90 08

20 8C F4

68

68

4C 88 F6

AO 03

B9 OB F5

20 D2 FF

88

DO F7

20 AE F7

20 D2 FF

C8

C4 9F

DO F5

20 CC FF

2C 1C OA

70 05

LDY

JSR

CMP

BEQ

LDX

LDY

LDA

JSR

STA

JSR

LDX

JSR

BCC

JSR

PLA

PLA

JMP

LDY

LDA

JSR

DEY

BNE

JSR

JSR

INY

CPY

BNE

JSR

BIT

BVS

$00

$F7AE

$24

$F3A0

$BA

$0F

$00

$F738

$B7

$FFC0

$B8

$FFC9

$F3C7

$F48C

$F688

$03

$F50B,Y

$FFD2

$F3C9

$F7AE

$FFD2

* $9F

$F3D2

$FFCC

$OA1C

$F3EA

Set prg end address after LOAD

Set carry for OK indicator

Program end addr low in X-reg

Program end addr high in Y-reg

Return from subroutine

Check filenames and the

"fast serial mode"

Set displace for FETCH routine

Get byte of filename

Is first character a <$>?

Yes, then return: RTS

Load device address in X-reg

Set secondary address to (15)

Set logical file number to 0

Rout SETLFS: Set file params.

Set length of the filename to 0

Kernal OPEN: Open file

Get logical file number in X

Krnl CKOUT: Set output chnl

No error, then continue

Close logical file again

Remove RTS addr from stack

Remove RTS addr from stack

I/O error #5 (Device not present)

Loop and displacement counter

Cmd sequence string to disk

Kernal BSOUT: Output a char

Decrement loop and displ. by 1

Loop to UO; CHR$(31) to disk

Get character fo filename

Kernal BSOUT: Output a char

Incr. displacement to filename

Compare with length of filename

Not reached, next character

Krnl CLRCH: Reset I/O channel

Check "fast serial mode" pointer

Fast transfer possible, skip

364

Abacus Software C-128 Internals

F3E5: 20 8C F4

F3E8: 38

F3E9: 60

JSR $F48C

SEC

RTS

F3EA:

F3EC:

F3EE:

F3EF:

F3F2:

F3F5:

F3F8:

F3FB:

F3FE:

F400:

F402:

F405:

F406:

F407:

F40A:

F40B:

F40D:

F40F:

F412:

F415:

F417:

F41A:

F41C:

F41E:

F41F:

F421:

F424:

F427:

F42A:

F42C:

F42F:

F432:

F434:

A5

85

78

20

20

2C

20

20

C9

DO

20

68

68

4C

48

C9

DO

20

20

85

4C

C9

90

68

BO

20

20

20

85

20

20

85

A6

9F

B7

45

C3

OD

03

BA

02

08

8C

85

IF

OB

03

BA

A5

21

02

03

77

33

03

BA

AE

03

BA

AF

9E

E5

E5

DC

F5

F4

F4

F6

F5

F4

F4

F5

F5

F4

F5

F4

LDA

STA

SEI

JSR

JSR

BIT

JSR

JSR

CMP

BNE

JSR

PLA

PLA

JMP

PHA

CMP

BNE

JSR

JSR

STA

JMP

CMP

BCC

PLA

BCS

JSR

JSR

JSR

STA

JSR

JSR

STA

LDX

* $9F

* $B7

$E545

$E5C3

$DC0D

$F503

$F4BA

$02

$F40A

$F48C

$F685

$1F

$F41A

$F503

$F4BA

* $A5

$F421

$02

$F421

$F498

$F533

$F503

$F4BA

* $AE

$F503

$F4BA

* $AF

* $9E

Close logical file again

Set OK indicator

Return from subroutine

LOAD / VERIFY routines in

burst mode

Temp storage for filename length

In Z-P ptr for filename length

Disable system interrupts

Clock high signal to serial bus

Wait for response from bus

Clear the CIA IRQ flag

Invert clock low/high signal

Get byte from bus (trans status)

Check if transfer status "File not

Found" displayed. No, then skip

Clock hi to ser. bus & close file

Remove 2-byte RTS return addr

From stack

I/O error #4 (File not found)

Transfer status to stack

Is it indicator for last block?

No, then skip

Invert clock low/high signal

Get byte from bus (block-byte #)

In Z-P byte number loop counter

Set load address

Check transfer status

Code $01 indicates OK.OK,skip

Erase stored transfer status

Jump to "Load error" exit

Output LOADING/VERIFYING

Invert clock low/high signal

Get byte from bus,load addr low

Save in Z-P address pointer low

Invert clock low/high signal

Get byte from bus,load addr hi

Store in Z-P address pointer

Load & check stored sec address

365

Abacus

F436:

F438:

F43A:

F43C:

F43E:

F440:

F442:

F444:

F446:

F448:

F449:

F44B:

F44D:

F450:

F452:

F454:

F457:

F45A:

F45C:

F45F:

F461:

F464:

F466:

F468:

F46A:

F46C:

F46E:

F471:

F473:

F475:

Software

DO

A5

A6

85

86

A5

A6

85

86

68

C9

FO

20

A9

85

20

20

FO

20

BO

20

C9

90

C9

FO

DO

20

A9

85

DO

08

C3

C4

AE

AF

AE

AF

AC

AD

IF

32

03

FC

A5

3D

El

4A

C5

51

BA

02

06

IF

OB

2A

03

FE

A5

DD

F5

F6

FF

F4

F4

F5

BNE

LDA

LDX

STA

STX

LDA

LDX

STA

STX

PLA

CMP

BEQ

JSR

LDA

STA

JSR

JSR

BEQ

JSR

BCS

JSR

CMP

BCC

CMP

BEQ

BNE

JSR

LDA

STA

BNE

$F440

* $C3

* $C4

* $AE

* $AF

* $AE

* $AF

* $AC

* $AD

$1F

$F47F

$F503

$FC

* $A5

$F63D

$FFE1

$F4A6

$F4C5

$F4B2

$F4BA

$02

$F46E

$1F

$F477

$F498

$F503

$FE

* $A5

$F454

C-128 Internals

Not zero, then load prg absolute

Get LOAD address low in ace

Get LOAD load addr hi in X-reg

Load addr low in addr pntr low

Load addr hi in addr pointer high

Get address pointer low

Get address pointer hi in X-reg

Set ace as load address pointer

Set X-reg as load addr pointer

Get transfer status from stack

Status point to last prg block?

Yes, skip standard block length

Invert clock low/high signal

Set the data byte counter for the

First block of file to read to 252

Test shift RUN/STOP

Kernal STOP: Test STOP key

If zero exit through STOP key

Read block from disk &process

Error in memory addr, then RTS

Get byte from bus (xfer status)

Check transfer status

Code $01 indicates OK.OK,skip

Was it the status for last block?

Yes, then read last block

Jump to "load error11 exit

Invert clock low/high signal

Set data byte counter for normal

Block to 254 bytes

Unconditional jump to read rout

366

Abacus Software C-128 Internals

a*****************************

F477:

F47A:

F47D:

F47F:

F482:

F485:

F487:

F489:

JL JL JL JL JL JL ,
7\ /V r\ ^\ rt ^

F48C:

F48F:

F490:

F492:

F493:

F496:

F497:

•Jekk k k k^S /\ #\ /\ r\ w\

F498:

F49A:

F49D:

F4A0:

F4A1:

F4A2:

F4A4:

F4A5:

20

20

85

20

20

BO

A9

20

^ ^ ^ ^

20

58

A5

38

20

18

60

A9

20

20

68

68

A9

38

60

03

BA

A5

03

C5

2B

40

57

;k-ki

45

B8

C3

k kk;

02

57

8C

29

F5

F4

F5

F4

F7

E5

FF

kkkk-

F7

F4

JSR

JSR

STA

JSR

JSR

BCS

LDA

JSR

t kk k -k k\ ^S /\ ^\ r\ /\

JSR

CLI

LDA

SEC

JSR

CLC

RTS

kkkkkk

LDA

JSR

JSR

PLA

PLA

LDA

SEC

RTS

$F503

$F4BA

* $A5

$F503

$F4C5

$F4B2

$40

$F757

k k k k kk"if\ /\ /\ w\ w\ r\ 4

$E545

* $B8

$FFC3

kkkkkk

$02

$F757

$F48C

$29

-kk-k-k-kkkkkkk-kkkkkkkkk-kkkkkkk-kkk

F4A6:

F4A9:

F4AB:

F4AD:

F4AE:

F4AF:

20

A9

85

68

68

4C

8C

00

B9

B5

F4

F5

JSR

LDA

STA

PLA

PLA

JMP

$F48C

$00

* $B9

$F5B5

Read last block in burst mode

Invert clock low/high signal

Get byte from bus (block-byte #)

In Z-P byte number loop counter

Invert clock low/high signal

Read block from disk &process

Error in memory addr, then RTS

Put EOF marker code in ace

Kernal SETMSG: Set sys status

Clock high on bus and close file

Clock high signal on serial bus

Enable all system intemxpts

Get logical file number in ace

Set carry flag for CLOSE routine

Kernal CLOSE: Close file

Set marker for OK

Return from subroutine

General "Load error" exit

Err code for timeout during read

Kernal SETMSG: Set sys status

Clock high on bus and close file

Delete the RTS return address

From the stack

Error # for BASIC error: LOAD

Set marker for error found

Return from subroutine

Exit for STOP key interruption

Clock high on bus and close file

Set zero-page pointer for current

Secondary address to #0

Delete the RTS return addr from

The stack

Routine: Exit via break key

367

Abacus Software C-128 Internals

ax****************************

F4B2: 20 8C F4 JSR $F48C

F4B5: 68 PLA

F4B6: 68 PLA

F4B7: 4C 97 F6 JMP $F697

xxxxxxxxxxxxxxxxxxxxxxx*******

F4BA:

F4BC:

F4BF:

F4C1:

F4C4:

JL JL JL JL JL J
X X X X X 7

F4C5:

F4C7:

F4CA:

F4CC:

F4CF:

F4D2:

F4D4:

F4D7:

F4D8:

F4DA:

F4DC:

F4DE:

F4E0:

F4E3:

F4E5:

F4E7:

F4E9:

F4EC:

F4EE:

F4F1:

F4F3:

F4F5:

A9

2C

F0

AD

60

. JL. JL JL. ,
I A A A 7

A9

2C

F0

AC

AD

49

8D

98

A4

F0

85

A0

20

C5

FO

A9

20

DO

20

E6

DO

E6

08

OD

FB

OC

L JL. JL. J
T A A 7

08

OD

FB

OC

00

10

00

93

12

BD

00

C9

BD

OA

10

57

03

BF

AE

08

AF

DC

DC

L JL JL. JL _
K X X X 1

DC

DC

DD

DD

F7

F7

F7

LDA

BIT

BEQ

LDA

RTS

L JL JL JL JL JL
K X X X X X

LDA

BIT

BEQ

LDY

LDA

EOR

STA

TYA

LDY

BEQ

STA

LDY

JSR

CMP

BEQ

LDA

JSR

BNE

JSR

INC

BNE

INC

$08

$DC0D

$F4BC

$DC0C

JL JL JL JL JL JL .
X X X X X X ,

$08

$DC0D

$F4C7

$DC0C

$DD00

$10

$DD00

* $93

$F4EE

* $BD

$00

$F7C9

* $BD

$F4F1

$10

$F757

$F4F1

$F7BF

* $AE

$F4FD

* $AF

Exit for error in memory address

Clock high on bus and close file

Delete the RTS return addr from

The stack

To output of I/O error #10

Read a data byte in burst mode

Set control bit for bus interrupt

Read interrupt control register

And wait for serial bus interrupt

Read CIA data buff from ser bus

Return from subroutine

Read data block in burst mode

Set conrol bit for bus interrupt

Read interrupt control register

And wait for serial bus interrupt

Read CIA data buff from ser bus

Read data port A of CIA 2,

invert the clock signal

accordingly, & write to port A

Copy data buffer into ace

Test Z-P LOAD/VERIFY pointer

For $00 it's a LOAD routine

Store data byte for verify operat.

Displace pointer for FETCH rout

FETCH rout for LSV operations

Compare data byte with memory

Both equal, then OK &continue

Not equal, then set error marker

Kernal status: Set system status

Skip STASH rout (for LOAD)

STASH rout for LSV operations

Inc low value for I/O operations

No overflow occurred, skip

Increment high value of I/O addr

368

Abacus

F4F7:

F4F9:

F4FB:

F4FD:

F4FF:

F501:

F502:

Software

A5 AF

C9 FF

FO 05

C6 A5

DO C4

18

60

LDA

CMP

BEQ

DEC

BNE

CLC

RTS

* $AF

$FF

$F502

* $A5

$F4C5

F503:

F506:

F508:

F50B:

AD 00 DD

49 10

8D 00 DD

60

LDA

EOR

STA

RTS

$DD00

$10

$DD00

C-128 Internals

Check if the high value of I/O

Addr points to sys vector table

Yes, then invalid & skip to RTS

Decrement data byte counter

Loop until all bytes read

Set marker for "everything OK"

Return from subroutine

Invert clock signal on port A

Read data port A of CIA 2,

invert clock signal and

Write back to port A

Return from subroutine

F50C: IF 30 55

F50F:

F511:

F513:

F515:

F518:

F51A:

F51C:

F51E:

A5

10

A0

20

A5

F0

A0

20

9D

IF

OC

22 F7

B7

16

17

22 F7

LDA

BPL

LDY

JSR

LDA

BEQ

LDY

JSR

* $9D

$F532

$0C

$F722

* $B7

$F532

$17

SF722

Control sequence to disk in

reverse order. Send

U0;CHR$(31)

<CHR$(31)>

Output control msg

SEARCHING FOR <filename>

Pointer if Ctrl messages allowed

Not allowed, then return

Displacement to SEARCHING

Output system/control message

Get length of filename in ace

Length equal 0, then return

Displacement to "FOR" text

Output system/control message

369

Abacus Software C-128 Internals

F521:

F523:

F525:

F527:

F52A:

F52D:

F52E:

F530:

F532:

A4 B7

FO OD

AO 00

20 AE F7

20 D2 FF

C8

C4 B7

DO F5

60

LDY * $B7

BEQ $F532

LDY # $00

JSR $F7AE

JSR $FFD2

INY

CPY * $B7

BNE $F527

RTS

F533:

F535:

F537:

F539:

F53B:

AO

A5

FO

AO

4C

49

93

02

59

IE F7

LDY

LDA

BEQ

LDY

JMP

$49

* $93

$F53B

$59

$F71E

F53E:

F540:

F542:

F543:

F545:

F547:

F549:

F54B:

F54E:

F550:

F552:

F554:

F556:

F558:

F55B:

F55E:

F561:

03

86 AE

84 AF

AA

B5 00

85 Cl

B5 01

85 C2

6C 32

A5 BA

C9 01

FO 74

C9 04

BO 09

4C 94 F6

4C 91 F6

4C 85 F6

A4 B7

STX

STY

TAX

LDA

STA

LDA

STA

JMP

LDA

CMP

BEQ

CMP

BCS

JMP

JMP

JMP

LDY

* $AE

* $AF

* $00,X

* $C1

* $01,X

* $C2

($0332)

* $BA

* $01

$F5C8

* $04

$F561

$F694

$F691

$F685

* $B7

Output filenames

Get length of current filename

Length = 0, then skip

Init displacement to filenames

Get 1 byte of filename

Kernal BSOUT: Output a char

Incr. displ. to start of filename

Compare with length of filename

Not equal, then next character

Return from subroutine

Output LOADING/VERIFYING

Displacement to LOADING text

Get Load-Verify mark from Z-P

If load (0), then output

Displacement to "Verify" text

Output system/control message

Kernal routine: SAVESP

Save a memory range

Store low addr of "store to"

Store high addr of "store to"

Z-P addr of "store from" in X

Get Z-P addr "from" low value

and store in "store from" low

Get Z-P addr "from" high value

And store in "store from" high

vector to SAVESP ($F54E)

Load device address in ace

Is output device the Datassette?

Yes, then in cassette save routine

Device address less than 4?

No, then skip error message

I/O error #9 (Illegal device #)

I/O error #8 (Missing filename)

I/O error #4 (File not found)

Length of filename in Y-reg

370

Abacus

F563:

F565:

F567:

F569:

F56C:

F56F:

F571:

F574:

F576:

F579:

F57B:

F57E:

F581:

F583:

F586:

F589:

F58B:

F58E:

F591:

F594:

F596:

F599:

F59B:

F59E:

F5A0:

F5A2:

F5A4:

F5A7:

F5A9:

F5AB:

F5AD:

F5B0:

F5B3:

F5B4:

JU JL JL JU JL .
^ /V W ^ ^ ,

F5B5:

F5B8:

Software

FO

A9

85

20

20

A5

20

A5

20

A0

20

20

A5

20

20

BO

20

20

20

FO

20

DO

20

24

30

A5

20

A5

29

09

20

20

18

60

fr x x x '

20

A9

F6

61

B9

CB

BC

BA

3E

B9

D2

00

51

03

AD

03

B7

10

CC

03

El

IF

Cl

EB

26

B9

11

BA

3E

B9

EF

EO

D2

26

x x x ?

9E

00

FO

F5

E3

E4

ED

E5

E5

EE

F7

E5

FF

EE

E5

E3

E4

E5

L. JL JL JL .
K X X X

F5

BEQ

LDA

STA

JSR

JSR

LDA

JSR

LDA

JSR

LDY

JSR

JSR

LDA

JSR

JSR

BCS

JSR

JSR

JSR

BEQ

JSR

BNE

JSR

BIT

BMI

LDA

JSR

LDA

AND

ORA

JSR

JSR

CLC

RTS

■A- •*• 4- 4- •*•■*■
ft A A A A A

JSR

LDA

$F55B

$61

* $B9

$F0CB

$F5BC

* $BA

$E33E

* $B9

$E4D2

$00

$ED51

$E503

* $AD

$E503

$EEB7

$F59B

$F7CC

$E503

$FFE1

$F5B5

$EEC1

$F586

$E526

* $B9

$F5B3

* $BA

$E33E

* $B9

$EF

$E0

$E4D2

$E526

.1. 4. .X. .4. .X. .1.
X X X X X X

$F59E

$00

C-128 Internals

Length=O, output I/O error 8

Secondary address to PrintAVrite

In z-page storage for sec. addr

Test length and sec. address

If allowed, output SAVING

Load device address in ace

Rout LISTN: cmd to serial bus

Load secondary address in ace

Rout SECND:sec addr for Listn

Set Y-reg to 0 as displacement

Copy start addr from C1,C2 to

AD,AC

Rout CIOUT: Byte to serial bus

Store start address high value

Rout. CIOUT: Byte to serial bus

Subtr.: Start address - End addr

End address reached, then exit

Place start address in FETVEC

Rout. CIOUT: Byte to serial bus

Kernal STOP: Test STOP key

If pressed, interrupt SAVESP

Incr. start addr ($AC,$AD) by 1

Overflow in high byte, then exit

Rout UNLSN: cmd to serial bus

Test bit 7 of secondary address

If bit 7 is set, then skip

Load device address in ace

Rout LISTN: cmd to serial bus

Load secondary address in ace

Get lower nibble of SA

Send via above CLOSE to dev.

Rout SECND:sec. addr for Listn

Rout UNLSNxmd to serial bus

Set indicator for OK

Return from subroutine

SAVESP exit via break

Close write channel to device

Load ace with $00 as marker

371

Abacus Software C-128 Internals

F5BA: 38

F5BB: 60

SEC

RTS

F5BC:

F5BE:

F5C0:

F5C2:

F5C5:

F5C8:

F5CB:

F5CD:

F5D0:

F5D2:

F5D5:

F5D7:

F5D9:

F5DB:

F5DD:

F5DF:

F5E0:

F5E3:

F5E5:

F5E8:

F5EA:

F5EC:

F5EE:

F5F0:

F5F2:

F5F5:

F5F6:

F5F7:

A5

10

A0

20

4C

-,-k-k-ki

20

90

20

BO

20

A2

A5

29

DO

A2

8A

20

BO

20

BO

A5

29

FO

A9

20

24

18

60

9D

37

51

22

21

t**V

80

8B

E9

25

BC

03

B9

01

02

01

19

12

18

OD

B9

02

06

05

19

F7

F5

KkkkJ

E9

E9

F5

E9

EA

E9

LDA

BPL

LDY

JSR

JMP

e*****% r% r\ f\ f\ #\

JSR

BCC

JSR

BCS

JSR

LDX

LDA

AND

BNE

LDX

TXA

JSR

BCS

JSR

BCS

LDA

AND

BEQ

LDA

JSR

* $9D

$F5F7

$51

$F722

$F521

*******»\ r\ /\ r\ ^\ /\

$E980

$F558

$E9E9

$F5F7

$F5BC

$03

* $B9

$01

$F5DF

$01

$E919

$F5F7

$EA18

$F5F7

* $B9

$02

$F5F6

$05

$E919

.Byte $24

CLC

RTS

Set carry for break/error ind.

Return from subroutine

Check if SAVING control

message can be printed

Test if control message allowed

Not allowed, then return

Displ. to SAVING in Y-reg

Output "SAVING" message

And output filename: RTS

Save routine for datasette

Cass buffer pointer in X+Y reg

Page 0,1 not allowed: I/O err #9

Wait for "record & play" keys

STOP, then interrupt

If allowed, output "SAVING"

Header type3=ML prg (absolute)

Load secondary address in ace

Test if bit 0 set

Yes, then machine language prg

Header type 1= BASIC program

Copy header type in ace

And write header to tape

Exit, if stop key pressed

Save program to cassette

Exit, if stop key pressed

Load secondary address in ace

Check if bit 1 set

Not set, then "OK" exit

Code for EOT control byte in ace

And write block to tape

Skip to $F5F7

Set indicator for "OK"

Return from subroutine

372

Abacus Software C-128 Internals

F5F8:

F5FA:

F5FC:

F5FE:

F600:

F602:

F603:

F605:

F607:

F609:

F60B:

F60D:

F60F:

F611:

F613:

F615:

F617:

F619:

F61C:

F61E:

F621:

F623:

F626:

F629:

F62C:

F62F:

F631:

F634:

F636:

F638:

F63B:

E6

DO

E6

DO

E6

38

A5

E9

A5

E9

A5

E9

90

A2

86

86

86

AD

DO

AD

DO

CE

CE

CE

2C

10

CE

10

A9

8D

DO

A2

06

Al

02

AO

A2

01

Al

1A

AO

4F

08

00

AO

Al

A2

ID

OB

IE

03

IF

IE

ID

03

OC

36

07

05

36

BB

OA

OA

OA

OA

OA

OA

OA

OA

INC

BNE

INC

BNE

INC

SEC

LDA

SBC

LDA

SBC

LDA

SBC

BCC

LDX

STX

STX

STX

LDA

BNE

LDA

BNE

DEC

DEC

DEC

BIT

BPL

DEC

BPL

LDA

STA

BNE

* $A2

$F602

* $A1

$F602

* $A0

* $A2

$01

* $A1

$1A

* $A0

$4F

$F619

$00

* $A0

* $A1

* $A2

$OA1D

$F629

$OA1E

$F626

$OA1F

$OA1E

$OA1D

$0A03

$F63D

$0A36

$F63D

$05

$0A36

$F5F8

Kernal routine: UDTIM

Update the internal 24-hour

clock

Low byte of 24 hr sys clock +1

No overflow, skip correction

Middle byte of 24 hr sys elk +1

No overflow, skip correction

High byte of 24 hr sys clock +1

Set carry for subtraction

The appropriate values are

checked by subtraction to see if

Internal 24-hr system clock is set

To the clock time 24.00.00 in

the bytes $AO-$A1-$A2

In this case the 3 bytes must be

Reinitialized

24-hour sys clock to 00.00.00

Z-P byte for system clock High

Z-P byte for sys clock Middle

Z-P byte for system clock Low

Check temp storage 24hr elk low

Not zero, then only low value -1

Check temp storage 24hr elk mid

Not zero, only low and mid -1

Temp storage 24hr elk high -1

Temp storage 24hr elk mid -1

Temp storage 24hr clock low -1

Test PAL / NTSC pointer

NTSC system if "plus"

Raster line line-pointer-1

Not yet zero, then skip init.

Sys ptr for raster line at which

Int. is generated is init. w/ 5

Uncond. jump to new UDTIM

373

Abacus Software C-128 Internals

F63D:

F640:

F643:

F645:

F646:

F648:

F64A:

F64D:

F650:

F653:

F655:

F658:

F659:

F65B:

F65D:

AD

CD

DO

AA

30

A2

8E

AE

EC

DO

8D

E8

DO

85

60

01

01

F8

13

BD

00

01

01

F8

00

02

91

DC

DC

DC

DC

DC

DC

LDA

CMP

BNE

TAX

BMI

LDX

STX

LDX

CPX

BNE

STA

INX

BNE

STA

RTS

$DC01

$DC01

$F63D

$F65B

$BD

$DC00

$DC01

$DC01

$F64D

$DC00

$F65D

* $91

F65E:

F65F:

F661:

F663:

78

A5 A2

A6 Al

A4 A0

SEI

LDA

LDX

LDY

* $A2

* $A1

* $A0

F665:

F666:

F668:

F66A:

F66C:

F66D:

78

85 A2

86 Al

84 AO

58

60

SEI

STA * $A2

STX * $A1

STY * $A0

CLI

RTS

Keyboard row selection to

For RUN/STOP & SHIFT keys

Read port B for keyboard matrix

And wait

Keyboard code to X-reg and

Skip if RUN/STOP pressed

Bit map for SHIFT row select

In port A for matrix line select

Port B for keyboard matrix cols

Read and wait

In port A for matrix line select

Increment value by 1

Neither shift key, skip

Z-P STOP/reset RVS pointer

Return from subroutine

Kernal routine: RDTIM

Read 24-hour system clock

Disable all system interrupts

Zero-page byte for sys clock low

Zero-page byte for sys clock mid

Z-P byte for system clock high

Kernal routine: SETTIM

Set 24-hr system clock

Disable,system interrupts

Zero-page byte for sys clock low

Zero-page byte for sys clock mid

Z-P byte for system clock high

Enable system interrupts

Return from subroutine

374

Abacus Software C-128 Internals

F66E:

F670:

F672:

F674:

F675:

F678:

F67A:

F67B:

JL JL JL JL JL J
^ ^ ^ ^ J\ /

F67C:

F67E:

F67F:

F681:

F682:

F684:

F685:

F687:

F688:

F68A:

F68B:

F68D:

F68E:

F690:

F691:

F693:

F694:

F696:

F697:

F699:

F69A:

F69D:

F69F:

F6A1:

F6A3:

F6A6:

A5

C9

DO

08

20

85

28

60

L JL JL JL J

A9

2C

A9

2C

A9

2C

A9

2C

A9

2C

A9

2C

A9

2C

A9

2C

A9

2C

A9

48

20

A0

24

50

20

68

91

7F

07

CC FF

DO

r + + + + + + ^

01

02

03

04

05

06

07

08

09

10

CC FF

00

9D

0A

22 F7

LDA *

CMP #

$91

$7F

BNE $F67B

PHP

JSR $FFCC

STA *

PLP

RTS

± + +■+'+ + + + '1\ 7\ 7v ^ ^ n 7v ^ /

LDA #

.Byte

LDA #

.Byte

LDA #

.Byte

LDA #

.Byte

LDA #

.Byte

LDA #

.Byte

LDA #

.Byte

LDA #

.Byte

LDA #

.Byte

LDA #

PHA

$D0

L JL JL JL .
\ ^ #\ ^ i

$01

$2C

$02

$2C

$03

$2C

$04

$2C

$05

$2C

$06

$2C

$07

$2C

$08

$2C

$09

$2C

$10

JSR $FFCC

LDY #

BIT *

$00

$9D

BVC $F6AD

JSR $F722

PLA

Kemal routine: STOP

Test for pressed STOP key

Get Z-P storage for stop flag

Was STOP key pressed?

No, return with equal flag 0

Save status equal flag

Krnl CLRCH: Reset I/O chnls

Clear Z-P keyboard buffer pntr

Get status of equal flag

Return from subroutine

Output I/O error message

I/O error #1 (Too many files)

Skipto$F681

I/O error #2 (File open)

Skip to $F684

I/O error #3 (File not open)

Skip to $F687

I/O error #4 (File not found)

Skip to $F68A

I/O error #5 (Device not present)

Skip to $F68D

I/O error #6 (Not input file)

Skip to $F690

I/O error #7 (Not output file)

Skip to $F693

I/O error #8 (Missing filename)

Skip to $F696

I/O error #9 (Illegal device #)

Skip to $F699

I/O error #10

Store I/O error code on stack

Krnl CLRCH: Reset I/O chnls

Displacement to I/O err message

Check if sys messages allowed

Not allowed, then exit

Rout: output sys/ctrl messages

Get error code number in ace

375

Abacus

F6A7:

F6A8:

F6AA:

F6AD:

F6AE:

F6AF:

Software

48

09 30

20 D2 FF

68

38

60

PHA

ORA # $30

JSR $FFD2

PLA

SEC

RTS

C-128 Internals

And store on stack

Create ASCII value of error code

Kernal BSOUT: Output a char

Delete error code from stack

Set carry flag as marker

Return from subroutine

****************************** Table of sys & control messages

Offset to start in parentheses

F6B0:

F6B8:

FCBC:

F6C4:

F6C7:

F6CB:

F6D3:

F6DB:

F6DE:

F6E6:

F6EE:

F6F6:

F6F9:

F701:

F709:

F711:

F713:

F71A:

0D

4F

0D

4E

46

0D

4C

41

50

43

4C

41

0D

0D

0D

4E

0D

0D

49

52

53

47

4F

50

41

50

52

4F

41

50

4C

53

56

C7

46

4F

2F

20

45

A0

52

52

59

C5

45

52

59

C5

4F

41

45

4F

4B

4F 20

A3

41 52

A0

45 53

20 4F

53 53

44 20

20 4F

41 44

56 49

52 49

55 4E

8D

45

43

53

4E

20

26

4E

49

4E

46

44

52 52

48 49

20 50

20 54

52 45

20 50

20 54

4E C7

47 A0

59 49

A0

F71E:

F720:

F722:

F725:

F726:

F728:

F72B:

F72C:

F72D:

F72F:

24

10

B9

08

29

20

C8

28

10

18

9D

0D

B0

7F

D2

F3

F6

FF

BIT

BPL

LDA

PHP

AND

JSR

INY

PLP

BPL

CLC

$9D

$F72F

$F6B0,Y

$7F

$FFD2

$F722

«jr> i/u liKKUK ffouu;

<Cr> SEARCHING($0C)

FOR ($17)

<Cr>PRESS PLAY ON TAPE

($1B)

PRESS RECORD & PLAY ON

TAPE ($2E)

<Cr> LOADING ($49)

<Cr> SAVING ($51)

<Cr> VERIFYING ($59)

<Cr> FOUND ($63)

<Cr> OK <Cr> ($6A)

Output system/control message*

Check if output allowed

No, then exit

Read byte from message table

And store on stack

Mask out bit 7, no RVS chara

Kernal BSOUT: Output a char

Set displ. to next character

Get character from stack

Bit 7 set is end marker

Clear carry as "output11 marker

376

Abacus Software C-128 Internals

F730: 60 RTS

F731:

F733:

F735:

F737:

85 B7

8 6 BB

84 BC

60

STA

STX

STY

RTS

* $B7

* $BB

* $BC

Return from subroutine

Kernal routine: SETNAM

Set parameters for filename

Z-P byte for length of filename

Z-P byte for filename addr low

Z-P byte for filename addr high

Return from subroutine

F738:

F73A:

F73C:

F73E:

•A- -A- -A- "*■-*• -JX X X X X 7

F73F:

F741:

F743:

85

86

84

60

L .4. -V .1. .
C X X X '

85

86

60

B8

BA

B9

i. ^ ^ ^ j. j.
NT X X X X X

C6

C7

STA

STX

STY

RTS

•!• •£• <4- •£• -A- 4- -A-X X X X X X X

STA

STX

RTS

* $B8

* $BA

* $B9

X X X X X X

* $C6

* $C7

F744:

F746:

F748:

F74A:

F74D:

F74E:

F750:

F753:

F754:

A5

C9

DO

AD

48

A9

8D

68

60

BA

02

0B

14 0A

00

14 0A

LDA

CMP

BNE

LDA

PHA

LDA

STA

PLA

RTS

* $BA

$02

$F755

$0A14

$00

$0A14

Kernal routine: SETLFS

Set the logical file parameters

Z-P byte for logical file number

Z-P byte for device address

Z-P byte for secondary address

Return from subroutine

Kernal routine: SETBNK

Bank num for current LSV call

Bank num for current filename

Return from subroutine

Kernal routine: READST

Read system status word

Load device address in ace

RS-232 addressed

No, then get normal status

Get RS-232 status

And store on stack

Load ace with $00 in RS-232

Bring status as evrything OK

Get RS-232 status from stack

Return from subroutine

377

Abacus Software C-128 Internals

a*****************************

F755:

F757:

F759:

F75B:

A5

05

85

60

90

90

90

LDA

ORA

STA

RTS

* $90

* $90

* $90

a*****************************

F75C: 85 9D

F75E: 60

STA * $9D

RTS

F75F: 8D 0E 0A STA $0A0E

F762: 60 RTS

F763:

F765:

F768:

F76B:

F76E:

F771:

90

AE

AC

8E

8C

60

06

07

08

07

08

0A

OA

OA

OA

BCC

LDX

LDY

STX

STY

RTS

$F76B

$0A07

$0A08

$0A07

$0A08

F772:

F774:

Fill:

F77A:

F77D:

90 06

AE 05 OA

AC 06 OA

8E 05 OA

8C 06 OA

BCC $F77A

LDX $0A05

LDY $0A06

STX $0A05

STY $0A06

Match status to system status

Get system STATUS in ace

Combine ace with system status

Put in zero page for status

Return from subroutine

Kernal routine: SETMSG

Allow system/control messages

Z-P byte for system/control msg

Return from subroutine

Kernal routine: SETTMO

In order to allow timeout in

IEEE bit 7 in ace to 1

Ace contents in IEEE timeout

flag. Return from subroutine

Kernal routine: MEMTOP

Set the upper memory end

pointer

Carry 0 = set / Carry 1 = read

Low addr RAM end in sys bank

High addr RAM end in sys bank

Low addr RAM end in sys bank

High addr RAM end in sys bank

Return from subroutine

Kernal routine: MEMBOT

Set the lower memory end

pointer

Carry 0 = set / Carry 1 = read

Low addrRAM start in sys bank

Hi addr RAM start in sys bank

Low addr RAM start in sys bank

Hi addr RAM start in sys bank

378

Abacus Software C-128 Internals

F780: 60 RTS

F781: A2 00

F783: A0 DO

F785: 60

LDX # $00

LDY # $D0

RTS

F786:

F787:

F789:

F78A:

F78C:

F78F:

F791:

F794:

F795:

F797:

F799:

F79A:

98

A6

CA

30

DD

DO

20

AA

A5

A4

18

60

98

OF

76 03

F8

12 F2

B8

B9

TYA

LDX

DEX

BMI

CMP

BNE

JSR

TAX

LDA

LDY

CLC

RTS

* $98

$F7 9B

$0376,X

$F789

$F212

* $B8

* $B9

F79B: 38

F79C: 60

SEC

RTS

F79D:

F79E:

F7A1:

F7A3:

AA

20

FO

DO

02 F2

EE

F6

TAX

JSR

BEQ

BNE

$F202

$F791

$F79B

Return from subroutine

Kernal routine: IOBASE

Pass address low of I/O range

Pass address high of I/O range

Return from subroutine

Kernal routine: LKUPSA

Search in SA table for SA

Put the SA to search for in ace

Get number of open files

Decrement by 1, used as index

All comparisons negative, exit

Cmp with hi byte from SA table

Not found, next comparison

Get LFN,DA,SA from table

corresponding to X

Copy found DA into X

Get logical file number in ace

Get secondary address in Y

Carry clear = marker for found

Return from subroutine

Exit from LKUPSA if not found

Carry set = marker for not found

Return from subroutine

Kernal routine: LKUPLA

Search in LFN table for LFN

Store LFN value to search in X

Set status OK, search LFN table

Found, update the z-page, exit

Not found, exit with err marker

379

Abacus Software C-128 Internals

F7A5: BD FO F7 LDA $F7F0,X

F7A8: 29 FE AND # $FE

F7AA: AA TAX

F7AB: 4C FO 03 JMP $03F0

F7AE:

F7B1:

F7B3:

F7B5:

F7B8:

F7BB:

8E

A6

A9

20

AE

60

35

C7

BB

DO

35

0A

F7

OA

STX

LDX

LDA

JSR

LDX

RTS

$0A35

* $C7

$BB

$F7D0

$0A35

F7BC:

F7BE:

F7BF:

F7C1:

F7C4:

F7C6:

A2

2C

A2

8E

A6

4C

AC

AE

B9

C6

DA

02

F7

LDX # $AC

.Byte $2C

LDX

STX

LDX

JMP

$AE

$02B9

* $C6

$F7DA

F7C9:

F7CB:

F7CC:

F7CE:

A9 AE

2C

A9 AC

A6 C6

LDA # $AE

.Byte $2C

LDA # $AC

LDX * $C6

Kemal routine: DMA-CALL

Get x indexed value-config table

Mask out bit 0 -I/O, D000-DFFF

Copy config value to X-reg

Jump to low bank DMA routine

FETCH for chars from filename

Store contents of X-reg

Bank # for current filename

(BB,BQ

Put in ace $BB for FETVEC

Rout. INDFET:

LDA(fetvec),Y any bank

Get old contents of X-reg back

Return from subroutine

STASH routine for LSV

operations

Pointer to LSV I/O addr 1 (lo)

Skipto$F7Cl

Pointer to LSV I/O addr 2 (lo)

Put contents X-reg in STATVEC

Bank # of the current LSV call

Rout. INDSTA:

STA(stavec),Y any bank

FETCH routine for LSV

operations

Pointer for LSV I/O addr 1 (lo)

Skip to $F7CE

Pointer to LSV I/O addr 2 (lo)

Bank # of current LSV calls

380

Abacus Software C-128 Internals

F7D0: 8D AA 02 STA $02AA

F7D3: BD F0 F7 LDA $F7F0,X

F7D6: AA TAX

F7D7: 4C A2 02 JMP $02A2

F7DA:

F7DB:

F7DE:

F7DF:

F7E0:

48

BD

AA

68

4C

F0

AF

F7

02

PHA

LDA

TAX

PLA

JMP

$F7F0,X

$02AF

F7E3:

F7E4:

F7E7:

F7E8:

F7E9:

48

BD

AA

68

4C

F0

BE

F7

02

PHA

LDA

TAX

PLA

JMP

$F7F0,X

$02BE

F7EC: BD F0 F7

F7EF: 60

LDA $F7F0,X

RTS

Preparation for FETCH routine

Place ace contents in FETVEC

Load config value determined

By X from table and to X-reg

FETCH Rout.: LDA any bank

Preparation for STASH routine

Store ace contents for STA cmd

Load config value determined

By X from table and to X-reg

Load ace contents for STA cmd

STASH rout. :STA in any bank

Preparation of CMPFAR routine

Store ace contents for compare

Get the config value determined

by X from the table

Get ace contents for compare

CMPARE routine: CMP with

any bank

Kernal routine: GETCFG

Load X with defined config

value

Load X with defined config

value. Return from subroutine

381

Abacus Software C-128 Internals

a*****************************

F7F0:

F7F1:

F7F2:

F7F3:

F7F4:

F7F5:

F7F6:

F7F7:

F7F8:

F7F9:

F7FA:

F7FB:

F7FC:

F7FD:

F7FE:

F7FF:

3F

7F

BF

FF

16

56

96

D6

2A

6A

AA

EA

06

0A

01

00

(% 0011

(% 0111

(% 1011

(% 1111

(% 0001

(% 0101

(% 1001

(% 1101

(% 0010

(% 0110

(% 1010

(% 1110

(% 0000

(% 0000

(% 0000

(% 0000

1111)

1111)

1111)

1111)

0110)

0110)

0110)

0110)

1010)

1010)

1010)

1010)

0110)

1010)

0001)

0000)

F800:

F803:

F806:

F807:

F809:

F80C:

AD

8E

AA

Bl

8E

60

00

00

FF

00

FF

FF

FF

LDA

STX

TAX

LDA

STX

RTS

$FF00

$FF00

($FF),Y

$FF00

F80D:

F80E:

F811:

F814:

F815:

48

AD 00 FF

8E 00 FF

AA

68

PHA

LDA $FF00

STX $FF00

TAX

PLA

Configuration table for

all "far" operations

Bit 0:0= I/O area $D000-$DFFF

1 = RAM/ROM area

Bit 1: 0=ROM in $4000 - $7FFF

1 =RAMin$4000-$7FFF

Bit 3,2: 00 = System ROM

$8000-$BFFF

01 = Internal function ROM

10 = External function ROM

11= RAM area

Bit 5,4: 00 = System ROM

$C000-$FFFF

01 = Internal function ROM

10 = External function ROM

11= RAM area

Bit 7,6:00 = RAM bank 0

01= RAM bank 1

10 = RAM bank 2 (bank 0)

11= RAM bank 3 (bank 1)

ROM copy of FETCH routine

($02A2)

Save current config value in A

Set new config value via X

Transfer old value to X

!!!LDA(Fetvec),Y

Restore old configuration

Return from subroutine

ROM copy of STASH routine

($02AF)

Save ace contents for STA

Save current config value in A

Set new config value via X

Transfer old value to X

Get the STA value back

382

Abacus Software C-128 Internals

F816: 91 FF STA ($FF),Y

F818: 8E 00 FF STX $FF00

F81B: 60 RTS

F81C:

F81D:

F820:

F823:

F824:

F825:

F827:

F82A:

48

AD

8E

AA

68

Dl

8E

60

00

00

FF

00

FF

FF

FF

PHA

LDA

STX

TAX

PLA

CMP

STX

RTS

$FF00

$FF00

($FF),Y

$FF00

F82B:

F82E:

F830:

F832:

F834:

F835:

F836:

F838:

F839:

F83B:

F83D:

F840:

20 E3 02

85 06

86 07

84 08

08

68

85 05

BA

86 09

A9 00

8D 00 FF

60

JSR

STA

STX

STY

PHP

PLA

STA

TSX

STX

LDA

STA

RTS

$02E3

* $06

* $07

* $08

* $05

* $09

* $00

$FF00

F841:

F843:

F845:

F846:

F847:

A2 00

B5 03

48

E8

E0 03

LDX

LDA

PHA

INX

CPX #

$00

* $03,X

$03

!!!STA(Stavec),Y

Restore old config value

Return from subroutine

ROM copy ofCMPARE routine

($02BE)

Save comparison value for CMP

Save current config value in A

Set new config value via X

Transfer old value to X

Get CMP comparison value back

!!!CMP(Cmpvec),Y

Restore old config

Return from subroutine

ROM copy of JSRFAR routine

($02CD)

JMPFAR rout:JMP to any bank

Save ace in Z-P ace storage

Save X-reg in Z-P X-reg storage

Save Y-reg in Z-P Y-reg storage

Save processor status on stack

Get status in ace

And save in Z-P status storage

Stack pointer via X

Save in Z-P stack ptr storage

Load configuration reg with $00

And enable all system ROMs

Return from subroutine

ROM copy of JMPFAR routine

($02E3)

In this loop, the values placed in

Zero page (bytes $03-$04-$05)

for the program counter and

processor status are placed on t

the stack. They are required for

383

Abacus

F849:

F84B:

F84D:

F850:

F853:

F855:

F857:

F859:

Software

90 F8

A6 02

20 6B FF

8D 00 FF

A5 06

A6 07

A4 08

40

BCC

LDX

JSR

STA

LDA

LDX

LDY

RTI

$F843

* $02

$FF6B

$FF00

* $06

* $07

* $08

C-128 Internals

F85A: AE 00 FF

F85D: 8C 01 DF

F860: 8D 00 FF

F863: 8E 00 FF

F866: 60

LDX $FF00

STY $DF01

STA $FF00

STX $FF00

RTS

F867:

F868:

F86A:

F8 6D:

F870:

F873:

F875:

F877:

F87A:

F87C:

F87E:

F881:

F883:

F886:

F889:

F88B:

F88C:

F88E:

F890:

78

A2

8E

AE

BD

F0

A0

BD

85

84

BD

85

20

CE

10

58

A2

A9

85

03

CO

CO

Cl

11

00

BC

03

04

CO

02

CD

CO

E2

08

30

BF

OA

OA

OA

E2

E2

02

OA

SEI

LDX

STX

LDX

LDA

BEQ

LDY

LDA

STA

STY

LDA

STA

JSR

DEC

BPL

CLI

LDX

LDA

STA

$03

$0AC0

$0AC0

$OAC1,X

$F886

$00

$E2BC,X

* $03

* $04

$E2C0,X

* $02

$02CD

$0AC0

$F86D

$08

$30

* $BF

the RTI at the end of the routine

Load bank pntr for config displ.

Kernal GETCFG: config value

from table. Set config register

Get zero-page ace storage

Get zero-page X-reg storage

Get zero-page Y-reg storage

Jump to prg counter address

Copy of routine in ($03F0)

Get configuration regi in X-reg

Set DMA controller Ctrl register

Load config register with ace

Load config register with X-reg

Return from subroutine

Kernal routine: PHOENIX

Old cold-start routines

Disable system interrupts

Initialize bank and displ. pntrs

For external card to #3

Get displacement pntr in X-reg

Check ID table for cart, spaces

Table entry = 0: not "logged in"

Set entry address low to $00

Get entry addr high from table

Store entry addr high in PC hi

Store entry address low in PC lo

Get bank value from bank table

Store it in Z-P bank storage

JSRFAR rout.: JSR to any bank

+RTS

Dec. displacement pointer by 1

Check all 4 cartridge areas

Enable system interrupts

Device addr for boot-load (8)

Load ace with character <0>

Zero-page byte for serial buffer

384

Abacus

F892:

F894:

F895:

F898:

F89A:

F89C:

F89E:

F8$F:

F8A1:

F8A2:

F8A4:

F8A5:

F8A7:

F8A9:

F8AC:

F8AF:

F8B0:

F8B2:

F8B4:

F8B7:

F8B9:

F8BB:

F8BE:

F8C0:

F8C2:

F8C4:

F8C7:

F8C9:

F8CB:

F8CD:

F8D0:

F8D3:

F8D5:

F8D7:

F8D9:

F8DB:

F8DE:

F8E0:

Software

86

8A

20

A2

86

86

E8

86

C8

DO

E8

DO

A2

BD

9D

CA

10

A5

8D

A9

A2

20

A9

A2

AO

20

A9

AO

A6

20

20

BO

A9

A2

AO

20

A9

A8

BA

3D

00

9F

C2

Cl

FD

FA

OC

08

00

F7

BF

06

00

OF

3F

01

15

FA

31

00

OF

BA

38

CO

16

01

16

FA

31

OD

F2

FA

01

01

F7

F7

F7

FF

F7

STX

TXA

JSR

LDX

STX

STX

INX

STX

INY

BNE

INX

BNE

LDX

LDA

STA

DEX

BPL

LDA

STA

LDA

LDX

JSR

LDA

LDX

LDY

JSR

LDA

LDY

LDX

JSR

JSR

BCS

LDA

LDX

LDY

JSR

LDA

TAY

* $BA

$F23D

$00

* $9F

* $C2

* $C1

$F8A1

$F8A1

$0C

$FA08,X

$0100,X

$F8A9

* $BF

$0106

$00

$0F

$F73F

$01

$15

$FA

$F731

$00

$0F

* $BA

$F738

$FFC0

$F8EB

$01

$16

$FA

$F731

$0D

C-128 Internals

Set device address for disk 8

Copy device addr (8) into ace

Set standard I/O devices

Init. length cntr for boot-load

Filename with #0

Set sector # for boot load ($00)

Increment init. counter by 1

Set track # for boot load ($01)

Increment Y loop register by 1

Loop 256 times, until reg is zero

Increment X loop register by 1

Loop 256 times, until reg is zero

Displace pointer for DOS buffer

Get char of DOS BOOT cmd

And copy into DOS string buffer

Dec. displacement pointer by 1

Loop until 13 chars transferred

Get drive # from Z-P storage

And put in DOS buffer

Bank # for current LSV call

Bank # for current filename

Routine SETBNK: Bank for

LSV+filename

Set length of filename to 1

Addr low of filename (=FA15)

Addr of high filename ("I")

Routine SETNAM: Set filename

Logical file number in ace (0)

Secondary addr in Y-reg

Set device addr in X-reg

Routine SETLFS: Set file param

Kernal OPEN: Open file

0,8,15/T

Error encoutnered, end boot load

Set length of filename to 1

Addr low of filename (=FA16)

Add high of filename ("#")

Routine SETNAM: Set filename

Logical file number in ace (13)

And set as sec. address (13)

385

Abacus

F8E1:

F8E3:

F8E6:

F8E9:

F8EB:

F8EE:

F8F0:

F8F2:

F8F4:

F8F6:

F8F9:

F8FB:

F8FE:

F901:

F903:

F904:

F906:

F908:

Software

A6

20

20

90

4C

A9

A0

85

84

20

A2

BD

DD

DO

E8

EO

90

20

BA

38

CO

03

8B

00

OB

AC

AD

D5

00

00

C4

E8

03

F3

17

F7

FF

F9

F9

OB

E2

FA

LDX

JSR

JSR

BCC

JMP

LDA

LDY

STA

STY

JSR

LDX

LDA

CMP

BNE

INX

CPX

BCC

JSR

* $BA

$F738

$FFC0

$F8EE

$F98B

$00

$0B

* $AC

* $AD

$F9D5

$00

$0B00,X

$E2C4,X

$F8EB

$03

$F8FB

$FA17

C-128 Internals

F90B: OD 42 4F 4F 54 49 4E 47

F913: 20 00

F915:

F918:

F91A:

F91B:

F91D:

F91F:

F922:

F924:

F927:

F928:

F92A:

F92C:

BD 00 OB

95 A9

E8

EO 07

90 F6

BD 00 OB

FO 06

20 D2 FF

E8

DO F5

86 9E

20 17 FA

LDA

STA

INX

CPX

BCC

LDA

BEQ

JSR

INX

BNE

STX

JSR

$0B00,X

* $A9,X

* $07

$F915

$0B00,X

$F92A

$FFD2

$F91F

* $9E

$FA17

Get device address in X-reg

Routine SETLFS: Set file param

Kernal OPEN: open file

13,8,13,"#"

All clear, then continue boot load

Initialize disk, then RTS

Initialize the 2-byte zero-page

Pointer ($AC-$AD) with the

Start address of the

System cassette buffer ($0B00)

Load start sctr 01 00 in cass buff

Clear loop and displ. pointer

Check the first 3 bytes of the

Start sector read from the disk

Into the cassette buffer for the

Auto-start code (<CxB><M>).

If found, then it is a boot prgm

Kernal PRIMM: Output string

Kernal constant for BOOTING

message

<cr> <o> <o> <t> <i> <n> <g>

<space>

Set pointer and boot status

Get 4 address load pointers from

BOOT sector at address $0B03

and init. the 2 zero-page address

Pointers in $AC-$AD/ $AE-$AF

Loop until pointers are loaded

Get output char from cass buffer

The value $00 is the end marker

Kernal BSOUT: Output a char

Incr displ. to cassette buffer by 1

Uncond. jump to char output

Store displ. to cassette buffer

Kernal PRIMM: Output string

386

Abacus Software C-128 Internals

•a****************************

F92F: 2E 2E 2E OD 00

F932:

F935:

F938:

F93A:

F93C:

F93E:

F941:

F943:

F945:

F948:

F94A:

F94B:

F94D:

F94E:

F951:

F953:

F954:

F956:

F958:

F95A:

F95D:

F95E:

F960:

F963:

F965:

F967:

F969:

F96A:

F96B:

F96C:

F96E:

F970:

F973:

F975:

OD 00 A5

AE 85 C6

A5 AF

FO 09

C6 AF

20 B3 F9

E6 AD

DO F3

20 8B F9

A6 9E

2C

E6 9F

E8

BD 00 OB

DO F8

E8

86 04

A6 9E

A9 3A

9D 00 OB

CA

A5 BF

9D 00 OB

86 9E

A6 9F

FO 15

E8

E8

8A

A6 9E

AO OB

20 31 F7

A9 00

AA

ORA $A500

LDX $C685

LDA * $AF

BEQ $F945

DEC * $AF

JSR $F9B3

INC * $AD

BNE $F938

JSR $F98B

LDX * $9E

.Byte $2C

INX * $9F

INX

LDA $0B00,X

BNE $F94B

INX

STX * $04

LDX * $9E

LDA # $3A

STA $0B00,X

DEX

LDA * $BF

STA $0B00,X

STX * $9E

LDX * $9F

BEQ $F97E

INX

INX

TXA

LDX * $9E

LDY # $0B

JSR $F731

LDA # $00

TAX

BOOTING message constants

<.> <.> <.> <CR>

BOOT routine

Bankpntr BOOT sector in bank

Copy pointer for STASH routine

Get cntr for #of BOOT blocks

All BOOT blocks read, then exit

Deer, boot block counter by 1

Load next track/sector from disk

Increment load addr high by 1

Jump to read next block

Initialize disk to BOOT

Displacement to cassette buffer

Skip to $F94D

Incr. filename length counter

Set displ. to char after 0 code

Get char after 0 code (filename)

Not zero, continue read

Set displ. to char after 0 code

And place in PC lo pointer

Displ. to char before filename

Replace 0 with <:>

And put in front of filename

Set displ. to character before <:>

ASCII character of drive spec

Put <0:xxxx> front of filename

Save low address of filename

Get length of filename

No filename present, then skip

Incr. filename length ptr by 2

Because <0:> included in count

Copy length of filename to A

Get address low of filename

Set address high of filename

Routine SETNAM: Set filename

Initialize ace & X-reg with $00

for the SETBNK routine

387

Abacus

F976:

F979:

F97B:

F97E:

F980:

F982:

F984:

F986:

F989:

F98A:

Software

20 3F F7

A9 00

20 69 F2

A9 OB

85 03

A9 OF

85 02

20 CD 02

18

60

JSR

LDA

JSR

LDA

STA

LDA

STA

JSR

CLC

RTS

$F73F

$00

$F2 69

$0B

* $03

$0F

* $02

$02CD

C-128 Internals

Routine SETBNK: bank for

LSV+filename

Set ace as "LOAD" marker

Jump to kernal LOAD vector

Set the Z-P storage for PC hi

To $0B (cassette buffer)

Set the Z-P pointer to the value

$0F (system ROM)

JSRFAR rout,: JSR bank +RTS

Clear carry for OK indicator

Return from subroutine

F98B;

F98C:

F98D:

F990:

F992:

F993:

F996:

F998:

F99B:

F99D:

F99F:

F9A2:

F9A4:

F9A7:

F9AA:

F9AC:

F9AD:

F9B0:

F9B1:

F9B2:

08

48

20

A9

18

20

A2

20

B0

A9

20

A9

20

20

A9

38

20

68

28

60

CC

0D

C3

00

C9

0A

55

D2

49

D2

CC

00

C3

FF

FF

FF

FF

FF

FF

FF

PHP

PHA

JSR

LDA

CLC

JSR

LDX

JSR

BCS

LDA

JSR

LDA

JSR

JSR

LDA

SEC

JSR

PLA

PLP

RTS

$FFCC

$0D

$FFC3

$00

$FFC9

$F9A7

$55

$FFD2

$49

$FFD2

$FFCC

$00

$FFC3

Floppy init. for BOOTING

Save processor status on stack

Save ace contents on stack

Kernal CLRCH: Reset I/O chnls

Close logical file number (13)

Set carry to "everything OK"

Kemal CLOSE: Close file

Set logical file (0) to output

Kernal CKOUT: Set output chnl

If error, then close again

Load ace with character <U>

Kernal BSOUT: Output a char

Load ace with character <I>

Kernal BSOUT: Output a char

Kernal CLRCH: Reset I/O chnls

Close logical file number (0)

Set carry to "everything OK"

Kemal CLOSE: Close file

Get ace contents from stack

Get old processor status

Return from subroutine

388

Abacus Software C-128 Internals

••••a*************************

F9B3:

F9B5:

F9B6:

F9B8:

F9BA:

F9BC:

F9BE:

F9C0:

F9C1:

F9C4:

F9C7:

F9CA:

F9CC:

F9CF:

F9D2:

F9D5:

F9D7:

F9DA:

F9DC:

F9DF:

F9E2:

F9E3:

F9E5:

F9E8:

F9EA:

F9ED:

F9EF:

F9F2:

F9F5:

F9F6:

F9F8:

A6

E8

EO

90

A2

E6

86

8A

20

8D

8E

A5

20

8D

8E

A2

20

A2

BD

20

CA

10

20

A2

20

A0

20

20

C8

DO

4C

C2

15

04

00

Cl

C2

FB

00

01

Cl

FB

03

04

00

C9

OC

00

D2

F7

CC

OD

C6

00

CF

BC

F7

CC

F9

01

01

F9

01

01

FF

01

FF

FF

FF

FF

F7

FF

LDX

INX

CPX

BCC

LDX

INC

STX

TXA

JSR

STA

STX

LDA

JSR

STA

STX

LDX

JSR

LDX

LDA

JSR

DEX

BPL

JSR

LDX

JSR

LDY

JSR

JSR

INY

BNE

JMP

* $C2

$15

$F9BE

$00

* $C1

* $C2

$F9FB

$0100

$0101

* $C1

$F9FB

$0103

$0104

$00

$FFC9

$0C

$0100,X

$FFD2

$F9DC

$FFCC

$0D

$FFC6

$00

$FFCF

$F7BC

$F9EF

$FFCC

Reset track and sector in DOS

output buffer and load sectpr

Get sector # from z-page storage

Increment sector by 1

Check for valid sector number

Sector # less than 21, then OK

Load value for sector number 0

Increment track number by 1

Reset zero-page sector number

Copy sector number in ace an

Convert sector to 2-byte ASCII

Put sector # low in DOS buffer

Put sector # high in DOS buffer

Load ace with track # from Z-P

Convert track to 2-byte ASCII

Put track # low in DOS buffer

Put track # high in DOS buffer

Set logical file #0 fro CKOUT

Kernal CKOUT: Set output chnl

Output 13 char from DOS buffer

Get 1 char from DOS output buf

Kernal BSOUT: Output a char

Loop counter to DOS buffer -1

Loop until 13 characters output

Kernal CLRCH: Reset I/O chnls

Set logical file (13) to input

Kernal CHKIN: Set input chnl

Displ. for STASH routine to #0

Kernal BASIN: Read a character

STASH routine for LSV operat.

Incr. STASH displ. pointer by 1

Loop until 256 bytes read

Kernal CLRCH: Reset I/O chnls

389

Abacus Software C-128 Internals

****************************** Process ace contents as 2-byte

ACSn(X=hi,A=lo) (only to#99)

F9FB:

F9FD:

F9FE:

FAOO:

FA02:

FA03:

FA05:

FA07:

A2

38

E9

90

E8

BO

69

60

30

0A

03

F9

3A

LDX

SEC

SBC

BCC

INX

BCS

ADC

RTS

$30

$0A

$FA05

$F9FE

$3A

ASCII value for char <0> to X

Set carry for subtraction

Subtract dec 10 from ace

Carry clear, then underflow, exit

Increment ASCII hi char by 1

Unconditional jump

Underflow, create ASCII lo

Return from subroutine

Kernal constant for

BOOT-LOAD

FA08: 30 30 20 31 30 20 30 20

FA10: 33 31 3A 31 55 49 23

FA17:

FA18:

FA19:

FA1A:

FA1B:

FA1C:

FA1E:

FA1F:

FA22:

FA24:

FA27:

FA2A:

FA2C:

FA2F:

FA31:

FA33:

FA35:

FA38:

FA3A:

48

8A

48

98

48

A0

BA

FE

DO

FE

BD

85

BD

85

Bl

F0

20

90

68

00

04

03

05

04

CE

05

CF

CE

05

D2

E4

01

01

01

01

FF

PHA

TXA

PHA

TYA

PHA

LDY

TSX

INC

BNE

INC

LDA

STA

LDA

STA

LDA

BEQ

JSR

BCC

PLA

$00

$0104,X

$FA27

$0105,X

$0104,X

* $CE

$0105,X

* $CF

($CE),Y

$FA3A

$FFD2

$FA1E

<3> <:> <U> <I> <#>

Kernal routine: PRIMM

Output the test following JSR

Store ace contents on stack

Save current X-reg contents on

Stack via ace

Save current Y-reg contents on

Stack via ace

Load displacement pntr with $00

Load stack pointer into X

Lo byte of RTS addr in stack+1

No overflow, skip

Hi byte of RTS addr in stack +1

Put lo byte of RTS addr in stack

In Z-P (for post-indexed addr)

Put hi byte of RTS addr in stack

In Z-P (for post-indexed addr)

Get byte from RTS addr + Y-reg^

$00 = end marker, then exit rout

Kernal BSOUT: Output char

No error, then next character

Get a byte from the stack and

390

Abacus

FA3B:

FA3C:

FA3D:

FA3E:

FA3F:

Software

A8

68

AA

68

60

TAY

PLA

TAX

PLA

RTS

C-128 Internals

Restore old contents of Y-reg

Get a byte from the stack and

Restore old contents of X-reg

Restore old ace contents

Return from subroutine

FA40:

FA41:

FA43:

FA46:

FA49:

FA4B:

FA4E:

FA51:

FA53:

FA56:

FA59:

FA5C:

FA5F:

FA62:

D8

A9

8D

AC

30

20

20

DO

20

20

20

6C

20

4C

7F

0D

0D

14

3D

El

OC

56

09

00

00

05

33

DD

DD

F6

FF

E0

El

CO

0A

E8

FF

CLD

LDA

STA

LDY

BMI

JSR

JSR

BNE

JSR

JSR

JSR

JMP

JSR

JMP

$7F

$DD0D

$DD0D

$FA5F

$F63D

$FFE1

$FA5F

$E056

$E1O9

$C000

($0A00)

$E805

$FF33

FA65:

FA66:

FA69:

FA6B:

FA6E:

FA71:

FA74:

FA77:

FA78:

FA7A:

FA7D:

D8

20

90

20

20

AD

AD

4A

90

20

4C

24

12

F8

DO

0D

04

03

06

33

CO

F5

EE

DC

0A

40

FF

CLD

JSR

BCC

JSR

JSR

LDA

LDA

LSR

BCC

JSR

JMP

$C024

$FA7D

$F5F8

$EED0

$DC0D

$0A04

A

$FA7D

$4006

$FF33

NMI routine

Reset decimal mode

Set NMI marker

Clear NMI possibility

Read and clear flags

Check if RS-23 is active

Read shift RUN/STOP

Kernal STOP: Test STOP key

Not pressed, then skip I/O init

Stand,vctrs for I/O+ interrupt

Initialize I/O

Init I/O and clear screen

BASIC warm-start-entry($4003)

Jump to NMI rout, for RS-232

Return to the IRQ calling routine

IRQ routine

Reset decimal mode

Entry to editor IRQ routine

Exit IRQ for raster interrupt

Rout. UDTIMrSet 24hr elk

Check recorder-keyboard

Get CIA interrupt control reg.

Get sy NMI/reset status pointer

Check if bit 0 is cleared

Yes, then back to IRQ routine

BASIC IRQ entry

Return to the IRQ calling routine

391

Abacus Software C-128 Internals

FA80:

FA88:

FA90:

FA98:

FAAO:

FAA8:

FABO:

FAB8:

FACO:

FAC8:

FADO:

FAD8:

14

33

35

37

39

2B

5C

31

84

IB

08

FF

OD

57

52

59

49

50

2A

5F

38

2B

30

ID

41

44

47

4A

4C

3B

04

35

2D

2E

88

34

36

38

30

2D

13

32

09

OA

91

85

5A

43

42

4D

2E

01

20

32

OD

11

86

53

46

48

4B

3A

3D

02

34

36

9D

87

45

54

55

4F

40

5E

51

37

39

ID

11

01

58

56

4E

2C

2F

03

31

33

FF

Keybaord decoder table la

ASCII character set normal

****************************** Keyboard decoder table 2a

ASCII character set with shift

FAD9:

FAE1:

FAE9:

FAF1:

FAF9:

FB01:

FB09:

FB11:

FB19:

FB21:

FB2 9:

FB31:

94

23

25

27

29

DB

A9

21

84

IB

08

FF

8D

D7

D2

D9

C9

DO

CO

5F

38

2B

30

9D

Cl

C4

C7

CA

CC

5D

04

35

2D

2E

8C

24

26

28

30

DD

93

22

18

OA

91

89

DA

C3

C2

CD

3E

01

AO

32

8D

11

8A

D3

C6

C8

CB

5B

3D

02

34

36

9D

8B

C5

D4

D5

CF

BA

DE

Dl

37

39

ID

91

01

D8

D6

CE

3C

3F

83

31

33

FF

****************************** Keyboard decoder table 3a

ASCII character set with C=

FB32:

FB3A:

FB42:

FB4A:

FB52:

FB5A:

FB62:

FB6A:

94

96

98

9A

29

A6

A8

81

8D

B3

B2

B7

A2

AF

DF

5F

9D

BO

AC

A5

B5

B6

5D

04

8C

97

99

9B

30

DC

93

95

89

AD

BC

BF

A7

3E

01

AO

8A

AE

BB

B4

Al

5B

3D

02

8B

Bl

A3

B8

B9

A4

DE

AB

91

01

BD

BE

AA

3C

3F

03

392

Abacus Software C-128 Internals

FB72: 84 38 35 18 32 34 37 31

FB7A: IB 2B 2D OA 8D 36 39 33

FB82: 08 30 2E 91 11 9D ID FF

FB8A: FF

****************************** Keyboard decoder table 4a

ASCII character set with CTRL

FB8B:

FB93:

FB9B:

FBA3:

FBAB:

FBB3:

FBBB:

FBC3:

FBCB:

FBD3:

FBDB:

FBE3:

FF

1C

9C

IF

12

FF

1C

90

84

IB

08

FF

FF

17

12

19

09

10

FF

06

38

2B

30

FF

01

04

07

OA

OC

ID

FF

35

2D

2E

FF

9F

IE

9E

92

FF

FF

05

18

0A

91

FF

1A

03

02

0D

FF

FF

FF

32

8D

11

FF

13

06

08

0B

IB

IF

FF

34

36

9D

FF

05

14

15

OF

00

IE

11

37

39

ID

FF

FF

18

16

OE

FF

FF

FF

31

33

FF

****************************** Keyboard decoder table 5a

ASCII character set with ALT

FBE4:

FBEC:

FBF4:

FBFC:

FC04:

FC0C:

FC14:

FC1C:

FC24:

FC2C:

FC34:

FC3C:

14

33

35

37

39

2B

5C

31

84

IB

08

FF

0D

D7

D2

D9

C9

DO

2A

5F

38

2B

30

ID

Cl

C4

C7

CA

CC

3B

04

35

2D

2E

88

34

36

38

30

2D

13

32

09

0A

91

85

DA

C3

C2

CD

2E

01

20

32

OD

11

86

D3

C6

C8

CB

3A

3D

02

34

36

9D

87

C5

D4

D5

CF

40

5E

51

37

39

ID

11

01

D8

D6

CE

2C

2F

03

31

33

FF

****************************** Free area

FC3D:

FC7D:

FFEF:

FF FF

.

FF

FF

.FF

•

FF

FF

FF

FF Free area U.S. Versions

393

Abacus Software C-128 Internals

FC80: 8D C5 OA

FC83: 8D 18 D4

FC86: 60

STA $0AC5

STA $D418

RTS

FC87:

FC8A:

FC8C:

FC8E:

FC90:

FC92:

FC95:

FC97:

FC99:

FC9B:

FC9D:

FC9F:

FCA2:

FCA4:

FCA6:

FCA8:

2C

30

A5

29

FO

AD

C9

FO

A9

AO

DO

AD

C9

FO

A9

AO

C5 OA

37

D3

10

OD

3F 03

FD

2A

34

FE

OB

3F 03

FA

ID

6F

CO

BIT

BMI

LDA

AND

BEQ

LDA

CMP

BEQ

LDA

LDY

BNE

LDA

CMP

BEQ

LDA

LDY

$0AC5

$FCC3

* $D3

$10

$FC9F

$033F

$FD

$FCC3

$34

$FE

$FCAA

$033F

$FA

$FCC3

$6F

$C0

FCAA:

FCAC:

FCAE:

FCBO:

FCB2:

FCB5:

85 CC

84 CD

AO OB

Bl CC

99 3E 03

88

STA * $CC

STY * $CD

LDY # $0B

LDA ($CC),Y

STA $033E,Y

DEY

International models only

used to load International

character sets

Clear SID registers and edit

pointers

Clear sys accent mode flag(A=O)

Clear SID volume register

Return from subroutine

Entry to kernal routine: KEY

International models only

Test bit 7 of accent-mode flag

Bit 7 set, construct accent

Get current SHIFT pattern in ace

Test bit 4 for ASCII-DIN switch

If ASCII char set selected, skip

Test, if the high addr of the first

Decodertable points to DIN set

Yes, then OK and skip

Load X and A as pointers for the

Vctr table to DIN decoder table

Uncond. jump to load routine

Test if the high addr of the first

Decoder table points to ASCII

set. Yes, then OK and skip

Load X and A as pointers for the

Vect table - ASCII decoder table

Reset table set vector

International models only

Save pointer to vector table low

Save pointer to vector table high

Loop counter for 6 vectors

Get byte from ROM vector table

Store it in the system vector table

Decrement vector loop counter

394

Abacus

FCB6:

FCB8:

FCB9:

FCBC:

FCBD:

FCBE:

FCC1:

FCC2:

Software

10 F8

C8

8C C5 OA

08

78

20 OC CE

28

60

BPL

INY

STY

PHP

SEI

JSR

PLP

RTS

$FCB0

$0AC5

$CE0C

C-128 Internals

Loop until 6 vectors copied

Count Y-reg back up to zero

And clear the accent-mode flag

Store processor status on stck

Disable system interrupts

Kernal routine: DLCHR

Get processor status back: CLI

Return from subroutine

FCC3:

FCC6:

FCC9:

FCCB:

FCCD:

FCDO:

FCD2:

FCD4:

FCD7:

FCD8:

FCD9:

FCDA:

FCDB:

FCDE:

FCDF:

FCE1:

FCE4:

FCE6:

FCE9:

FCEA:

FCEC:

FCEE:

FCEF:

FCF1:

FCF3:

FCF6:

FCF8:

4C 5D C5

AE 3F 03

E0 FD

DO 55

AE C5 0A

30 50

F0 ID

BC 45 FE

CA

88

48

98

DD 45 FE

68

90 08

D9 4A FE

DO F2

B9 65 FE

48

29 7F

C9 20

68

90 23

A2 05

DD 3F FE

F0 03

CA

JMP

LDX

CPX

BNE

LDX

BMI

BEQ

LDY

DEX

DEY

PHA

TYA

CMP

PLA

BCC

CMP

BNE

LDA

PHA

AND

CMP

PLA

BCC

LDX

CMP

BEQ

DEX

$C55D

$033F

$FD

$FD22

$0AC5

$FD22

$FCF1

$FE45,X

$FE45,X

$FCE9

$FE4AfY

$FCD8

$FE65fY

$7F

$20

$FD14

$05

$FE3F,X

$FCFB

Check the accent keys and

generate combine accent

International models only

Routine: read keyboard matrix

Check if the high addres of first

Decoder table points to DIN set

No, skip: Store keypress

Check system accent-mode flag

Bit 7 set, store keypress

No accent set, then skip

Get value from combin. table

Decrement table value by 1

Displacement table -1

Save character code on stack

Get displace from table in ace

Compare with combination table

Get character code from stack

Combin. table searched, skip

Is it a combination character?

Continue searching comb, table

Get character from table

Store character code from stack

Mask out bit 7, not RVS char

Compare to space/shift space

Get char code back from stack

Compare < $20: disable Ctrl char

Loop counter for accent table

Compare char with accent table

Character found in table, exit

Decrement loop counter by 1

395

Abacus

FCF9:

FCFB:

FCFE:

FDOO:

FD02:

FD03:

FD05:

FD07:

FD09:

FDOB:

FDOD:

FD10:

FD12:

FD14:

Software

DO F8

8E C5 OA

EO 00

FO 20

A8

24 F6

30 OD

24 D7

10 OA

A2 OA

20 DA CD

29 40

DO 06

60

BNE

STX

CPX

BEQ

TAY

BIT

BMI

BIT

BPL

LDX

JSR

AND

BNE

RTS

$FCF3

$0AC5

$00

$FD22

* $F6

$FD14

* $D7

$FD15

$0A

$CDDA

$40

$FD1A

C-128 Internals

a*****************************

FD15:

FD18:

FD1A:

FD1B:

FD1D:

FD1F:

FD22:

FD24:

FD26:

AD 27 OA

DO FA

98

09 40

29 7F

4C 2F CC

A6 D3

A4 D5

6C 3C 03

LDA $0A27

BNE $FD14

TYA

ORA # $40

AND # $7F

JMP $CC2F

LDX * $D3

LDY * $D5

JMP ($033C)

FD29:

FD31:

FD39:

FD41:

FD49:

FD51:

FD59:

FD61:

FD69:

14

33

35

37

39

BE

5B

31

84

OD

57

52

5A

49

50

2B

3C

38

ID

41

44

47

4A

4C

BB

04

35

88

34

36

38

30

AF

13

32

09

85

59

43

42

4D

2E

01

20

32

86

53

46

48

4B

BC

23

02

34

87

45

54

55

4F

BD

5D

51

37

11

01

58

56

4E

2C

2D

03

31

Loop until all comp. performed

Store dispL

Displ. = #0, no accent present

If zero, then store keypress

Copy character code in Y-reg

Check if the auto-insert mode is

Enabled. No, then RTS

Check 40/80-column pointer

40-column screen active, skip

Load X-reg with # of VDC reg

Read corresponding VDC reg

Check current cursor mode

If flash mode, output character

Return from subroutine

Output constructed accent

International models only

Check cursor on/off pointer

Value not=0: Cursordisable;RTS

Get character code back in ace

Set bit 6 in character code

Mask bit 7, not RVS character

Output char at cursor position

Get SHIFT pattern in X-reg

Flag for pressed key in Y-reg

Vector: Store keypress ($C6AD)

Keyboard decoder table lb

DIN charr set normal, Ctrl, Alt

International models only

396

Abacus Software C-128 Internals

FD71: IB 2B 2D OA OD 36 39 33

FD79: 08 30 2E 91 11 9D ID FF

FD81: FF

****************************** Keyboard decoder table 2b

DIN character set with shift

International models only

FD82:

FD8A:

FD92:

FD9A:

FDA2:

FDAA:

FDB2:

FDBA:

FDC2:

FDCA:

FDD2:

FDDA:

94

40

25

2F

29

3F

5E

21

84

IB

08

FF

8D

D7

D2

DA

C9

DO

2A

3E

38

2B

30

9D

Cl

C4

C7

CA

CC

DB

04

35

2D

2E

8C

24

26

28

3D

CO

93

22

18

0A

91

89

D9

C3

C2

CD

3A

01

A0

32

8D

11

8A

D3

C6

C8

CB

DC

27

02

34

36

9D

8B

C5

D4

D5

CF

DD

5C

Dl

37

39

ID

91

01

D8

D6

CE

3B

5F

83

31

33

FF

****************************** Keyboard decoder table 3b

DIN character set with C=

International models only

FDDB:

FDE3:

FDEB:

FDF3:

FDFB:

FE03:

FE0B:

FE13:

FE1B:

FE23:

FE2B:

FE33:

94

96

98

9A

Dl

AB

AD

81

84

IB

08

FF

8D

A7

A9

C2

C3

D9

A6

Bl

38

2B

30

9D

A8

C4

DF

D5

C8

DB

04

35

2D

2E

8C

97

99

9B

Cl

BF

93

95

18

0A

91

89

A2

C5

Al

CB

BA

01

A0

32

8D

11

8A

AA

D3

C9

DA

CA

DD

02

34

36

9D

8B

A3

CE

D6

D8

B0

DE

A5

37

39

ID

91

01

A4

D7

CD

AC

B9

03

31

33

FF

397

Abacus Software
C-128 Internals

FE34: 29 FD ($FD29)

FE36: 82 FD ($FD82)

FE38: DB FD ($FDDB)

FE3A: 8B FB ($FB8B)

FE3C: 2 9 FD

FE3E: 29 FD

($FD29)

($FD29)

FE40: AF CO BF 00 00

FE45: 01 03 07 0C 0C 0C

FE4B: 45 CO 41 45 55 AF 41 45

FE53: 49 4F 55

FE56: FF FF FF FF FF FF FF FF

FE5E: FF FF FF FF FF FF FF FF

FE64:

FE6C:

FE71:

FEFD:

AC

B6

FF

BF

B7

FF

FE79:

B2

B8

FF

AE

FF

B3 BF

FF FF

FF FF FF .

FF FF FF

B4

FF

•

B5

FF

Pointers to keyboard decoder
tables

International models only

Keyboard decoder table lb

Keyboard decoder table 2b

Keyboard decoder table 3b

Keyboard decoder table 4a

Keyboard decoder table lb

Keyboard decoder table lb

Table of three accent characters

International models only

<'><'> <A> (lastviaC=/<>)

Offset table to combinations

of combined characters

International models only

Table of possible characters for a

Combined accent character

International models only
<E> <*> <A> <E> <U> <> <A> <E>

Fill values; not used

Table of combined accent

characters

International models only

<e'> <A> <'a> <e'> <*u> <A> <aA> <eA>

<Ai> <Ao> <Au>

Fill values; not used

398

Abacus Software C-128 Internals

FFOO:

FF01:

FF02:

FF03:

FF04

00

3F

7F

01

41

.Byte $00

.Byte $3F

.Byte $7F

.Byte $01

.Byte $41

American & International

Versions

Copy of the configuration

registers

Configuration register (CR)

Load config. register A (LCRA)

Load config.register B (LCRB)

Load config. register C (LCRC)

Load config.register D (LCRD)

****************************** Kernal NMI routine

FF05:

FF06:

FF07:

FF08:

FF09:

FF0A:

FF0B:

FF0E:

FF0F:

FF11:

FF14:

78

48

8A

48

98

48

AD 00 FF

48

A9 00

8D 00 FF

6C 18 03

SEI

PHA

TXA

PHA

TYA

PHA

LDA

PHA

LDA

STA

JMP

$FF00

$00

$FF00

($0318)

FF17:

FF18:

FF19:

FF1A:

FF1B:

FF1C:

FF1F:

FF20:

FF22:

FF25:

FF26:

FF2 9:

48

8A

48

98

48

AD

48

A9

8D

BA

BD

29

00 FF

00

00 FF

05 01

10

PHA

TXA

PHA

TYA

PHA

LDA

PHA

LDA

STA

TSX

LDA

AND

$FF00

$00

$FF00

$0105,X

$10

Disable all system interrupts

Store ace contents on stack

Store current X-reg contents

On the stack via the ace

Store current Y-reg contents

On the stack via the ace

Get configuration register in ace

Store configu register on stack

Load config. register with $00

And enable system ROMs

Vector points to NMI routine

($FA40)

Kernal IRQ routine

Store ace contents on stack

Store current X-reg contents

On stack via ace

Store current Y-reg contents

On stack via ace

Get configuration register in ace

Store config value on stack

Load config.register with $00

And enable system ROMs

Put stack pointer in X-reg

Get the CPU status byte stored

Get status byte + test break bit

399

Abacus

FF2B:

FF2D:

FF30:

FF33:

FF34:

FF37:

FF38:

FF39:

FF3A:

FF3B:

FF3C:

Software

FO

6C

ec

68

8D

68

A8

68

AA

68

40

03

16 03

14 03

00 FF

BEQ $FF30

JMP ($0316)

JMP ($0314)

PLA

STA $FF00

PLA

TAY

PLA

TAX

PLA

RTI

C-128 Internals

No break, continue as norm

Vector points to BRK routine

($B003)

Vector points to IRQ routine

($FA65)

Get old config value from stacks-

Restore selected configuration

Get a byte from the stack and

Restore old contents of the Y-reg

Get a byte from the stack and

Restore old contents of X-reg

Restore old ace contents

Return from the interrupt routine

FF3D: A9 00 LDA # $00

FF3F: 8D 00 FF STA $FF00

FF42: 4C 00 E0 JMP $E000

Kernal RESET routine

Load config. register with $00

And enable all system ROMs

Reset entry

Kernal vector and entry table

FF45: FF

FF4 6: FF

.Byte $FF

.Byte $FF

FF47: 4C FB E5 JMP $E5FB

FF4A: 4C 3D F2 JMP $F23D

FF4D: 4C 4B E2 JMP $E24B

FF50: 4C A5 F7 JMP $F7A5

FF53: 4C 90 F8 JMP $F8 90

FF56: 4C 67 F8 JMP $F867

FF59: 4C 9D F7 JMP $F79D

Pointer to kernal FSTMOD

Pointer to kernal EAINIT

Pointer to kernal C64 MODE

Pointer to kernal DMA-CALL

Pointer to kernal BOOT-CALL

Pointer to kernal PHOENIX

Routine: LKUPLA:

search for LFN in table

400

Abacus Software C-128 Internals

FF5C: 4C 86 F7 JMP $F786

FF5F:

FF62:

FF65:

FF68:

FF6B:

FF6E:

FF71:

FF74:

4C

4C

4C

4C

4C

4C

4C

4C

2A

27

21

3F

EC

CD

E3

DO

CO

CO

CO

F7

F7

02

02

F7

JMP

JMP

JMP

JMP

JMP

JMP

JMP

JMP

$C02A

$C027

$C021

$F73F

$F7EC

$02CD

$02E3

$F7D0

FF77: 4C DA F7 JMP $F7DA

FF7A: 4C E3 F7 JMP $F7E3

FF7D:

FF80:

FF81:

FF84:

FF87:

FF8A:

FF8D:

FF90:

FF93:

4C

00

4C

4C

4C

4C

4C

4C

4C

17

00

09

93

56

5B

5C

D2

FA

CO

El

EO

EO

EO

F7

E4

JMP $FA17

.Byte $00

JMP

JMP

JMP

JMP

JMP

JMP

JMP

$.C000

$E1O9

$E093

$E056

$E05B

$F75C

$E4D2

Routine: LKUPSA:

search for SA in table

Pointer to kemal SWAPPER

Pointer to kemal DLCHR

Pointer to kemal PFKEY

Rout. SETBNK:

bank for LSV+filename

Pointer to kemal GETCFG

Pointer to kemal JSRFAR

Pointer to kemal JMPFAR

Rout. INDFET:

LDA(fetvec),Y any bank

Rout. INDSTA:

STA(stavec),Y any bank

Rout. INDCMP:

CMP(cmpvec),Y any bank

Pointer to kemal PRIMM

Pointer to kemal CINT

Pointer to kemal IOINIT

Pointer to kemal RAMTAS

Pointer to kemal RESTOR

Pointer to kemal VECTOR

Pointer to kemal SETMSG

Routine SECND:

sec addr for LISTN

401

Abacus Software C-128 Internals

FF96:

FF99:

FF9C:

FF9F:

FFA2:

FFA5:

FFA8:

4C

4C

4C

4C

4C

4C

4C

EO

63

72

12

5F

3E

03

E4

F7

F7

CO

F7

E4

E5

JMP

JMP

JMP

JMP

JMP

JMP

JMP

$E4E0

$F763

$F772

$C012

$F75F

$E43E

$E503

Routine TKSA:

sec addr for TALK

Pointer to kernal MEMTOP

Pointer to kernal MEMBOT

Pointer to kernal KEY

Pointer to kernal SETTMO

Pointer to kernal ACPTR

Pointer to kernal CIOUT

FFAB: 4C 15 E5 JMP $E515

FFAE: 4C 26 E5 JMP $E526

FFB1: 4C 3E E3 JMP $E33E

FFB4: 4C 3B E3 JMP $E33B

FFB7: 4C 44 F7 JMP $F744

FFBA: 4C 38 F7 JMP $F738

FFBD: 4C 31 F7 JMP $F731

FFCO: 6C 1A 03 JMP ($03lA)

FFC3: 6C 1C 03 JMP ($031C)

FFC6: 6C IE 03 JMP ($031E)

FFC9: 6C 20 03 JMP ($0320)

FFCC: 6C 22 03 JMP ($0322)

FFCF: 6C 24 03 JMP ($0324)

Routine UNTLK:

Untlk cmd to serial bus

Routine UNLSN:

Unlsn cmd to serial bus

Routine LISTN:

Listn cmd to serial bus

Routine TALK:

Talk cmd to serial bus

Pointer to kernal READST

Routine SETLFS:

Set file parameters

Routine SETNAM:

Set filename

Vector points to OPEN routine

$EFBD

Vector points to CLOSE routine

$F188

Vector points to CHKIN routine

$F106

Vector points to CKOUT routine

$F14C

Vector points to CLRCH routine

$F226

Vector points to BASIN routine

$EF06

402

Abacus Software C-128 Internals

FFD2: 6C 26 03 JMP ($0326)

FFD5:

FFD8:

FFDB:

FFDE:

FFE1:

4C

4C

4C

4C

6C

65

3E

65

5E

28

F2

F5

F6

F6

03

JMP

JMP

JMP

JMP

JMP

$F2 65

$F53E

$F665

$F65E

($0328)

FFE4: 6C 2A 03 JMP ($032A)

FFE7: 6C 2C 03 JMP ($032C)

FFEA: 4C F8 F5 JMP $F5F8

Vector points to BSOUT routine

$EF79

Routine LOADSP: load file

Routine SAVESP: save file

Pointer to kernal SETTIM

Pointer to kernal RDTIM

Vector points to STOP routine

$F66E

Vector points to GETIN routine

$EEEB

Vector points to CLALL routine

$F222

Rout UDTIM:

Set internal 24hr clock

FFED:

FFF0:

FFF3:

FFF6:

FFF7:

FFF8:

FFFA:

FFFC:

FFFE:

4C

4C

4C

FF

FF

24

05

3D

17

OF

18

81

E2

FF

FF

FF

CO

CO

F7

JMP $C00F

JMP $C018

JMP $F781

.Byte $FF

.Byte $FF

($E224)

($FF05)

($FF3D)

($FF17)

Pointer to kernal SCRORC

Pointer to kernal PLOT

Pointer to kernal IOBASE

C128Mode vector

NMI vector

Reset vector

IRQ vector

403

Abacus Software C-128 Internals

8.2 The Zero Page

System variables are stored in zero page. These variables include the

cursor position, information about the current output device, etc. Two

hundred and fifty-six bytes sufficed to store all of this information.

With the C-128 the situation is different, 256 bytes are no longer

enough to store all of the system information. The name zero page has been

retained since it has come into such wide usage (zero page actually refers to

the 256-byte/azge of memory starting at address zero).

The zero page offers many possibilities for direct manipulation and
contains a wealth of information which the programmer can access (and

which he should access). Since this zero page is so immensely important,
you will find on the following pages more information on the individual

memory addresses. This information will be very helpful to you.

Some addresses in the zero page have meaning only in connection to the
corresponding routines in the kernal. For this reason it is very important that
you take a closer look at the appropriate passages in the kernal before

manipulating the zero page.

404

Abacus Software C-128 Internals

Commodore-128 Zero page

0000:

0001:

0002:

0003:

0004:

0005:

0006:

0007:

0008:

0009:

000A:

000B:

000C:

000D:

000E:

000F:

0010:

0011:

0012:

0013:

0014:

0015:

0016:

0018:

0019:

001B:

001E:

0021:

0024:

0026:

0028:

002D:

002F:

0031:

0033:

0035:

0037:

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

0020

0021

0022 -

0024

0025 -

0027 -

0030 -

0033 -

0036 -

0038 -

0040 -

0045 -

0047 -

0049 -

0051 -

0053 -

0055 -

0023

0026

0029

0032

0035

0037

0039

0044

0046

0048

0050

0052

0054

0056

6510 data direction - processor port

6510 data register - processor port

Storage for bank byte

Storage for program counter high

Storage for program counter low

Storage for CPU status register

Storage for accumulator

Storage for X-register

Storage for Y-register

Storage for stack pointer

Look for quotation mark at end of string

Screen column at last TAB

Disk flag: 0=LOAD, 1=VERIFY

Number of elements, input buffer pointer

Default for array dimensioning (DIM)

Data-type flag l:$00=numeric, $FF=string

Data-type flag 2:$00=float,$80=fixed pnt

Rag: LIST, read DATA, garbage coll.

Pntr for FN funct, var type for FOR/NEXT

Input-flag: $00=INPUT, $40=GET, $98=READ

Sign of TAN: equality by comparison

Active I/O device, flag: INPUT comment

Line number, integer value Lo/High

Pointer to temporary string stack

Last string address

3-byte stack for temporary strings

3-byte stack for temporary strings

3-byte stack for temporary strings

2-byte help pointer index 1

2-byte help pointer index 2

Floating-point result of multiplication

Pointer: Start of BASIC text Lo/Hi

Pointer: Start of BASIC variables Lo/Hi

Pointer: Start of BASIC airays Lo/Hi

Pointer: End of BASIC arrays + 1 Lo/Hi

Pointer: Start of string memory Lo/Hi

Help pointer for string storage Lo/Hi

405

Abacus

0039:

003B:

003D:

003F:

0041:

0043:

0045:

0047:

0049:

004B:

004D:

004F:

0050:

0052:

0055:

0056:

0058:

0059:

005A:

005C:

005E:

005F:

0061:

0062:

0063:

0064:

0068:

0069:

006A:

006B:

006F:

0070:

0071:

0072:

0074:

0076:

0077:

0078:

0079:

007A:

Software

0057 -

0059 -

0061 -

0063 -

0065 -

0067 -

0069 -

0071 -

0073 -

0075 -

0077 -

0079

0080 -

0082 -

0085

0086 -

0088

0089

0090 -

0092 -

0094

0095 -

0097

0098

0099

0100 -

0104

0105

0106

0107 -

0111

0112

0113

0114 -

0116 -

0118

0119

0120

0121

0122 ■

0058

0060

0062

0064

0066

0068

0070

0072

0074

0076

0078

0081

0084

0087

0091

0093

0096

0103

• 0110

- 0115

- 0117

- 0124

C-128 Internals

Pntr: End string memory,Var.Bank 1 Lo/Hi

Current BASIC line number Lo/Hi

Pntr BASIC text for CHRGET,CHRGOT Lo/Hi

PRINT USING pntr,char search pntr Lo/Hi

Current DATA line number Lo/Hi

Pointer to current DATA address Lo/Hi

Vector pointer for INPUT routine Lo/Hi

Current BASIC variable name Lo/Hi

Pointer to address of current var. Lo/Hi

Mask for AND, LIST pntr, FOR NEXT pntr

Temporary storage for program pointer

Mask for compare operation >:2, =:4, <:8

Var pntr for FN defin., + for garb coll

Pntndescriptor var list-string compares

Help Flag: $xx=HELP, $xx=LIST

Jump vector for function evaluations

Oldov

Area for INSTRING oper. / temp pointer 1

Pointer: block transfer, DIM init

Pointer: block transfer

Temp pntr 2,occasionally floating-pt ace

places before/after dec. for conver.

Pntr: Dec. pt when reading digit strings

Exponent sign of the # read (neg. =$80)

Floating-pt accumulator 1: Exponent

Floating-pt accumulator 1: Mantissa

Floating-pt accumulator 1: sign

Pointer: Polynomal evaluation

Floating-pt accumulator 2: Exponent

Floating-pt accumulator 2: Mantissa

Floating-pt ace. 2: sign

Result flag:sign compare Ace 1 to Ace 2

Floating-pt. accumulator 1: Round off

Pointer: Cassette buffer

Offset value for AUTO command, $00=off

Hires Flag: l=BASIC-start set 10k higher

Sprite number-counter for leading zeros

Help counter

Temp storage for indirect loading

Description of error-variable DS$

406

Abacus

007D:

007F:

0080:

0081:

0082:

0083:

0084:

0085:

0086:

0087:

0089:

008B:

008C:

008E:

008F:

0090:

0091:

0092:

0093:

0094:

0095:

0096:

0097:

0098:

0099:

00 9A:

009B:

00 9C:

009D:

009E:

009F:

00A0:

00A3:

00A5:

00A6:

00A7:

00A8:

00A9:

00AA:

00AB:

Software

0125 -

0127

0128

0129

0130

0131

0132

0133

0134

0135 -

0137 -

0139

0140 -

0142

0143

0144

0145

0146

0147

0148

0149

0150

0151

0152

0153

0154

0155

0156

0157

0158

0159

0160 -

0163 -

0165

0166

0167

0168

0169

0170

0171

0126

0136

0138

0141

0162

0164

C-128 Internals

End-of-stack during program run

Mode Flag: $xx=RUN mode, $xx=direct mode

USING pntr for dec pnt.,Stat DOS parser

Parstx

Oldstx

Current color for graphic mode

Multi-color Mode: Color 1

Multi-color Mode: Color 2

Foreground color

X-direction scale factor

Y-direction scale factor

Stop drawing, if not background color

Address pointer for graphic routines

Temp storage 1 for graphic routines

Temp storage 2 for graphic routines

Status word for kernal input/output

Stop Rag: STOP key, RVS key

Time constants for cassette operations

Load Hag: $00=LOAD, $01=VERIFY

Serial bus flag: character in buffer

Char, in buffer for serial bus

Sync # for cass, EOT received from tape

Temporary data address

Index for file tables, no. of open files

Standard input device (0 for keyboard)

Standard output device (3 for screen)

Parity byte from cassette

Tape flag: byte received

Status flag for kernal

Cassette error pass 1: char error

Cassette error pass 2: corrected

24-hr real-time clock: 1/60-sec count

Temporary storage for serial bus

Countdown - SAVE on tape, ser. help ptr.

Pointer for cassette buffer

Tape short counter, RS-232 input bits

Tape read err,RS-232 counter input bits

Tape 0 read flag, RS-232 start bit flag

Tape READ mode, RS-232 buffer input byte

Tape short counter, RS-232 input parity

407

Abacus

00AC:

00AE:

OOBO:

00B2:

00B4:

00B5:

00B6:

00B7:

00B8:

00B9:

00BA:

OOBB:

OOBD:

OOBE:

OOBF:

OOCO:

00C1:

00C2:

00C3:

00C5:

00C6:

00C7:

00C8:

00CA:

OOCC:

OOCE:

OODO:

00D1:

00D2:

00D3:

00D4:

00D5:

00D6:

00D7:

00D8:

00D9:

00DA:

OODB:

OODC:

OODD:

Software

0172 -

0174 -

0176 -

0178 -

0180

0181

0182

0183

0184

0185

0186

0187 -

0189

0190

0191

0192

0193

0194

0195 -

0197

0198

0199

0200 -

0202 -

0204 -

0206 -

0208

0209

0210

0211

0212

0213

0214

0215

0216

0217

0218

0219

0220

0221

0173

0175

0177

0179

0188

0196

0201

0203

0205

0207

C-128 Internals

Pointer: screen scroll,cass buffer Lo/Hi

Pointer: program end,cassette end Lo/Hi

Cassette constant for time

Pointer: Start of cassette buffer Lo/Hi

Tape help pntr,RS232 next bit for scroll

EOT char, RS-232 next bit for transfer

Tape help pointer, RS-232 byte buffer

Length of current filename

Logical file number (LFN)

Current secondary address (SA)

Current decive number (GA)

Pntr:Address of current filename Lo/Hi

Tape pntr, RS-232 rotate parity buffer

No* of remaining read/write blocks

Serial buffer

Flag: cassette motor

Start address in/output (Lo), track no.

Start address in/output (Hi), sector no.

Tape LOAD temp, pntr Kernal vector address

Tape read/write data range

Bank no. current LOAD,SAVE,VERIFY calls

Bank no. of current filename $BB,$BC

Pointer: RS-232 input buffer

Pointer: RS-232 output buffer

Pointer: keyboard decoder table

Pntr to string pos.-kernal PRINT routine

Index to keyboard buffer queue

Function key call flag

Function key string call index

Shift flag: Shift=$01, C=$02, Ctrl=$04,old=$08

Flag for keypress

Flag current pressed key (CHR$(0)=none)

Flag for INPUT or GET - keyboard input

Flag for 40/80 column mode

Hag for text/graphic screen mode

Pointer for char set, RAM/ROM (only bit 2)

Pointer for MOVLIN (Lo), <keysiz, bitmask>

Pointer for MOVLIN (Hi), <keylen, saver>

Number of the function key

F-key string length up to current F-key

408

Abacus

OODE:

OODF:

OOEO:

OOE2:

00E4:

OOE5:

00E6:

00E7:

00E8:

00E9:

OOEA:

OOEB:

OOEC:

OOED:

OOEE:

OOEF:

OOFO:

OOF1:

OOF2:

OOF3:

00F4:

00F5:

00F6:

00F7:

00F8:

00F9:

OOFA:

OOFF:

Software

0222

0223

0224 - 0225

0226 - 0227

0228

0229

0230

0231

0232

0233

0234

0235

0236

0237

0238

0239

0240

0241

0242

0243

0244

0245

0246

0247

0248

0249

0250 - 0254

0255

C-128 Internals

Bank for function key call <sedtl>

F-key string length up to current (F-key-1)

Pointer to running screen line: text RAM

Pointer running screen linerattribute RAM

Lower border of window

Upper border of window

Left border of window

Right border of window

Start of running input column

Start of running input line

End of running input line

Current cursor position: line

Current cursor position: column

Maximum number of screen lines

Maximum number of screen columns

Temp storage of characters to be put out

Memory: previous char (for ESC test)

Color code under cursor for char output

Color code protection for INSERT/DELETE

Flag: RVS mode active

Rag: Quote mode active

Flag: Insert mode active

Flag: Auto insert active

Cutoff switching of C-Shift ($80) and Ctrl S ($40)

Cutoff of screen scrolling

Cutoff of beep tones made by Crtl G

Free area for user applications

Lofbuf

409

Abacus Software C-128 Internals

Commodore-128 Page-One RAM

**

16-byte area for creating data names

DOS loop counter

DOS length of 1st file name

DOS device numbers, 1st disk drive

DOS address, 1st file name Lo/Hi

DOS length, 2nd file name

DOS device number, 2nd disk drive

DOS address, 2nd file name Lo/Hi

Starting address for BLOAD/BSAVE Lo/Hi

End address for BSAVE command Lo/Hi

DOS logical address

DOS physical address

DOS secondary address

DOS length of a record

DOS BANK number

DOS 2-byte storage for diskette ID

DOS flag for disk ID testing

PRINT USING pointer to starting number

PRINT USING pointer to end number

PRINT USING flag for dollar sign ($)

PRINT USING flag for comma (,)

PRINT USING counter

PRINT USING sign of exponent

PRINT USING pointer to exponent

PRINT USING counter for whole no. places

PRINT USING flag for align after dec. pt

PRINT USING cntr field pos before dec pt

PRINT USING cntr field pos after dec. pt

PRINT USING flag for sign (+/-)

PRINT USING flag for field exponent

PRINT USING switch

PRINT USING counter for chars in field

PRINT USING sign number

PRINT USING flag for space or asterisk

PRINT USING pointer to start of field

PRINT USING pointer for length of format

0100:

0110:

0111:

0112:

0113:

0115:

0116:

0117:

0119:

011B:

011D:

011E:

011F:

0120:

0121:

0122:

0124:

0125:

0126:

0127:

0128:

0129:

012A:

012B:

012C:

012D:

012E:

012F:

0130:

0131:

0132:

0133:

0134:

0135:

0136:

0137:

0256 - 0271

0272

0273

0274

0275 - 0276

0277

0278

0279 - 0280

0281 - 0282

0283 - 0284

0285

0286

0287

0288

0289

0290 - 0291

0292

0293

0294

0295

0296

0297

0298

0299

0300

0301

0302

0303

0304

0305

0306

0307

0308

0309

0310

0311

410

Abacus Software C-128 Internals

0138: 0312 PRINT USING pointer to end of field

0139: 0313 - 0510 End of the system stack

o iff : 0511 Start of system stack

0200: 0512 BASIC and monitor input buffer

02A2: 0674 FETCH Routine: LDA(ZP),Y from any bank

02A2:

02A5:

02A8:

02A9:

02AB:

02AE:

■*■ + + -A- -A- -JX X X X X 7

02AF:

02AF:

02B0:

02B3:

02B6:

02B7:

02B8:

02BA:

02BD:

-k -k-k -k -k •m\ f\ ^\ ^\ /\ i

02BE:

02BE:

02BF:

AD 00

8E 00

AA

Bl FF

8E 00

60

cxxxxxx?

0687

48

AD 00

8E 00

AA

68

91 FF

8E 00

60

k k kkk kk •f\ w\ ^\ ^\ ^\ ^\ ^\

0702

48

AD 00

FF

FF

FF

t >A- + + + iK X X X X 1

FF

FF

FF

k k k k k^ ^ /\ ^ ^

FF

LDA

STX

TAX

LDA

STX

RTS

t + + •*» + + •*•

$FF00

$FF00

($FF)fY

$FF00

TXXXXXXw««^«^^««

STASH Routine

PHA

LDA

STX

TAX

PLA

STA

STX

RTS

$FF00

$FF00

($FF)fY

$FF00

You can iina a aescnption oi

This routine in the

ROM listing at $F800, because

The ROM copy is located there.

The"FETVEC" address is:

$02AA,ordec.0682.

+ + + -A" + 'A-'A--A>-V4-4- + + -A--A' + + + + + + + + -A--A--Jk- +XXXXXXXXXXXXXXXXXXXXXXXXXXX

: STA(ZP),Y in any bank

You can find a description of

This routine in the

ROM listing at $F80D, because

The ROM copy is located there.

The"STAVEC" address: is

$02B9,ordec.0697.

CMPARE Routine: CMP(ZP),Y with any bank

PHA

LDA $FF00

You can find a description of

This routine in the

411

Abacus

02C2:

02C5:

02C6:

02C7:

02C9:

02CC:

Software

8E

AA

68

Dl

8E

69

00 FF

FF

00 FF

STX

TAX

PLA

CMP

STX

RTS

$FF00

($FF),Y

$FF00

C-128 Internals

ROM listing at $F81C, because

The ROM copy is located there.

The"CMPVEC" address is:

$02C8,ordec.0712.

02CD: 0717

02CD:

02D0:

02D2:

02D4:

02D6:

02D7:

02D8:

02DA:

02DB:

02DD:

02DF:

02E2:

20

85

86

84

08

68

85

BA

86

A9

8D

60

E3 02

06

07

08

05

09

00

00 FF

JSR

STA

STX

STY

PHP

PLA

STA

TSX

STX

LDA

STA

RTS

$02E3

* $06

* $07

* $08

* $05

* $09

$00

$FF00

02E3: 0739

JSRFAR Routine: JSR in any bank and return

You can find a description of

This routine in the

ROM listing under the

address $F82B, because

The ROM copy is located there.

JMPFAR Routine: JMP in in any bank no return

02E3:

02E5:

02E7:

02E8:

02E9:

02EB:

02ED:

02EF:

02F3:

02F6:

02F8:

02FA:

02FB:

A2

B5

48

E8

E0

90

A6

20

8D

A5

A6

A4

40

00

03

03

F8

02

6B FF

00 FF

06

07

08

LDX

LDA

PHA

INX

CPX

BCC

LDX

JSR

STA

LDA

LDX

LDY

RTI

$00

* $03,X

$03

$02E5

* $02

$FF6B

$FF00

* $06

* $07

* $08

You can find a description of

This routine in the

ROM listing under the

Address $F841, because

The ROM copy is located there

412

Abacus Software C-128 Internals

Routine to jump to a function cartridge. The cartridge vector

has the address: $02FE-$02FF (dec. 766-767)

02FC: 78 sei Disable system interrupts

02FD: 4c 00 00 jmp $0000 Jump to the function cartridge

vector

0300: 0768 3F4D ($4D3F) Vector: Error routine (X=error)

0302: 0770 C6 4D ($4DC6) Vector: Read/exec. BASIC line

0304: 0772 od 43 ($430D) Vctr: Convert interpreter code

0306: 0774 51 51 ($5151) Vector: Convert to text (List)

0308: 0776 A2 4A ($4aa2) Vector: Execute the keyword

030A: 0778 da 78 ($78da) Vector: Evaluate expression

030C: 0780 21 43 ($4321) Vector: Esc. conversion routine

030E: 0782 cd 51 ($51cd) Vector: Escape list

0310: 0784 A9 4B ($4BA9) Vector: Execute escape

0312: 0786 ffff ($ffff) Interrupt vector: TIME

0314: 0788 65 fa ($fa65) Vector for IRQ routine

0316: 0790 03 bo ($B003) Vector for break entry-Monitor

0318: 0792 40 fa ($FA40) Vector for NMI routine

031A: 0794 bd ef ($efbd) Vector to kernal OPEN routine

031C: 0796 88 fi ($F188) Vector: kernal CLOSE routine

031E: 0798 06 fi ($F1O6) Vector:kernalCHKESTroutine

0320: 0800 4c fi ($F14C) Vector: kernalCKOUTroutine

0322: 0802 26 F2 ($F226) Vector: kernalCLRCHroutine

0324: 0804 06 ef ($EF06) Vector to kernal BASIN routine

0326: 0806 79 ef ($ef79) Vector: kernal BSOUT routine

0328: 0808 6E F6 ($F66E) Vector to kernal STOP routine

032A: 0810 eb ee ($eeeb) Vector to kemal GETIN routine

032C: 0812 22 F2 ($F222) Vector:kernalCLALLroutine

032E: 0814 06 bo ($B006) Vector to EXMON entry

0330: 0816 6c F2 ($F26C) Vector to kernal LOAD routine

0332: 0818 4E F5 ($F54E) Vector to kemal SAVE routine

413

Abacus Software C-128 Internals

Copy of the character output, keyboard and decoder vectors.

The originals of these vectors are in ROM at addr. $C065 - $C07A

0334: 0820 B9 C7 ($C7B9) Vector for char output with Ctrl

0336: 0822 05 C8 ($C8O5) Vector: char output with Shift

0338: 0824 ci C9 ($c9ci) Vector for char output with Esc

033A: 0826 Eic5 ($C5E1) Vector for keyboard read

033C: 0828 ad C6 ($C6AD) Vector to keypress store

o33E: 0830 8 o fa ($fa8 o) Vector: Keybd decoder table la

0340: 0832 D9FA ($fad9) Vector: Keybd decoder table 2a

0342: 0834 32 fb ($fb32) Vector: Keybd decoder table 3a

0344: 0836 8B fb ($fb8B) Vector: Keybd decoder table 4a

0346: 0838 80 fa ($FA80) Vector: Keybd decoder table la

0348: 0840 E4FB ($fbe 4) Vector: Keybd decoder table 5a

034A: 0842 - 0851 IRQ keyboard buffer

0354: 0852 - 0861 Bit map table: Tab stops

035E: 0862 - 0865 Bit map table: Line overflow

0362: 0866 - 0875 Table of logical file numbers

03 6C: 0876 - 0885 Table of device addresses

0376: 0886 - 0895 Table of secondary addresses

0380: 0896

0380:

0382:

0384:

E6

DO

E6

3D

02

3E

INC

BNE

INC

* $3D

$0386

* $3E

BASIC CHRGET routine

(The original is in ROM at address $4279)

Increment BASIC text pointer lo

No overflow, then skip

Increment BASIC text pointer hi

414

Abacus Software C-128 Internals

0386: 0902 BASIC CHRGOT routine

(The original is in ROM at address $427F)

0386: 8D oi ff sta $ffoi Enable RAM 0 area

0389: ao 00 ldy # $00 Displacement pntr to BASIC text

038B: bi 3D lda ($3D),y Get character from BASIC text

038D: 8D 03 ff sta $ffO3 RAM 0, enable system ROMs

**

0390: 0912 BASIC QNXJM routine

set zero flag for separator $00 or $3A

set carry flag for digit 0-9

(The original is in ROM at address $4289)

Char code > digit code?

Yes, then skip

Was character a "blank"?

Yes, then skip blank

Set carry for subtraction

Test for digit (then C = 1)

Set carry for subtraction

Restore old value

Return from subroutine

**

039F: 0927 Load from a bank via PCRA and PRCR

(The original is in ROM at address $4298)

0390:

0392:

0394:

0396:

0398:

0399:

039B:

039C:

039E:

C9

B0

C9

F0

38

E9

38

E9

60

3A

0A

20

EB

30

DO

CMP

BCS

CMP

BEQ

SEC

SBC

SEC

SBC

RTS

$3A

$039B

$20

$0380

$30

$D0

039F:

03A2:

03A5:

03A7:

03AA:

8D

8D

Bl

8D

60

A6

01

00

03

03

FF

FF

STA

STA

LDA

STA

RTS

$03A6

$FF01

($00),Y

$FF03

415

Abacus Software C-128 Internals

03AB: 0 939

03B7: 0951

03C0: 0960

03C9: 0969

Load from any bank via PCRB and PCRD

(The original is in ROM at address $42A4)

03AB:

03AE:

03B1:

03B3:

03B6:

8D

8D

Bl

8D

60

B2

02

00

04

03

FF

FF

STA

STA

LDA

STA

RTS

$03B2

$FF02

($00),Y

$FF04

Load from any bank via PCRA and PCRC of

the address given by zero-page index 1

The original is in ROM at address $42B0)

03B7:

03BA:

03BC:

03BF:

8D

Bl

8D

60

02

24

04

FF

FF

STA

LDA

STA

RTS

$FF02

($24),Y

$FF04

Load from any bank via PCRB and PCRD of

the address given by zero-page index 2

(The original is in ROM at address $42B9)

03C0:

03C3:

03C5:

03C8:

8D

Bl

8D

60

01

26

03

FF

FF

STA

LDA

STA

RTS

$FF01

($26),Y

$FF03

Load from any bank via PCRA and PCRC of the

address given by the zero-page CHRGET pointer

The original is in ROM at address $42C2)

03C9:

03CC:

03CE:

8D

Bl

8D

01

3D

03

FF

FF

STA

LDA

STA

$FF01

<$3D),

$FF03

Y

416

Abacus Software C-128 Internals

03D1: 60 RTS

**

03D2; 0978 - 0980 Numerical constants BASIC, loaded from ROM

0 3D5: 0981 Bank for SYS,POKE,PEEK. Set by bank cmd

03D6: 0982 - 0985 Temp storage for INSTRING
o3da : 0986 Bank pointer for strings and number conversion

03DB: 0987 - 0990 4 Byte storage for SSHAPE operations

o3df : 0991 Overflow marker ofFAC1

o3E0: 0992 Temp storage for sprite control No. 1

03E1: 0993 Temp storage for sprite control No.2

03E2: 0994 Packed foreground/background color nibbles

03E3: 0995 Packed foreground/background color nibbles

03E4: 0996 - 1007 Free area

**

03F0: 1008 DMA call routine inthe lower common area (1st K)

for initializing the the external memory access

03F0: ae oo ff ldx $ffoo You can find a description of

03F3: 8C 01 df sty $dfoi This DMA call routine for

03F6: 8D oo ff sta $ffoo controlling the external memory

03F9: 8E oo ff stx $ffoo access in ROM under the

03FC: 60 rts original address $F85A

**

03FD: 1021 - 1023 Free area

03ff : 1023 End of the common area, the same in all banks

0400: 1024 - 2047 Screen storage

0800: 2048 - 2559 512 bytes for BASIC run-time storage

417

Abacus Software C-128 Internals

0A00:

0A02:

0A03:

0A04:

0A05:

0A07:

0A09:

OAOB:

OAOC:

OAOD:

OAOE:

OAOF:

OA1O:

OA11:

0A12:

0A14:

OA15:

0A16:

0A18:

0A19:

0A1A:

0A1B:

0A1C:

0A1D:

OA2O:

OA21:

OA22:

0A23:

0A24:

0A25:

OA26:

0A27:

0A28:

OA29:

0A2A:

0A2B:

0A2C:

0A2D:

2560 -

2562

2563

2564

2565 -

2567 -

2569 -

2571

2572

2573

2574

2575

2576

2577

2578 -

2580

2581

2582 -

2584

2585

2586

2587

2588

2589 -

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2561

2566

2568

2570

257S

2583

2591

Vector System restart (normal warm-start) ($4003)

Kernal Warm/cold-start Initialization status

PAL/NTSC system pntr ($FF=PAL,$00=NTSC)

System pointer for the NMI and RESET status

Lower boundary of available RAM in system bank

Upper boundary of available RAM in system bank

Indirect IRQ vector for cassette routines

Time comparison for cassette routines

Temp stroage when reading from cassette

Temp storage when reading from cassette

Timeout pointer for fast serial mode

RS-232 NMI status register

RS-232 control register

RS-232 command register

RS-232 user baud rate

RS-232 status register

RS-232 Number of bits to send

RS-232 baud rate: full bit time (in us)

RS-232 Index to the start of the input buffer

RS-232 Index to the end of the input buffer

RS-232 Index to the start of the output buffer

RS-232 Index to the end of the output buffer

Intern/extern pointer for fast serial mode

Temp storage for the 24hr real-time clock

Storage for the size of the keyboard buffer

Pause pointer, <Crtl - S> pointer

Pointer: Key repetitions

Count speed for the key repeat

Counter for the key-repeat delay

Storage for the last shift pattern of the keyboard

Pointer for cursor in flash phase

Pointer for cursor on/off (0 = flashing cursor)

Count pointer for flashing cursor

Character for cursor position

Storage for background color under cursor

Pointer for current cursor mode (if available)

Text screen/character base pointer

Bit map base pointer

418

Abacus

0A2E:

0A2F:

0A30:

0A31:

0A32:

0A33:

0A34:

0A35:

0A36:

0A37:

0A38:

0A39:

Software

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

C-128 Internals

Pointer for address (*256) for 80 char video RAM

Pointer for address (*256) for attribute RAM

Temp pointer to last line for LOOP4 routine

Temp storage (a) for 80-column routines

Temp storage (b) for 80-column routines

Temp storage (a) for line clear / move

Temp storage (b) for line clear / move

Color under 80-column cursor before flash

Raster line at which the raster int was generated

Storage for the X-register for BANK operations

Counter for the PAL system, jiffie adjust

Temp storage for for 80-column VDC screen

Safety storage for passive-screen variables. This area

corresponds to the zero-page area at $E0.

Pointer to the current screen line: Text RAM

Pointer to the current screen line: Attribute RAM

Lower border of the window (init: $18 = 24)

Upper border of the window (init: $00 = 00)

Left border of the window (init: $00 = 00)

Right border of the window (init: $4F = 79)

Start of the current input line (init: $00 = 00)

Start of the current input column (init: $00 = 00)

End of the current input line (init: $00 = 00)

Current cursor position: line (init: $00 = 00)

Current cursor position: column (init: $00 = 00)

Max number of screen lines (init: $ 18 = 24)

Max number of screen columns (init: $4F = 79)

Temp storage for character to output

Storage: Previous character (forESC test)

Current color code under cursor (init: $07 = 07)

Color code storage (Insert+delete)(init: $07 = 07)

Pointer for RVS mode active

Pointer for quote mode active

Pointer for insert mode active

Pointer for auto-insert active

Pointer for switch-lock and pause pointer

0A40:

0A42:

0A44:

0A45:

0A46:

0A47:

0A48:

0A49:

0A4A:

0A4B:

0A4C:

0A4D:

0A4E:

0A4F:

0A50:

0A51:

0A52:

0A53:

0A54:

0A55:

0A56:

0A57:

2624 -

2626 -

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2625

2627

419

Abacus

0A58:

0A59:

•k-k-k-k-k k»* *» *» »* #» r\

0A60:

0A80:

OAAO:

OAAA:

OAAB:

OAAC:

OAAF:

OABO:

0AB1:

OAB2:

0AB3:

0AB4:

OACO:

0AC1:

Software

2648

2649

**************** ^ ^ ^ /V ^ ^ A W ^ A /%

2650 - 2687

2688 - 2719

2720 - 2729

2730

2731

2732 - 2734

2735

2736

2737

2738

2739

2740 - 2751

2752

2753 - 2756

C-128 Internals

0AC5: 2757

Pointer for locking screen-scroll

Pointer for locking beep tone (Ctrl-G)

Temp storage area for 40 and 80-column

Buffer for comparison operations

Temp counter

Adressing mode for assembler command

Length of the cmd code for assemVdisassembler

Assembler/disassembler storage for integ. monitor

One-byte temp storage for misc

One-byte temp storage for misc

One-byte temp storage for misc

X-reg storage for indirect subroutine calls

Direction pointer for transfer operations

One-byte temp storage

ROM bank for current function key call

Table of physical addresses and ID's from

inserted expansion cards

System pointer for the combination of vowels with

accents in DEM character set (International only)

oboo: 2816 - 3071 Cassette buffer

• *••***••***••*•**•••*•********••>

0C00: 3072 - 3327 RS-232 input buffer

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk*

odoo: 3328 - 3583 RS-232 output buffer

kkk-kkkkkkkkkkkkkkk

OEOO: 3584 - 4095 Area for sprite definition (must be under $1000)

420

Abacus Software C-128 Internals

1000: 4096 - 4105 Programmable function keys (length table)

100A: 4106 - 4351 Programmable function keys (function strings)

1100:

1131:

1133:

1135:

1137:

1139:

113B:

113D:

113F:

1141:

1145:

1147:

1148:

1149:

114A:

114C:

114E:

4352

4401

4403

4405

4407

4409

4411

4413

4415

4417

4421

4423

4424

4425

4426

4428

4430

- 4400

- 4402

- 4404

- 4406

- 4408

- 4410

- 4412

- 4414

- 4416

- 4420

- 4422

- 4427

- 4429

- 4431

Buffer for generating DOS output strings

Graphic variable: Current X-position (Lo/Hi)

Graphic variable: Current Y-position (Lo/Hi)

Graphic variable: Dest direction, X-coord (Lo/Hi)

Graphic variable: Dest direction, Y-coord (Lo/Hi)

Variable - graphic lines: X/Y-absolute,X-absolute

Variable for graphic lines: Y-absolute

Variable - graphic lines: X/Y-Signum, X-Signum

Variable for graphic lines: Y-sign

Variable for graphic lines: Factor

Variable for graphic lines: Error value

Variable for graphic lines: Smaller marker

Variable for graphic lines: Larger marker

Variable for angle routine: Sign of the angle

Variable for angle routine: Sine of the angle value

Variable for angle routine: Cosine of the angle val

Variable for angle routine: Angle distance

The following 24 bytes are used for a variety of purposes

Variables for circle routines

Circle center: X-coordinate (Lo/Hi)

Circle center: Y-coordinate (Lo/Hi)

Circle radius in X-direction (Lo/Hi)

Circle radius in Y-direction (Lo/Hi)

Rotation angle of the circle (Lo/Hi)

Angle degree for start of arc (Lo/Hi)

Angle degree for end of arc (Lo/Hi)

X-radius * Cos (rotation angle)

Y-radius * Sin (rotation angle)

X-radius * Sin (rotation angle)

Y-radius * Cos (rotation angle)

1150:

1152:

1154:

1156:

1158:

115C:

115E:

1160:

1162:

1164:

1166:

4432

4434

4436

4438

4440

4444

4446

4448

4450

4452

4454

- 4433

- 4435

- 4437

- 4439

- 4443

- 4445

- 4447

- 4449

- 4451

- 4453

- 4455

421

Abacus

1150:

1152:

1154:

1156:

1158:

115A:

115C:

115E:

115F:

1160:

1150:

1152:

1154:

1156:

1158:

115A:

115C:

115E:

1150:

1151:

1152:

1153:

1154:

1155:

1156:

1157:

1158:

1159:

115B:

115D:

115F:

1161:

Software

4432 -

4434 -

4436 -

4438 -

4440 -

4442 -

4444 -

4446

4447

4448:

4432 -

4434 -

4436 -

4438 -

4440 -

4442 -

4444 -

4446 -

4432

4433

4434

4435

4436

4437

4438

4439

4440

4441 -

4443 -

4445 -

4447 -

4449

4433

4435

4437

4439

4441

4443

4445

4433

4435

4437

4439

4441

4443

4445

4447

4442

4444

4446

4448

C-128 Internals

Parameters used for general purposes

Center for X-coordinate

Center for Y-coordinate

Distance 1 for X-coordinate

Distance 1 for Y-coordinate

Distance 2 for X-coordinate

Distance 2 for Y-coordinate

End of coordinate distance

Column counter for characters

Line counter for characters

Length counter for string

Variables used for rectangle routines

X-coordinate 1

Y-coordinate 1

Rotation angle

Counter for X-value

Counter for Y-value

Length of a side of the rectangle

X-coordinate 2

Y-coordinate 2

Used for shapes and shape movement

Place older

Length pointer

Following pointer

Length of the string

Shape mode set/replace

Pointer to position in the string

Old bit-map byte

Variable for new string or bit-map byte

Place holder

Column width (X-width) of a shape

Line number (Y-length) of a shape

Temp storage for the column width

Pointer to the shape string for shape storage

Bit pointer to byte of shape string

422

Abacus Software C-128 Internals

1168:

1169:

116A:

116B:

116C:

116D:

116E:

116F:

1170:

1172:

1174:

1175:

1177:

1178:

1179:

117A:

117C:

117E:

11D6:

1200:

1202:

1204:

1205:

1206:

1207:

1208:

1209:

120B:

12 0D:

120E:

1210:

1212:

1214:

1216:

1218:

1219:

4456

4457

4458

4459

4460

4461

4462

4463

4464 -

4466 -

4468

4469 -

4471

4472

4473

4474 -

4476 -

4478 -

4566 -

4608 -

4610 -

4612

4613

4614

4615

4616

4617 -

4619 -

4621

4622 -

4624 -

4626 -

4628 -

4630 -

4632

4633 -

4465

4467

4470

4475

4477

4565

4607

4609

4611

4618

4620

4623

4625

4627

4629

4631

4634

Area for general graphic variables

Temp storage for diverse purposes

Temp storage: Bit counter GSHAPE instruction

Screen scaling pointer 0=320*200,1=1024*1024

Temp storage for double-width

Temp storage for box fill

Temp storage for bit masks

Temp counter for numerical values

Temp pointer for trace mode on/off

Temp storage 1 for renumber routine

Temp storage 2 for renumber routine

1 byte temp storage

2 byte temp storage

1 byte temp storage 1 for graphic routines

1 byte temp storage 2 for graphic routines

1 byte temp storage for graphic routines

Vector: Convert floating-point to integer ($849F)

Vector: Convert integer to floating-point ($793C)

Speed/direction table for sprites

42-byte area for copying VIC registers

Previous BASIC line number

Command pointer for BASIC CONT command

Print Using pointer: Chr$

Print Using pointer: Fill character

Print Using pointer: Comma character

Print Using pointer: Character for decimal point

Last error number (for TRAP command)

Line number of the last error ($FFFF is OK ind)

Line number to be executed if error occurs

Temp pointer for TRAP command

Pointer to text of error message

Text-end pointer

Highest address available to BASIC in RAM 0

Temp storage for DO - LOOP

Temp storage for line number

USRjump

USR address in format Lo/Hi

423

Abacus Software C-128 Internals

121B: 4635 - 4639

1220: 4640

1221: 4641

Initial value for RND function

Degree number for arc

Pointer to reset status (cold-start or warm-start)

Storage area for music pointers

1222:

1223:

1229:

122B:

122C:

122D:

122F:

1230:

1233:

1234:

1238:

1239:

123A:

123B:

123E:

123F:

1249:

1253:

125D:

1267:

1271:

4642

4643 - 4648

4649 - 4650

4651

4652

4653 - 4654

4655

4656 - 4658

4659

4660 - 4663

4664

4665

4666

4667 - 4669

4670

4671 - 4680

4681 - 4690

4691 - 4700

4701 - 4710

4711 - 4720

4721 - 4725

<tempo rate>

<voices>

<ntime>

<octave>

<sharp>

<pitch>

<voice>

<wave 0>

<dnote>

<fltsav>

<fltflg>

<nibble>

<tonnum>

<tonval>

<parcnt>

<atktab>

<sustab>

<waftab>

<pulslw>

<pulshi>

<filters>

1276:

1279:

127C:

127F:

1280:

4726 -

4729 -

4732 -

4735

4736

4728

4731

4734

Storage area for interrupt pointer

3-byte interrupt storage

3-byte interrupt address lo storage

3-byte interrupt address hi storage

<intval>

<coltyp>

424

Abacus Software
C-128 Internals

1281:

1282:

1285:

1288:

128B:

12 8E:

1291:

1294:

1297:

12 9A:

12 9D:

12A0 :

12A3:

12A4:

12A5:

12A6:

12A7 :

12A8:

12A9:

12AA:

12AB:

12AC:

12AD:

12AE:

12AF:

12B0:

12B1:

12B2:

12B3:

12B7:

12FA:

12FB:

12FC:

4737

4738

4741

4744

4747

4750

4753

4756

4759

4762

4765

4768

4771

4772

4773

4774

4775

4776

4777

4778

4779

4780

4781

4782

4783

4784

4785

4786

4787

4791

4858

4859

4860

- 4740

- 4743

- 4746

- 4749

- 4752

- 4755

- 4758

- 4761

- 4764

- 4767

- 4770

- 4790

- 4857

- 4863

Storage for SID variables

Sound: Voice storage

Sound: Time storage lo value (3 byte)

Sound: Time storage hi value (3 Byte)

Sound: Max value lo (3 Byte)

Sound: Max value hi (3 Byte)

Sound: Min value lo (3 Byte)

Sound: Min value hi (3 Byte)

Sound: Direction (3 Byte)

Sound: Step number lo (3 Byte)

Sound: Step number hi (3 Byte)

Sound: Frequency lo (3 Byte)

Sound: Frequency hi (3 Byte)

Temp storage: Time value lo

Temp storage: Time value hi

Temp storage: Maximum value lo

Temp storage: Maximum value hi

Temp storage: Minimum value lo

Temp storage: Minimum value hi

Temp storage: Direction

Temp storage: Step number lo

Temp storage: Step number hi

Temp storage: Frequency lo

Temp storage: Frequency hi

Temp storage: Pulse-wave width lo

Temp storage: Pulse-wave width hi

Temp storage: Waveform

Temp storage 1 for POT function

Temp storage 2 for POT function

Temp storage for WINDOW operations lo/hi

Memory pointer for SPRDEF & SAVSPR cmds

Definit mode for SPRDEF and SAVSPR cmds

Line counter for SPRDEF and SAVSPR cmds

Sprite number for SPRDEF and SAVSPR cmds

425

Abacus Software
C-128 Internals

1300: 4864 - 6143 Unused absolute RAM range

1800: 6144 - 7167 Reserved for function key applications
icoo: 7168 - 8191 Video matrix #2 (1 Kb, bit map color) if needed

2000: 8192 -16383 VIC bit map (8 Kb) if needed

4000: 16384 Start ofROM

426

Abacus Software C-128 Internals

8.3 Alphabetical listing of the kernal routines

As a user of the kernal and its subroutines you probably have found
yourself looking for a certain routine or table. The kernal and the built-in
monitor in the Commodore 128 consist of a large number of interesting and
useful routines which you can integrate into your own programs in various
ways. The problem lies in knowing that a certain routine exists, but not

knowing where it can be found and how to access it. Before you start to

look in the ROM listing for the routine you need, take a look through this

table in which we have listed all of the important routines and tables which

may be of interest to you.

$C17C Adapt attribute RAM address

$B0FC Addresses of the individual monitor commands (table)

$B8 8A Base table for four number systems

$C98E Bell: create tone

$EF 8 4 BSOUT output not to screen

$E224 C128 mode routine

$F81C CMPARE routine for FAR operations RAM

$F81C CMPARE routine for FAR operations ROM

$EE 9B Change IRQ vector for tape operation

$C3F4 Check Commodore key for time delay

$F3Al Check filename for burst mode

$CA9F Clear from cursor position to screen end

$CA7 6 Clear from cursor position to line end

$CA8B Clear from line start to line end

$CBB1 Clear line overflow bit

$C 60A Commodore/Shift character set switch

$C8 92 Commodore/Shift switch to 40-column mode

$C8 9F Commodore/Shift switch to 80-column mode

$E0CD Copy NMI and IRQ routines to all banks

$E723 CKOUT routine for RS-232 output

$F 16C CKOUT evaluation on serial bus

$F 12 7 CHKIN evaluation on RS-232

$E7 95 CHKIN routine for RS-232 input

$F 1A9 CLOSE routine for tape operation

$EED0 Check cassette recorder-keyboard

$E 9 8 0 Check tape header address for validity

$E2 4 2 Check EXROM input form cartridge test

$E 6 IB Check RS-232 send parity

$CAEA Clear or set auto-insert pointer

427

Abacus Software C-128 Internals

$C14 2 Clear screen window

$C4A5 Clear screen line in 40-column mode

$C 4C0 Clear screen line in 80-column mode

$B8D2 Convert ace contents into two ASCII characters (X/A)
$B 8C2 Convert ace to two ASCII characters and output

$F7 55 Coordinate system status word

$E2 4B Configure system as Commodore 64

$C40D Copy a window line (routine: MOVLIN)

$C4 3 6 Copy a window line in 80-column mode

$ED51 Copy start address for input/output operations

$F533 Control message: output LOADING

$F5 OF Control message: output SEARCHING FOR filename

$F 5 33 Control message: output VERIFYING

$CE0C Copy character set into VDC RAM

$C32 0 Conversion from ASCII characters to POKE codes

$C 93D Delete character under cursor

$CA52 Delete current input line

$CA2 4 Define sceen as window

$F1E4 Delete file entry from table

$F1C1 Delete a file entry

$C 9 IB Delete character to the left of the cursor

$C3DC Delete line on screen (with move)

$B0 5 0 Display monitor register contents

$B0C5 Determine address of a monitor command

$B 6 41 Determine address of BRANCH commands

$C 9 6C Determine tab position

$C8A6 Disable or enable Commodore/Shift

$03F0 DMA call routine ofcommon area in RAM

$CAF2 Enable block cursor

$C194 Editor IRQ routine

$C62F Evaluate decoder table according to shift pattern

$C 6AD Evaluate and store keypress

$C 7B 6 Execute control code

$C 9BE Execute escape sequences

$C8E3 Execute insert

$02A2 Fetch routine for FAR operations RAM
$F800 Fetch routine for FAR operations ROM
$F 7C 9 Fetch routine for LSV operations

$F 7AE Fetch routine for character from filename
$C 6E 7 Flash VIC cursor

$E2 6B Function ROM test for C-128 mode

$E 5 6 9 Get bit from serial bus into carry flag

$CC 6A Get cursor position and set

428

Abacus Software C-128 Internals

$C2 4 4 Get character from keyboard queue

$CB5 8 Get character and color at cursor position

$C2 9B Get character from screen

$EF5C Get character from serial bus

$EF4 8 Get character from cassette

$EF 6 7 Get character from RS-232

$E7 CE GET routine for RS-232

$EEF 9 GETXN evaluation not over keyboard

$E5D 6 Give fast-mode pulse on serial bus

$E 9BE Increment tape buffer pointer

$C 0 7B Initialize screen and editor

$C 0 7B Initialize editor and screen

$B0 4 6 Initialization of monitor commands

$B021 Initialize monitor for regular entry

$B014 Initialize monitor after BREAK

$E 1DC Initialize VDC registers

$C3 7 C Insert line on screen

$EAEB Interrupt routine for tape read

$ED 90 Interrupt routine for tape write

$CCF 6 Insert function key string

$02E3 JMPFAR routine RAM

$F 8 41 JMPFAR routine ROM

$ 0 2 CD JSRFAR routine RAM

$F 8 2B JSRFAR routine ROM

.$C 94F Jump to tab stop

$E 4 3E Kernal Acptr routine

$EF 0 6 Kernal BASIN routine

$F 93 4 Kernal boot routine

$EF7 9 Kernal BSOUT routine

$F 10 6 Kernal CHKESf routine

$EF 0 6 Kernal CHRIN routine

$EF 7 9 Kernal CHROUT routine

$E 5 0 3 Kernal CIOUT routine

$F 14 C Kernal CKOUT routine

$F2 2 2 Kernal CLALL routine

$F 18 8 Kernal CLOSE routine

$F2 2 6 Kernal CLRCH routine

$F7A5 Kernal DMA call routine

$E5FB Kernal FSTMODE routine

$F7EC Kernal GETCFG routine

$EEEB Kernal GETIN routine

$E2 4B Kernal GO64 routine

$F 7 81 Kernal IOBASE routine

429

Abacus Software C-128 Internals

$E 10 9 Kernal IOINIT routine

$ff 17 Kemal IRQ routine

$C55D Kernal KEY routine ($FC87 in International versions)
$E3 4 3 Kernal LISTN routine

$F7 9D Kernal LKUPLA routine

$F7 8 6 Kernal LKUPSA routine

$F265 Kernal LOAD routine

$F7 7 2 Kernal MEMBOT routine

$F763 Kernal MEMTOP routine

$FF0 5 Kernal NMI routine

$efbd Kernal OPEN routine

$F8 67 Kernal PHOENIX routine

$FA17 Kernal PRIMM routine

$E 0 93 Kernal RAMTAS routine

$F 65E Kernal RDTIM routine

$F 7 4 4 Kernal READST routine

$FF3D Kernal RESET routine

$E4D2 Kemal SECND routine

$F73F Kernal SETBNK routine

$F7 3 8 Kemal SETFLS routine

$F7 5C Kemal SETMSG routine

$F7 31 Kemal SETNAM routine

$F 6 65 Kemal SETTIM routine

$F7 5F Kemal SETTMO routine

$E33B Kemal TALK routine

$E 4EO Kemal TKDA routine

$F 5F8 Kemal UDTIM routine

$E 5 2 6 Kemal UNLSN routine

$E515 Kemal UNTLK routine

$E0 5 6 Kemal RESTOR routine

$F53E Kemal SAVE routine

$F 6 6E Kemal STOP routine

$E05B Kemal VECTOR routine

$C67E Key repeat evaluation

$C55D Keybaord matrix read

$F 63D Keyboard row selection: RUN/STOP - SHIFT

$C5E1 Keyboard read evaluate

$C6CA Keyboard buffer prepare for function key

$B 97 6 Load bank pointer and program counter from zero page
$E 9FB Load program from cassette

$F3EA LOAD routine in burst mode
$F27B LOAD routine from serial bus

$B4 0 6 Monitor command:. (assemble a line)

430

Abacus Software C-128 Internals

$B19 4 Monitor command:; (change register)

$B 1AB Monitor command: > (change memory contents

$BA90 Monitor command: @ (disk command)

$B4 0 6 Monitor command: A (assemble a line)

$B231 Monitor command: C (compare memory areas)

$B5 9 9 Monitor command: D (disassemble memory)

$B3D8 Monitor command: F (fill memory area)

$B1D 6 Monitor command: G (Jump to XXXX without return)

$B2CE Monitor command: H (Search for memory contents)

$B1DF Monitor command: J (Jump to XXXX with RTS)

$B337 Monitor command: L (Load a program)

$B 15 2 Monitor command: M (display memory contents)

$B0 5 0 Monitor command: R (display register contents)

$B3 3 7 Monitor command: S (store a program)

$B23 4 Monitor command: T (move memory areas)

$B337 Monitor command: V (compare program with memory)

$B0E3 Monitor command: X (exit)

$B 981 Monitor command: Convert number to different system

$E805 NMI routine for RS-232

$E8A9 NMI routine for RS-232 output

$E87 8 NMI routine for RS-232 input

$F 915 Output boot sector message

$F0CB Open file on serial bus

$EFF0 OPEN routine for tape operation

$F0 4 0 OPEN routine for RS-232

$E7 5C Output in RS-232 buffer

$CC2F Output ace at cursor position

$FD15 Output combined accent

$CC2 7 Output space at cursor position

$E3E2 Output byte on serial bus

$C7 6F Output carriage return to screen

$C2BC Output character at cursor position

$C7 2D Output character on screen

$F 521 Output found filename on screen

$F7 IE Output system and control messages

$CE8C Prepare byte output on serial bus

$F 9FB Prepare ace contents in two ASCII characters (-99)

$EAA1 Prepare cassette synchronization

$C3 63 Perform linefeed

$E 6 9D Process received bit from RS-232

$CCA2 Program function key

$F4C5 Read data block in burst mode

$E 9F2 Read data block from tape

431

Abacus Software C-128 Internals

$F4BA Read data byte in burst mode

$C2 58 Read an input line terminated by RETURN

$E8D0 Read program header from cassette

$E 9 8 7 Recalculate tape-end address

$EE 5 7 Recorder operation end

$EEB0 Recorder motor off

$E000 Reset routine

$C 6 51 Repeat keyboard logic

$C7 7D Reset quote mode

$F0B0 Reset CIAs to RS-232

$fcaa Reset decoder table set vectors

$F 9B3 Recreate DOS output buffer

$C980 Reset tab stops

$E5FF RS-232 output

$E 68E RS-232 data-bit number calculate

$E672 RS-232 NMI status set

$E 6D4 RS-232 start bittest

$efb7 RS-232 character output

$C3A6 Scroll screen up

$F 5C 8 SAVE routine for tape operation

$E 9 9A Search tape header for name

$CBC3 Search for end of input line

$F202 Search in logical file number table

$CACA Scroll up

$CABC Scroll down

$CAE2 Scrolling permit or prohibit

$F2 3D Set standard I/O devices

$CA14 Set window borders

$ED5A Set bit counter for serial output

$CB3 7 Set or clear bell pointer

$CDF 9 Set attribute address for attribute RAM

$C7E 5 Set character color in 40-column mode

$C7EC Set character color in 80-column mode

$CB93 Set line overflow bit

$C8D 5 Set cursor flash mode

$CD 5 7 Set cursor at current column

$C3 3E Set cursor to end of line

$C 15 0 Set cursor in screen windor at HOME position

$C 8 7 5 Set cursor to left in window to left

$ C8 6 7 Set cursor up in window

$C 8 5 4 Set cursor right in window

$C 8 5A Set cursor down in window

$CC0 0 Set cursor one position left in window

432

Abacus Software C-128 Internals

$CBED Set cursor one position right in window

$C 9 3 2 Set old cursor address again

$CD 6F Set cursor color at cursor position

$F0D5 Set filename to serial bus

$C 9 61 Set or clear tab stop

$E 5 7 3 Set clock frequency to 1MHz

$C8BF Set or clear reverse mode

$C2 0 7 Set IRQ register

$F3 9B Set program end address after LOAD

$ 0 2AF Stash routine for FAR operations RAM

$F 8 OD Stash routine for FAR operations ROM

$F7BC Stash routine for LSV operations

$CD2C Switch 40/80 column modes

$FA6 5 System IRQ routine

$FA40 System NMI routine

$F7F0 Table of configuration values

$CEB2 Table of function key assignments

$C 6DD Table of funtion key codes

$EEA8 Table of IRQ vectors for tape operation

$CE7 4 Table of initialization values for 40-column

$CE8E Table of initialization values for 80-column

$C7 8C Table of control codes

$E0 4B Table ofMMU initialization values

$B0E 6 Table of monitor keywords

$E 8 5 0 Table of timer constants for RS-232 baud rate

$E2F8 Table for VDC initialitzation

$E2C7 Table for VIC initialitzation

$FCC3 Test accent keys and combine accents

$CB7 4 Test line overflow bit

$C2FF Test quote character and set pointer

$B7A5 Test separator between command operands

$EA8F Test the STOP key

$E 9DF Test for tape button

$C8DC Turn off cursor flash mode
$CB1A Turn cursor flash off for 40-column mode

$CB2E Turn cursor flash on for 40-column mode
$CB0B Turn cursor flash off for 80-column mode

$CB21 Turn cursor flash on for 80-column mode

$CB 4 8 Turn off 80-column reverse

$CB3F Turn on 80-column reverse

$C 8CE Turn underline mode off

$C8C7 Turn underline mode on

$CAFE Turn underline cursor on

433

Abacus Software C-128 Internals

$C0 6F Vector table to ASCII decoder tables

$FE3 4 Vector table to DIN decoder tables (International Versions only)

$C00 0 Vector table for editor routines

$C 9DE Vector table for editor routines

$C 7B 6 Vector table for control code routines

$F3EA Verify routine in burst mode

$EA7D Wait for tape I/O termination

$E7EC Wait for end of RS-232 tranfer

$E5BC Wait for fast-mode response from bus

$E 9E 9 Wait for RECORD & PLAY on Datasette

$E 9C8 Wait for button on datasette

$EAl 5 Write tape buffer to tape

$ED 69 Write bit to tape

$E 919 Write data block to tape

$E 919 Write header to tape

$EA1C Write data block to tape

$EE2E Write the header

434

Abacus Software C-128 Internals

8.4 The Token Table

The Commodore BASIC 7.0 is, in contrast to BASIC 2.0 on the C-64,

extended with a number of new commands and instructions. As you know,

BASIC commands are not saved in their text forms, but in the form of

so-called "tokens11. In order to ensure unambiguous identification of tokens

and other text characters, the code values 128 to 256 are reserved for the

tokens. This is exactly 128 possible values with which a token can be

indicated. But BASIC 7.0 has more than 128 different command keywords.

For this reason, there are some tokens which require two values to denote a

keyword. The BASIC interpreter recognizes the two values as a token. Here

is a table of all the command keywords and the token values associated with

them.

Command

END

NEXT

INPUT*

DIM

LET

RUN

RESTORE

RETURN

STOP

WAIT

SAVE

DEF

PRINT*

CONT

CLR

SYS

CLOSE

NEW

TO

SPC(

NOT

+

*

A

OR

Token

$80

$82

$84

$86

$88

$8A

$8C

$8E

$90

$92

$94

$96

$98

$9A

$9C

$9E

$A0

$A2

$A4

$A6

$A8

$AA

$AC

$AE

$B0

Command

FOR

DATA

INPUT

READ

GOTO

IF

GOSUB

REM

ON

LOAD

VERIFY

POKE

PRINT

LIST

CMD

OPEN

GET

TAB(

FN

THEN

STEP

-

/
AND

>

Tok<

$81

$83

$85

$87

$89

$8B

$8D

$8F

$91

$93

$95

$97

$99

$9B

$9D

$9F

$A1

$A3

$A5

$A7

$A9

$AB

$AD

$AF

$B1

435

Abacus Software

Command

=

SGN

ABS

FRE

SQR

LOG

COS

TAN

PEEK

STR$

ASC

LEFT$

MID$

RGR

POT

PEN

RSPRITE

XOR

POINTER

RDOT

HEX$

INSTR

RESUME

TRON

SOUND

AUTO

GRAPHIC

CHAR

CIRCLE

SSHAPE

LOCATE

SCNCLR

HELP

LOOP

DIRECTORY

DLOAD

SCRATCH

COPY

BACKUP

RENUMBER

MONITOR

Token

$B2

$B4

$B6

$B8

$BA

$BC

$BE

$C0

$C2

$C4

$C6

$C8

$CA

$CC

$CE $02

$CE $04

$CE $06

$CE $08

$CE $0A

$D0

$D2

$D4

$D6

$D8

$DA

$DC

$DE

$E0

$E2

$E4

$E6

$E8

$EA

$EC

$EE

$F0

$F2

$F4

$F6

$F8

$FA

Command

<

INT

USR

POS

RND

EXP

SIN

ATN

LEN

VAL

CHR$

RIGHT$

GO

RCLR

BUMP

RSPPOS

RSPCOLOR

RWINDOW

JOY

DEC

ERR$

ELSE

TRAP

TROFF

VOL

PUDEF

PAINT

BOX

GSHAPE

DRAW

COLOR

SCALE

DO

EXIT

DSAVE

HEADER

COLLECT

RENAME

DELETE

KEY

USING

C-128 Internals

Token

$B3

$B5

$B7

$B9

$BB

$BD

$BF

$C1

$C3

$C5

$C7

$C9

$CB

$CD

$CE $03

$CE $05

$CE $07

$CE $09

$CF

$D1

$D3

$D5

$D7

$D9

$DB

$DD

$DF

$E1

$E3

$E5

$E7

$E9

$EB

$ED

$EF

$F1

$F3

$F5

$F7

$F9

$FB

436

Abacus Software

Command

UNTIL

BANK

PLAY

MOVSPR

SPRCOLOR

ENVELOPE

CATALOG

APPEND

BSAVE

RECORD

DVERIFY

SPRSAV

BEGIN

WINDOW

WIDTH

QUIT

FETCH

OFF

SLOW

Token

$FC

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$02

$04

$06

$08

$0A

$0C

$0E

$10

$12

$14

$16

$18

$1A

$1C

$1E

$21

$24

$26

Command

WHILE

FILTER

TEMPO

SPRITE

RREG

SLEEP

DOPEN

DCLOSE

BLOAD

CONCAT

DCLEAR

COLLISION

BEND

BOOT

SPRDEF

STASH

SWAP

FAST

C-128 Internals

Token

$FD

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$FE

$03

$05

$07

$09

$0B

$0D

$0F

$11

$13

$15

$17

$19

$1B

$1D

$1F

$23

$25

437

Abacus Software C-128 Internals

8.5 The Character Set

On the following pages you find two character sets, the normal

Commodore character set (the only one in the American version) and the

DIN (German [Deutshe] Industry Normal) foreign language set. They

contain information about the address at which the matrix of the character is

located, as well as the value of the POKE code in parentheses.

The C-128!s sold in Europe contain two character sets, the normal

Commodore character set and in the German versions a DIN (German

[Deutshe] Industry Normal) character set for foreign languages. C-128s

sold in other foreign countries may have a different International character

set than the one presented here, we have checked only the American and

German versions. See the differences in the ROM listing starting at $FC80

thru $FEFF and at $C012. Notice that the KEY vector at $FF9F in the

Kernal Jump Table points to the same location but that the address at that

location ($C012) is different for the American ($C55D) and German

($FC87) versions. The German version jumps to the standard keyboard

matrix reading routine ($C55D) at address $FCC3. On the International

versions you can switch between the two character sets by pressing the

ASCII/DIN key (CAPS LOCK on American versions). The key is polled

through interrupts, meaning that it is recognized immediately when it is

pressed. The character set on the 40-column screen changes immediately

and on the 80 column screen the computer pauses for about one second.

This is because the computer has to copy the character set to the VDC

(80-column controller) memory because this controller does not get its

characters from the ROM.

Physically the two character sets, ASCII and DIN, are at the same

address, namely $D000. When the ASCII/DIN key is pressed, the two

character sets are exchanged via hardware.

To save space in the book, we have not pictured the reverse characters.

To obtain the address of these characters, add the offset $0400 to the base

address of the normal character.

You can easily change the character set for the 80-column controller by

changing the corresponding addresses in the VDC RAM. Chapter 5 contains

more information about this and other aspects of the VDC.

You can also change the VIC character set by changing the character

set pointer in CIA 1. More information about this can be found in the

chapter on the VIC chip, Chapter 2.

438

Abacus Software C-128 Internals

DOOO

3C
66

6E

6E

60

62

(000)

UOMNGG

GMGGMG
gbbqbbbg

gbbgbbbg

DMOOOQD
GBBGGGBG

00 OOQUQDQO

D008 (001) DO 10 (002) (003)

18 GGGBBOOG

3C GGBBBBGG

66 GBBOOBBG

66 GMGQMQ

66 GMGGMO
66 OiiGuMU

00 UUUGGUULJ

7C GMBilGG

66 QBBQGBBG

66 GBBOGBBO
7C GimiGG

66 GMGGMG
66 GiiGGiiG

7C QMMBGO

00 OOODQDOO

DO 18

3C GGMMGG

66 jOBGGiiL

60 GBBOGOOG
60 QiiGGGGG

60 GBBOGOOG

66 GIIGGNG

3C GOMMOG
00 GGGOGUUU

(004)D020

78 Uiii

6C JllUiiUU

66 GMOGOiG

66 GBBOOMO

66 QMOOMG
6C GMGNOG

78 GBBBBGGG

oo aaoDoaaa

D028 (005) D030 (006) D038 (007)

7E GBBBBBBG

60 GBBGGGGG

60 OMGQOOO
78 OMBBGGG
60 GMGGGOO

60 GBBGOOGG
7E GMMMG

00 GGGQGGGQ

7E GMMMG

60 oMOGoaa
60 GMGGGGO

78 GNMGGG
60 QBBGGOOG
60 GMGQGGO

60 GMOGQGO
00 OGGOCOQG

3C OGMMGG
66 GMGGMG

60 GMGGGGC
6E GMGMBG

66 GliGGIIG

66 GNGGMG
3C GGMBBGG

00 QGGGQGGG

D040 (008)

66 GMGGMG
66 GMGGMG

66 GMGGMG
7E uMMMG
L.f- i—iMaji—it—(^■^■i—j

66 GMGGBBG

66 GBBGGBBG

00 GGGGGGGG

D048 (009) D050 (010) D058 (011)

3C GGMMGG!
18 GOQMQGQ

18 OOGMOOG
18 OGOBBGGG

18 aaOMQOO
18 QOGMGOG

3C GOMMOO
00 GGOQGOGO

IE GGQMMO
0C GGGGBBOQ

0C GQGQBBGG
0C GGQGBBQG

oc aaaoMao
6C GMGMOG

38 QGBBBQQG

oo aaaooooo

66 GBBGGBBG.
6C Ml

78 GBI
70

78 Gl

6C Gl

66

IGDG
GBBBOGQG

IOOG

•OO
GBBGGBBG

oo uuuuOCjlju

D060 (012)

60 GBBOOOGG
60 GBBOGGGG

60 GMGGGOG
60 GBBGGGQG
60 GMGGOGG
60 GBBGGGQG

oo aaaoGQuG

D080 (016)

7C GBBBBBGG

66 GBBGGBBG
66 GBBGGBBGi

D068 (013) D070 (014) D078 (015)

immmmm

60 GMOGGOa
60 GBBGGGGQ
60 GBBGOGOG
00 GGOQQGGG

DOAO (020)

7E OBI

18 aOOMGGC
IB GGOMGGO
18 GGGMGGO
18 GOOBBOOO
18 GGGMOGO
18 OGGBBGGG
00 GGGGGGGG

63

77

7F

6B

63

63

63

00

OMGOOM
GBBBGBBB

GBBBBBBB

GBBCBGBB

GBBGGGBB

GBBGGGBB

GBBGGGBB
GGGGGGGG

D088 (017)

3C

66

66

66

66

3C

0E

OO

QQBBBBGG

GBBGGBBG

GMQOMO
GBBGGBBG

GBBGQBBG
GGBBBBGG

GOGQMBO
GGOOGGGG

D0A8 (021)

66

66

66

66

66

66

3C

00

GBBGGBBG
GBBGGBBG:

GBBGGBBG

qmoomo
GBBGGBBG
GBBGGBBG
GGBBBBGG
LJLJGLJOGGG

66 GBBGQBBG

76 GBBBGBBQ

7E GBBBBBB'G

6E GBBGBBBG

66 GBBGGBBG:

66 GBBGGBBG

00 GGGGGQGG

D090 (018)

7C GBBBBBGG

66 GBBGQBBQ

66 GBBGGBBG

7C GBBBBBGG
78 GBBBBOGG
6C GBBGBBGG.

66 GBBGOMO

00 GGGGOGGG

DOBO (022)

66 GBBGGBBG
66 GBBGGBBG
66 GBBGGBBG

66 GMGOBBG
66 GBBGGBBG:
3C GGBBBBGG

18 GGGBBGGG
00 GGGGGGGG

3C

66

66

66

66

66

3C

00

1 ii iBBBBGi '•

GBBGGBBG

OMGOMG
GBBGGBBG

GBBGGBBG

GBBGGBBG

GGBBBBGG
UULJGGGGG

D098 (019)

3C

66

60

3C

06

66

3C

00

GGMMGG

GBBGGBBG

GBBGGGGG
GGBBBBGC

GGGGOBBG
GBBGGBBG
GGBBBBG^G

OOGOGOGG

D0B8 (023)

63

63

63

6B

7F

77

63

00

GBBGGGBB
QBBGGGBB

GBBGGGBB
GBBGBGBB

GBBBGBBB

GBBGGGBB
GGGGGOGG

439

Abacus Software C-128 Internals

DOCO (024) D0C8 (025) DODO (026) D0D8 (027)

66 gbboobbg

66 obboobbc
3c oobbbboo
ib ooobboco
3c gobbbboo

66 gbbgobbo
66 uiiQlJiiD

00 OOOOOGOG

DOEO (028)

oc aoDOMoa

12 OaGBOOBO
30 OOBBOOOO
7C OBBBBBOC
30 OGBBOOOO
62 uBBOOOBa
FC ■■■■■■GO
00 GGOOOOOO

D100 (032)

00 OOGGOOOO
oo oocaoooa

oo oooaaoao
oo Gooaoaao
00 GGOOOOOO

oo aoaooaoo
oo oaoaoooo
oo oaaaoooo

66 OBBOOBBO

66 OBBOOBBO
66 GiiDUiiQ

3C OOBBBBOO
18 OOOBBOOO
18 OOOBBOOa
18 OOOBBOOG
oo oooooaao

D0E8 (029)

3C OOBBBBOO

OC OaOOBBOO
OC OOOOBBOO
OC OOOOBBOO
OC OOOOBBOO

OC OOOGBBOO

3C OOBBBBOO
00 GOOOOOOG

D108 (033)

18 OOOOBOOO
is oaoMooa

is oaa»»ooa
18 OOOMOOO
oo ooooaoan

oo oaooaooa
18 GOOMOOO
oo oaoaoaao

7E

06

OC

18

30

60

7E

00

i iBBBBBB' 1

QDODDBBO
oaooBBao
aaoBBOOu
aoBBaaoa
oBBaaaaa
OBBBBBBLJ
DDDaaaaa

DOFO (030)

00

18

3C

7E

18

18

18

18

oaaaoauG

DDOBBDOO
aOBBBBOO

OBBBBBBO
GOOBBGaa
aaoBBoaa

aaoBBaaa
aaoBBOoa

DUO (034)

66

66

66

00

00

00

00

00

OBBOOBBa
OBBOOBBO
OBBOOBBO
ooaaaaaa
aaaaaaaa
oaaaaada
aaaaaaao
aoaaooao

3C

30

30

30

30

30

3C

00

QG©B«BOG

DDBBODOO
oaBBoaaa
GGBBaaaa
oaBBaaoa

aoBBoaao
aOBBBBOG
aaaaaoaa

D0F8 (031)

00

10

30

7F

7F

30

10

00

uaaoGuaa
GOGBGGaO
OGBBOGOC
OBBBBBBB
GBBBBBBB

ooBBoaaa
aaoBoaoa
aaaaaaao

D118 (035)

66

66

FF

66

FF

66

66

00

OBBOGBBO

GBBOOBBG

QBBOOBBO

BBBBBBBB
OBBOOBBO
GBBOOBBG
aaaaaaaa

D120 (036)

18 OOOBBOGG

3E OOBBBBBO

60 OBBOOOOO
3C OOBBBBGO
06 OOOOOBBO
7C OBBBBBOG

18 GOOBBOOO
00 GOOOGGOO

D128 (037)

62 QBBOOOBO
66 GBBGOBBG
OC OOOGBBOO

is aooBBoao
30 OOBBOOOO
66 GBBGGBBQ

46 OBOOOBBG

oo ooGuaaao

D130 (038)

3C GGBBBBOG
66 OBBOOBBQ

3C OOBBBBOO
38 GOBBBGOO

67 GBBOOBBB
66 GBBOOBBO
3F OOBBBBBB

oo aaoooaao

D138 (039)

06 GOGOOBBG

OC QOOGBffiOO
18 GOGBBOOO
00 OOGGOGOO
oo oaaoaaaa

oo aaoaaooo
oo aooaoaoo

oo oaaooaao

D140 (O4O)

oc oaooBBoa

is aaoBBOoa
30 GOBBGGOO

30 OQBBOOOO

30 ooBBoaaa
IB OOOBBOOO

OC OOOOBBOO
oo aaaoooao

D148 (041)

30 OOBBOOCO

18 OOOBBOOO
oc aaooBBOG

OC OOOOBBOO

OC OOOOBBOO

18 OOOBBOOO

30 OOBBOOOO
oo oaaoaoao

D150 (042) D158 (043)

oo oaooaoGG
66 GBBOGBBO

3C GOBBBBGO

FF BBBBBBBB

3C OOBBBBOG
66 OBBOOBBO
oo aooaoooo

oo aoooaoao

00 QOOOGGGG

18 OOGfflBGGO
18 OOOBBOGG

7E OBBBBBBG

18 OOOBBOOG

18 UOOBBGGO
oo aaaooooG
00 QGGGGOOG

D160 (044)

oo oooaoooo
oo oooooooa

oo aooaoooo

oo ooaoooac
oo oooooaoo
IB OOOBBOOO

IB QGOBBOOO
30 ooBBoaoa

D168 (045)

oo oooaoooo
oo aoaaaooo
oo oaoaoooa
7E GBBBBBBO

oo oaaoaaaa
oo aaaaaaaa
oo ocaaaaoa
oo aoaaaaaa

D170 (046)

oo oaaaaoaa
oo GGoooaaa

oo ooaaaaao
oo aaaaaoao
oo oaaaaoaa

is oaoBBaaa
is aaoBBoaa

oo aaaaaaaa

D178 (047)

oo aaaoaaao

03 GOauGOBB
06 GGGOGBBO

oc aaaoBBaa
is oaoBBaaa
30 GQBBGOOa

60 OBBOOOOC

oo aaaaaaoG

440

Abacus Software C-128 Internals

D180 <048)

3C GGIIIIUU

66 OBBOOBBO
6E OBBOBBBO
76 GBBBOBBO
66 QBBOOBBO
66 OBBOOBBO
3C QDiiOiUiJ

00 DDDDOOOD

D188 (049)

18 OOOBBOOG
18 OOOBBOOO
38 OOBBBOOO
18 OOOBBOOO
18 ODDBBOOO
18 OOOBBOOO

oo oaoooooo

D190 (050)

3C OOBBBBOO

66 OBBOOBBO
06 aoaooBBO

OC DODDBBDO
30 OOBBOOOO
60 oBBoaooa
7E OBBBBBBO
oo aoooooao

D19B (051)

3C OOBBBBOG
66 OBBOOBBG
06 OOOOOBBO
1C OOOBBBOO
06 OOOOOBBO
66 OBBOOBBG
3C OOBBBBOG
oo aoooaaoo

D1A0 (052)

06 OOOOOBBO
OE OOOOBBBO
IE OOOBBBBO
66 OBBOOBBO
7F OBBBBBBB
06 OOOOOBBO
06 OCOOOBBC
oo ooogoooo

D1A8 (053)

7E GBBBBBBO
60 OBBOOOOO
7C OBBBBBOG
06 OOOOOBBO
06 OOOOOBBO
66 GBBGOBBO
3C GOBBBBGG
oo ooooaooo

D1B0 (054)

3C GOBBBBOO
66 OBBOOBBO
60 OBBOOOOO
7C OBBBBBOO
66 OBBOOBBG

66 OBBOOBBO
3C OOBBBBOG
00 GOOOOGGG

DIBS (055)

7E GBBBBBBO
66 OBBOOBBO
oc aoaoBBoa
18 OOOBBOOO
18 OGOBBOOO
18 OOOBBOGO
is aaoBBoao
oo oaoGoooa

D1C0 (056)

3C GGBBBBGO
66 GBBOOBBG
66 GBBGGBBG
3C GGBBBBQG
66 GBBOGBBG
66 GBBGGBBG
3C GOBBBBGG
00 GGOOOGGQ

D1C8 (057)

3C OGBBBBGG
66 GBBGGBBG
66 GBBGGBBG
3E GGBBBBBG
06 GGGGGBBG
66 OBBOGBBG
3C GOBBBBGG

oo oaooaoaa

DIDO (058)

00 DODOODQO
00 GOGGGGGO
18 DOOBBDOa
oo aoaaoDoo
00 OOOOGQGG

18 GOGBBGGG
00 ODOOOaOG
oo aaooaooo

D1D8 (059)

oo ooaoaaoo
oo oaaoaooo
18 GGOBBOGG
00 GGGOGGGG

00 OOODDDDD
18 GGOBBOOO
18 GGGBBOGO
30 GGBBGGOG

D1E0 (060)

OE GGOGBBBG
18 OOOBBGOO
30 OOBBOOGG
60 GBBGGOGG
30 GGBBOOOG
18 CGQBBOOO
OE OOOOBBBO

oo oaaoaoao

D1EB (061)

00 OOODDDOD
00 GOOOGOGG
7E OBBBBBBG
00 OOGGGGGG
7E I—IBBBBBBI—'

oo aooaaoGG
oo oaooooao
oo ooaoooao

D1F0 (062)

70 OBBBGGGG
18 OOOBBOOG
OC aOOOBBOG
06 GOOOOBBO
OC OOOOBBGG

18 OOOBBOOO
70 OBBBOOOO

oo aaoaaaao

D1FB (063)

3C OGBBBBOG
66 OBBOOBBO
06 OGGOOBBO
oc oaaoBBGO
18 OOOBBOOO
oo oaooooao
18 OOOBBOOO
oo Gooaaaao

D200 (064)

oo aaoaoooa
oo aooooaoo
oo aoooaoao
FF BBBBBBBB
FF BBBBBBBB
oo oooooaoa
oo oooooooo
oo ooaooooG

D208 (065)

08 GDOOBOGG

" GOOBBBOO
OOBBBBBO

3E OC

oo aoaooGGG

D210 (066)

18 OOOBBOOO
18 OOOBBGOO
is aooBBooa
is ooobbooo
18 OOOBBOGO
18 OOOBBOOO
18 oaoBBoaa
is aaoBBoao

D218 (067)

OOOGOOOO
oaaaaooo
ooaaoaoo

00

oo

oo

oo aaoooaoo
oo aoaooaoo
oo aaaoaoao

D220 (068)

oo aaooooao
oo aooooaoa
FF BBBBBBBB
FF BBBBBBBB
oo aoooaooo
oo aaaaoaoo
oo oaooaoao
oo oaoooaaa

D228 (069)

oo aaoaooao

oo ooooaaao
oo oooaoaaa
oo oaoooooo
oo oooaaaaa
oo aooooaao

D230 (070)

oo ooaaoaao
oo aaoooaoa
oo aaooaooo
oo oaaooaDO

oo aaoaoaoa
oo aaaaoaoa

D23B (071)

30 OOBBOOOO
30 OOBBOOOO
30 OOBBOOOO
30 OOBBOaOG
30 ooBBaaaa
30 ooBBoaoa
30 aoBBoaao
30 aoBBoaaa

441

Abacus Software C-128 Internals

D240 (072)

OC GDGGBBGG
OC OOGOBBOG

oc oDDDaaoD
oc oaaaaBGG
OC GGGGBBGG
OC GGGGBBGG
OC GGGGBBGG
OC OOGGBBGG

D248 (073)

oo GoaaoGGO
oo aoaaaoGu

00 OGGOGGOG
EO BBBGGGGO
FO BBBBGGGQ
38 GOBBBGGQ
is aaaBBGGG
18 QOGBBGGG

D250 (074)

18 GaaBBQGG
18 GaOBBOGG
1C GGQBBBGG
OF GGGGBBBa
07 GGGGGBBB

00 GGQGOGGG
00 OOOOOOOO
00 aOOGGGGO

D258 (075)

18 GGGBBGGG

18 GGGBBQGC

38 GGBBBGGG
FO BBBBGGGG
EO BBBaOOGG

00 ODOOOODO
oo aaoaoaoo
00 GGGQGGGG

D260 (076) D268 (077) D270 (078) D278 (079)

CO BBaGGGGG
co BBaaoGoa
co BBaaaaoG

co BBaaaGoc
co BBoaaaaa
CO BBDDDOOD
ff aaaaaaaa
ff BBBaaaaa

D280 (080)

GGGaOGBB
03 ooaaaaBB

03 GaaGGGBB

03 OOaOODBB
03 GaaaooBB
03 GGGGaGBB

D2A0 (084)

60 GBBGGGGG
60 DBBoaaoa
60 GBBGGGOG
60 GBBGaOGQ
60 GBBGGOOG

60 GBBGGGGG
60 GBBaaGOG
60 GBBaOOGG

D2C0 (088)

18 GGGBBGaO

18 ouaBBoaa
66 GBBGGBBG
66 GBBGGBBG

is aaaBBaao
18 OGGBBOGO
3C GGBBBBGG
00 GGGGGOGG

D2E0 (092)

CO BBGGGGOO

CO BBDDOOOO
30 GGBBGGaG
30 GQBBGGGO

CO BBOGOGGQ
CO BBGGGGOO
30 GGBBOOOG
30 GGBBGQGQ

CO BBGGGGOG
EO BBBGOGGO
70 GBBBGOGG
38 GGBBBaOG
1C QGOBBBGO
OE GGGGBBBG
07 GoaaaaBB
03 aooooaBB

D288 (081)

00 GGOGGOOG

3C GGBBBBGG
7E GBBBBBBG
7E GBBBBBBG
7E GBBBBBBG
7E GBBBBBBG
3C GGBBBBGG

00 GGQGGGGO

D2A8 (085)

00 GCGGGGGO

oo Gaooacao
oo ooaaaaoG
07 aaaoGBBB

OF GGGGBBBB

ic Gaaaaaaa
18 GGOBBGaO

18 GGGBBOQG

D2C8 (089)

06 GGGOGBBO

06 GGGOaBBG
06 GOGOGBBG
06 GQQOOBBG

06 QGoaaaaa
06 GGGGGBBG

06 GGGOOBBG
06 GQGOCBBO

D2E8 (093)

18 GOGBBGGO
IB OOOBBGQG

18 GGaaaaaa
18 OGOBBGGG
18 GOGBBGGG
is aaaBaaaa
18 GQGBBGQG
18 GGQBBGGG

03 GGCGGOBB

07 GGGGGBBB
OE GGOGBBBO
IC GGaBBBOG

38 QGBBBQOO
70 GBBBGOGG

EO BBBQGOGG
CO BBGQGGGG

D290 (082)

00 GGGGQOGG
00 GaOGGQGG
00 OGQGGCOG
00 GOQGQGGO
00 CGGGGQQG
ff aaaaaaaa
FF BBBBBBBB

oo QGGGGaaa

D2B0 (086)

C3 BBGGGGBB
P7 ■■■!—|i—>■■■

t / ■■■LJLJVhS

7E GBBBBaBG

3C GGBBBBGG
3c Goaaaaoo

7E GaaaaaaG

C3 BBOOGOBB

D2D0 (090)

08 QGQGBGGO

IC GGQBBBOG

3E GGBBBBBG
7F Gaaaaaaa

3E GGBBBBBG
IC GGGBBBGO
08 GOGOBOGQ
00 GGOGGGGG

D2F0 (094)

00 QOGOGiZiQO

00 OaOOGOGO

03 GGGGQOBB
3E GGBBBBBG
76 OBBBOBBO

36 GGaBGBBG
36 GGBBGBBG
00 GOOOGGGG

FF

FF

CO

CO

CO

CO

CO

CO

aaaaaaaa
aaaaaaaa

BBGGQGQG
BBaGGOGG
BBaGGQGO
BBOaGGGG
BBGOGGGG1
BBOGGOQa

D298 (083)

36

7F

7F

7F

3E

IC

08

00

GGBBGBBG
GBBBBBBB
GBBBBBaa
Gaaaaaaa

GGBBBBBG
GGGBBBGO
QGOGaOGG

GGGGGGGG

D2B8 (087)

00
T•jL

7E

66

66

7E

3C

00

GGGGGGOG

GaaaaaaG

GaBGGBBG
GBBQGBBG

oommoo
GGGOOOOG

D2D8 (091)

18

18

18

FF

FF

18

18

18

OGQBBOGG
GGGBBGOG

GGOBBGOD

BBBBBBBB
GOGBBGOD
QGGBBGGG
GGQBBGGQ

D2F8 (095)

FF

7F

3F

IF

OF

07

03

01

aaaaaaaa

GBaaaaaa
GGaaaaaa

GOGBBBBB
GGGGBBBB
GGGGGBBB
DGGGOOBB
aOOGOQGB

442

Abacus Software C-128 Internals

D300 (096)

00 GCOGGGQG
00 OGOOGGOG

00 QOQOGOGG
00 GGGGGOGG
00 GGGQQGGQ
00 CGGGQGQG
oo oaaaooGO
00 GOGGGOGG

D308 (097)

FO ■■■■GOQG

FO ■■■■DGDU
FO BBB0GOQG

FO ■■■■OOOO
FO 0BB0OQOG

FO ■■■■OOOC
FO ■■■■GGGG

fo ■■■■aooo

D310 (098)

00 QGGGOOQO
00 GOGGGQGO
00 GOGOQQGG
00 QOGOGOCG

(099)D318

FF ■■!

00 GGGGGGGG
00 GGCGGGGG
00 GGQQGGGG

00 GGUUUGGG
00 GGGOGGGQ

00 GGOGGGGG
00 GGQGGQQQ

D320 (100)

00 GGGGGOGG
00 GGGGOOGO
00 GGGOOGGQ

00 GGGQGGGQ
00 GGGGGGGO

00 GGGGGGGG
00 GGGGGQQG
FF ■■■

D328 (101)

CO ■■CGGGGO
CO ■■GOGQOO
CO ■■GGGGGG
CO ■■GQOGOG
CO ■■GGGQOG

CO ■■OGGOQG
CO ■■GOGGGO
CO ■■GGGGGG

D330 (102)

CC BBOOBBOO
CC BBOGBBGG
33 DOMQGM

33 GGBBGOBB
CC ■■DONOG

CC BBOGBBQG
33 GGBBQGBB
33 QOBBOOBB

D338 (103)

03 aaaaaoBB
03 OOOGGGBB

03 OOOOOCBB
03 QQGOQGBB

03 OOOOOOBB
03 OOOOGOBB
03 OOOOOGBB
03 OOOOOOBB

D340 (104) D348 (105) D350 (106) D358 (107)

00 QGGGGGGG
00 GCGGGGGG
00 GGGGGQOa
00 GOGGGGGG
CC BBQGBBGG
CC MGGMGG
33 GGBBOGBB
33 QOBBGOBB

D360 (108)

00 GGGGOGGG
00 OOGGGQGG
00 GOGGGGGG
00 GGGOOGOO
OF GQQOBBBB
OF QOGOB
OF

OF OQQQ

D380 (112)

00 QGGGGGGG
00 OOQGOGOQ
oo qoooaooo

if GOGBaaas

is aaoBBoaa
is aaoBBooo
IB QOGBBOOa

D3A0 (116)

CO BBOOOOOO
co BBOoaoao
CO BBOOOOOO
co BBoaooao
CO BBGOGOOO
co BBoaaoao
CO BBOOOOOO
CO BBOGGGGO

FF

FE

FC

F8

FO

EO

CO

80

BBBBBBBB
BBBBBBBG
BBBBBBOG
BBBBBGGG

BBBBOOOO
BBBGQGOG
BBGGGGGG
BGGGGGGG

D368 (109)

18

18

18

IF

IF

00

00

00

OOOBBOOO
GGOBBGGG
OOOBBOOC
GGGBBBBB
GGOBBBBB
OOOOOOOO
GQCQGGOQ
OOOOOOOO

D388 (113)

18

18

18

FF

FF

00

00

00

OOOBBOOO
OOOBBOOO
OOOBBOOO
BBBBBBBB

OGGGoaao
ooaaaooo
00000000

D3A8 (117)

EO

EO

EO

EO

EO

EO

EO

EO

BBBoaaoo
BBBOOGGO
BBBGGGOO
BBBGGOOO
BBBOOOOO
bbbljgoljo
BBBOOOOO
BBBOOOOO

03

03

03

03

03

03

03

03

OOOOOCBB
aaaoooBB
aoaoooBB
QGGGGOBB
GGGGGGBB
GOGGGGBB
OOOOGOBB
OOOGGGBB

D370 (110)

00

00

00

F8

F8

18

18

IB

aoooaooo
aooooaoo
OOOOOOOO
BBBBBGOG
BBBBBGGG
aooBBoao
GOOBBOGO
GGOBBOGG

D390 (114)

00

00

00

FF

FF

IB

16

18

OOOGOOOC
OOOOOOOO
GOGOOGOG
BBBBBBBB
BBBBBBBa
GGOBBGOO

OOOBBOGG
OOOBBOOO

D3B0 (118)

07

07

07

07

07

07

07

07

GOOGGBBB
OOOGGBBB
OOGGGBBB
OOGGGBBB
OGOOGBBB
OOOOGBBB
GOOOGBBB
OOOOGBBB

18

18

18

IF

IF

18

18

18

D3;

00

00

00

00

00

00

FF

FF

OOGBBOOG
GGOBBOGG
GQOBBGGG

GGGBBBBB

OGOBBGGQ
GGGBBOGG

OOOBBCOC

73 (111)

OOOOOOGG
GOQOOOOG
UUUUGOOG
GOGGQGGG
GOOGQQOQ
GOOOOOCO

BBBBBBBB

D398 (115)

18

18

18

F8

F8

18

18

18

GOGBBGOO
OOOBBOOO
OOOBBOOQ

GOQBBOQO
OG~!BBO~G
OGGBBGGG

D3B8 (119)

FF

FF

00

00

00

00

00

00

BBBBBBBB
BBBBBBBB
oooooono
ODODOD"C
oooooono
OOOOOOOO
DOOOOOGO
Dnnnnnnn

443

Abacus Software C-128 Internals

D3CO (120) D3C8 (121) D3D0 (122) D3D8 (123)

FF ■■■■■BSD

FF BBBBBBBB

FF BBBBBBBB
oo oaaaoaoo
00 00000000
oo aaaoooaa

oo aoaaaooo
oo aoaaoaoa

D3E0 (124)

OF OOOGBBBB

OF OOOOBBBB
OF QOOOBBBB
OF GQGOBBBB
00 GGGGGOGG

00 DDDDOOOD
oo aaoaaoGG
00 GGGGGaaG

00

00

00

00

oo

FF

FF

FF

aoaaaooa
aoaaaaoa
aoGoaaoo
aaOGGGGG
aaoaaooo
BBBBBBBB
BBBBBBBB
BBBBBBBB

D3E8 (125)

18

18

18

F8

F8

00

00

00

GGOBBOGG

oaaBBaao
GGDBBGaO
BBBBBGGG
BBBBBGGG
aoaoDoao
aaoaaaac
GOOOOGOO

03

03

03

03

03

03

FF

FF

aaaooGBB
aaoaaaBB
aaoaaaBB
aaaaaoBB
aacaaoBB
aaaaoaBB

BBBBBBBB

D3F0 (126)

FO

FO

FO

FO

00

00

OO

OO

BBBBGGGG
BBBBGOGG
BBBBGGGO
BBBBOGGG
aaaaooGG
GaaGGGGG
DDODDDOO
OOOOODOD

00

00

00

00

FO

FO

FO

FO

aaoDaaoD
aaaaaoao
DDaaooac
ooaoaDOD
BBBBOOOO
BBBBOODO
BBBBOOOO
BBBBOOOO

D3F8 (127)

FO

FO

FO

FO

OF

OF

OF

OF

BBBBOGOG
BBBBGGOO
BBBBOGOG
BBBBGOOO
OOOGBBBB
OOGOBBBB
OOOOBBBB
OGOOBBBB

444

Abacus Software C-128 Internals

DOOO (OOO)

3C GQBBBfflGO
42 OBODOOBD
38 GGBBBOOO
24 OOBDaBDO
IC DaDBBBDO
42 OBDDOaBO
3C aOBBBBDD
00 GGOGOOOD

D020 (004)

78 DBBBBDOD
24 ODBOOBOD
22 uOBDOOBD
22 OCBDODBC
22 uQBGOOBC
24 COBOOBDC
78 OBBBBODC
00 GGGCGOGG

D008 (001)

o
00 OGQQGCOG

DO 10 (002)

GGQ
00 GGOGQGGG

DO 18 (003)

18

24

42

7E

42

42

42

00

OOOBBOOO
GUBUUBUU
aBooaaao
obbbbbbo
■ Id)! ILJLJLJBLJ

CBDDDDBD
OBDDDOBD
OOGQOOOG

D028 (005)

7E

40

40

78

40

40

7E

gbbbbbbo
OBOOGOOC
ljBljljljGuu
GBBBBOOO
uiUUULULJ
Qanononn

■ommmmmmo

7C

22

22

3C

22

22

7C

00

OBBBBaOG
GOBOOGBG
Goaoooao
GOBBBBOO
GGBOOQBG

OOBOOOBO
GaaaaBGG
OOOOOOOQ

D030 (006)

7E

40

40

78

40

40

40

oaaaaaao
GBODGGGO
GBOOGGOG
OBBBBGOO
GBOOQGGO
OBOOOGGG
GBGOGGGQ

IC

22

40

40

40

22

IC

00

QOGBBBOD
GOBGGOBG
OBOOOGOO
GBOOOGOO
GBOOOOOG
ooBDaoao
GGGBBBGG
GGGGGGGG

D038 (007)

IC

22

40

4E

42

22

IC

GQGBBBOQ
OGBOGGBG
GBOOOnoG

OBOGSBBO
GBOOGOBO
GGBOGGBG
GGOBBBOG

00 OaOODDOD

D040 (008)

42 aBDOOOBO
42 OBOOOOBQ
42 OBDOOOBC
7 iees

42 GBOOOOBO
42 CBQOOQBD
42 OBDOOOBD
00 OGDQGGGG

D04S (009)

IC OODBBBOC
08 GGOOBOOG
08 GOGGBGOD
08 OQGOBDOO
08 GDCGBOQO
08 DODDBQDO
IC uDDiiiGD

oo uGOunoao

D050 (010)

OE GOOGBBBG
04 OOGGGBQG
04 QGGGGBGG

04 OOOaOBDO
04 DOODOBOO
44 OBOOOBGQ

38 GGBBBQOO
00 OODOOOOO

D058 (Oil)

42 GBGGGGBG
44 GBGOQBGG

48 OBGGBGQG
70 GBBBGGGG

48 GBGOBOOO

44 OBOOOBOC
42 GBGQQOBQ
00 GOQOGOGG

D060 (012)

40 GBGGGGGG
40 GOCGGGGG
40 UBQDDDQD
40 GBGGGGGG
40 GBGGGGGG
40 QBGoooaa
7e ommmmmmo

00 GGGGGOGO

D068 (013)

42 QiDOGUiij

66 OBBOOBBD
5A OBCBBOBO
5A QBOBBDBD
42 GBOOOOBG
42 DBDGGDBD
42 OBQOQQBO
00 GGGOOGOG

DO70 (014)

42 OBDOOOBD
62 GBBGGGBO
52 GBGBGGBO

4A OBOOBOBC
46 GBOOOBBO
42 GBGGGGBG

42 QBDOOOBD
00 GGOGGGGG

D078 (015)

18 OGGBBOQQ

24 QGBGGBOG

42 OBDODOBD
42 OBDDOOBC
42 OBGOGGBQ
24 GOBOGBGU

is aaoBBoao
00 GQGGOGOO

D080 (016)

7C OBBBBBGu
42 OBCCGGBD
42 aBOOQOBD
7 Qaaaaaoo
40 GBGGGGGG
40 OBDOOODO
40 GBGGGGGG
00 GUGGGGOG

D088 (017)

IB GGGBBOGG
24 UOBGQBQG
42 aBQGGGBC
42 GBGCQGBC
4A GBOOBOBO
24 GGBCOBOO
1A GOGBBGBG
00 DDCCGGGO

D090 (018)

7C GBBBBBGG

42 GBGGGGBG

42 GBODODBD
7C GBBBBBGG
48 GBOGBQGG
44 GBGOQBGG

42 GBOOGOBC
00 GGGGOGGO

D098 (019)

3C GGBBBBGG
42 OBGOGGBG
40 QBOOOOOG
3C DOBBBBDD
02 OOODOOBD
42 OBOQGGBG

3C OOBBBBDC
00 OOOOGGOG

DOAO (020)

3E OGBB«ffl®G
08 GOGOSGOO
08 OOOOBDOD
08 GOQOBDOQ

08 OaOOBDOD
08 OGGOfflOOO
08 GOOQSGGG

00 GGGOGGOO

D0A8 (021)

42 OBOOOGBC
42 GBODGGBG
42 n§ijij!jnBG

42 GBOGOOBD
42 OBOOOOBO
42 OBOaOOBD
3C QQBBBBOO
oo uuuoaooo

DOBO (022)

42 GBOOGQBG
42 GBOOGGBO
42 DBOOGGBO

24 OGBOQBQO
24 OOBGOBOG

18 GGOBBGQG

18 GOGBBGQG
00 GOQQQGQQ

D0B8 (023)

42 GBGGOOBO
42 GBOOOOBG
42 OBOOGOBO
5A GBGBBOBG
5A GBGBBGBG
66 GBBOGBB'G

42 GBGOGGBG

00 uUUUGOLU

445

Abacus Software C-128 Internals

DOCO (024)

42 GBGOGGBG
42 CBuGGGBG
24 GLBGCiBGO
18 OGGBBGOG
24 GGBGOBOG
42 GBOQGGBG
42 GBOGOGBG
00

D0C8 (025)

it 90Qe9Q
22 LJlJBLJlJlJBLJ
22 GGBGOQBG
1C GuDBBBGC
08 OGGGBGGG
08 DOCGBDOQ
08 ODCOBODD
00 GGOGGGGO

DODO (026) D0D8 (027)

7E

02

04

18

20

40

7E
00

OBBBBBBG
LjUGCGOBG
UlJuuGBOG
GGGBBGGG
GGBQGGOG
GBOOGGGO
OBBBBBBO

QOOGOGGO

3C

20

20

20

20

20

3C

00

GGBBBBOG
OGBGOGQG
GGBaOOdQ
QDBGGGGG
GOBGOGGO

QuBUUUQQ

OOBBBBGG
GGOOOGOG

DOEO (028)

Oo u-^uCuU
40 GBGGGGGG
20 GGaGGGGG
10 GGGBGGGG
08 GGGGBGGG

04 GGGGGBGG
02 GGGGGQaG
00 GGGGOGGG

DOES (029)

3C GGBBBBGG
04 GGGGGBGQ

04 GGGGOBGG
04 GGGGGBQG
04 GGGGGBGG
04 GGGGGBGG
3C GGBBBBOG
00 GC1OOGOOO

DOFO (030)

10 OGOBGGGO
38 GGBBBGGG
54 GBGBGBGO

10 GOGBGGGG
10 GGGBGGGG
10 GQGBGGGG

10 ODDBOOaC
00 GGGGGGGG

D0F8 tO31)

00 aoaaoaoG
00 GOGGGGGG
00 OGOOOOCD
00 ODDDODDG
00 OGQOQGOQ

00 GGGGGGGG

00 GGGGGGGQ
FF

D100 (032)

00 GGGGGGGG
00 L'LiJUUUULi
00 OGGGGOQG
00 GGGOQGGG
00 GGGGOGGG

00 GGGGOGGG
00 GGGGOGGG
00 GGOGGGGG

D108 (033)

08 uGGGBGGO
08 GGGGBOOG
08 GGGGBOQO
08 aODOBDOO
00 GGGGGGOG
00 GOGGGOGG
08 GGGGBGGG
00 ._i_:GOQGGG

DUO (034)

24 QGBGGBOO

24 GGBOGBGO
24 GGBOOBOD
00 UUUGQGGO
00 GGGQGGGO

00 GOGQOGGQ
00 GOQQGOGG
00 GQGGGGQG

D11B (035)

24 QGBOGBOO

24 aOBODBDD
7E GBBBBBBG
24 GGBOOBGO
7E GBBBBBBG

24 DOBOOBDD
24 OOBOGBOG

00 DOCOODDD

D 120 (036)

08 uC
IE or

28 OOBOBOOG
1C GGGBBBGG
OA GOOOBOBG
3C GGBBBBGG
OS OOOGBGOO
00 ~GOD~nr;~.

D128 (037)

00 UuUUUUUU
62 GBBGGGBO

64 uBBuuBOu
08 UGGOBGGG
10 GGOBGGGG

26 OGBGGBBG
46 GBGOGBBG

D130 (038) D138 (039)

30

48

48

30

4A

44

3A

00

-JUBBGQGG
-JBuuBljUlj
OBOGBGQG
GGBBOGOO
-JBGOBGBG
JiGOuiuu
OOBBBOBG
-jUljGOOGG

08

08

08

00

00

00

00

00

QUUUiUUL
GGOGBOGG
LJULJUBOGO

OGGGGOOO

Uyyuyuyy

OOGQOGGG
UUOGGOOG

D 1 4U (040)

04 _GGGGBGG
08 GGGGBGGG

10 .■ .yByyuLJ
10 uuuBi_:uGG
10 GGGBGGGG
08 GDGGBGGG

04 GGGGOBGG
00 GCGGOGGQ

D148 (04 1)

20 yGBGGGOG

10 jjjIuuuG
08 GGGGBGOG
08 ULJLJUBGGG
08 OGGGBGOO
10 GGGBQQOG

20 OGBGOOGG
00 lJGGGGGOG

D150 (042)

08 GOGGBGGG

2A GOBGBOBG
1C QGGBBBOO
3E GGBBBBBG
1C GGGBBBOG
2A GGBQBGBQ
08 LJLJLJ.-JBUUU
00 UUGOOGGG

D158 (043)

00 GGQOOOGG
08 GOGGBOGG

08 GGGOBGGG
3E GGBBBBBG

08 GGOOBOGO
08 LjGQGBGGG
00 GGGQOGOD

00 OuGGQGGG

D160 (044)

00 ^GjGGGuu
00 GGGGOGGG

00 lJ^juGGGU
00 GGGOGGQG
00 UUUGGGGG
08 GQGOBOQD
08 GGGGBOGG
10 OGGBOOOG

D168 (045)

00 OGGOOGOG
00 OGGOOGOG
00 OGOOOGGO
7E GBBBBBBG
00 OGOODDQO
00 QGygOGGO
00 yuuuuijuu

00 uuOOGGGO

D170 (046)

00 UUOOOOGG
00 gooonoGG
00 UUGOOGGG

00 QOOODQDD
00 OOQOQOGG
18 OGGBBGCO
IB OGOBBGOO

00 UUGOGGGO

D178 (047)

00 oaoaoooo
02 OGOOOOBD
04 GGQQOBDG
08 GGOGBOGO
10 OGQBGGGG
20 OOBGOOOQ

40 yBGuOGGG

00 uuGGQGCG

446

Abacus Software C-128 Internals

D180 (048)

3c ggbbbbgo
42 gbggggbo
46 gbgggbbo
5a gbgbbgbg
62 obbgogbg
42 gbgggobg
3c gqbbbbog
00 dodooddc

D188 (049)

O8 QOGGBGGG
18 GOOBBGGG
28 GQBGBGGG

OS QOODBDDD
08 Goaoaao

08 ODQDWDOO
3E GGBBBBBG
OO GOGGGGOG

D190 (050)

3C GOBBBBGG
42 GBOGGOBC
02 GGGGOOBG
OC GGGGBBGG
30 oaBBaoaa
40 GBGGCOOG
7E QMMMG
oo aaaoaaoo

D198 (051)

3C OGBBBBGG

42 aBaaaaBa
02 GGOOOGBG
ic ogobbbgg
02 GGGOGOBO
42 QBOGGGBO
3C GGBBBBCO

oo ooaoaoao

D1A0 (052) D1A8 (053)

04 GGGGOBOG
OC GGCGBBOC
14 QaGBGBGG
24 GGBGOBGO
7E GBBBBBBG
04 GOGGGBOG
04 GGGGGBGO
00 GGGGOGOO

7E GBBBBBBG
40 GBGOGGGG
78 GBBBBGGG
04 GOOGGBOG
02 GGGOGGBG
44 QBaOGBGG
38 GOBBBGOG
00 DOOOOOOO

D1B0 (054)

IC GGGBBBGG
20 OGBGOOOG

40 aBDOODOO

42 GBGGGGBG
42 GBGGOGBG
3C GGBBBBGG
00 GGQGGQQG

(055)D1B8

7E Gl

42 OBDOOOBD
04 aaaoGBGG
08 QGGGBGGG
10 aOOBOGGG

io oaaBoaaa
10 OGGBOGOO
00 GOGGGGGG

D1C0 (056)

3C GGBBBBGG
42 OBQOGGBQ

42 GBOaaOBG
3C GGBBBBGG
42 GBGGQOBG
42 GBGGGGBQ
3C GGBBBBGG
00 GGGGOGOG

D1C8 (057)

3C GGBBBBGG
42 OBCGGGBG

42 oBoaaaBO
3E GGBBBBBG
02 aODOODBD
04 QGCOGBGG
38 LJLJBBBGOLJ
oo oaaaooao

DIDO (058)

00 aGGGGOGG
oo aaooaaoG

08 ODDDBDOO
00 GGOOGGOQ
oo aaooaaaa
08 GOGGBGGO
00 OGGOOOOG
00 GGGGOOGG

D1D8 (059)

00 OOGGQOGG

oo ooacaooa
08 GOGGBOGG

oo aaoooaaa
00 OGOGQGQG
ob aaoGBoaa
08 aooDBaaa
io aoGBaaoa

D1E0 (060) D1E8

OE GOQGBBBG
18 GOOBBOGG
30 QGBBGOOQ
60 GBBGGGOQ
30 GGBBGQGO
18 QOGBBOGQ
OE GGGOBBBG
oo oaaaaooo

(061)

00 GGGGGGOa

00 OOOQDDDO
7E GBBBBBBG
00 GGOGOGGG
7E GBBBBBBO
oo Gooaaaao
oo aoaaaaoo
oo aooaoaoo

D1F0 (062)

70 GBBBOOaO
18 GGGBBOGO
OC GGGOBBGO
06 OGGGGBBG

OC aOGGBBGO
18 GGGBBOGG
70 GBBBGGGG
00 OGGOGGOQ

D1F8 (063)

3C GGBBBBGG
42 OBOaGOBa
02 GGGGGGBQ
OC GGGGBBOG
10 aaGBGGGG

oo oaoDaaoo
10 DDDBDDDO
00 DDODOODD

D200 (064)

10 aOOBODOO
08 QDODBOOD
04 DDODOBCO
00 GGGGGGGG
00 GGGGGGGG
oo aoaoaooD

00 GOQGOGOC
oo GoaaoaoD

D208 (065)

FF

7F GBI

3F GOBI
IF GOQI
OF QQGC

07 Qooaai__

03 GGaaaoi__
01 QQGGGGGB

D210 (066)

FF

FF

00 GGGGGGGG
oo aaaaoaaa
oo aoGoaooa
oo Gaoaoaao
oo aaoaooao
00 OGGGGGOQ

D218 (067)

00 GGGOOOOG
oo aGoaoooa
oo aoaaaaaa
oo aoaaGGGG

D220 (068)

oo oocaoaoa
00 OGGGGGGG
oo aaoaoGoa
00 QGGGGGGO
OF GGGGBBBB
OF GGGGBBBB
OF GGGGBBBB
of acor

D228 (069)

OF GOGGI
OF GOQGI

of aoaai__
of ooaoBt
oo oooaaoao

oo ooGaaooo
00 OGaOGGGG
oo aaaaooGo

D230 (070)

08 GGGOBGQG
08 QOOOBOGQ
08 GOOGBQOG
04 OOOGGBGO
03 aoaaaoBB
oo aaoaoDoa
oo aoaaaaaQ
00 OOOOOOGG

D238 (071)

08 aGOGBOGG
08 GGOGBCGG
08 GOGGBOGO
10 GOGBOGGG
eo BBBoaaao
oo aaoaaaao
oo aaaaooaa
oo aaaaaaoa

447

Abacus Software C-128 Internals

D240 (072)

07 GQGGGBBB

07 CGGOGBM
07 GGGQGB
07 GGGGGI

07 GGGGGBI
07 GGGGQOl

07 GGGGGBI
07 GGGGOBi

D248 (073)

CO ■■CGGGOG
CO ■■GGGGGG

CO ■■GGQQGG

CO ■■GGQQGu
CO ■■GQGGGQ
CO ■■GGGGGG
CO ■■OGGGOG
CO ■■OOGOGG

D250 (074) D258 (075)

03

03

03

03

03

03

03

03

UUUUQOM
GGGGGGM
OCGCGCM
QUULOGM
GGQQGGM

GOGGGGM
OOOOOGM
QOOOOGM

80

40

20

lu

08

04

02

01

■GGGGGGG

LJOUUUUULJ
ULJiUUUUU
UUUiUULiU

UuQOiODG
GOOGGBGG
GGOOOOBG
OGOOOOOB

D260 (076)

80 ■GGGGGGG
80 ■QGOGGOG
30 ■UGOGGOG
80 ■GGGGGQG
80 ■GGQOGGG
80 ■QGGGGGG

80 ■GGGGGGG
FF ■■■■

D268 (077)

01 GOGGGGGB
02 GQQQOOBO
04 GGOGOBOO
08 ODOOBOGG
10 GOOBGGOG

20 GGBOOGOG
40 GBOGGQGG
80 BOOOGOQG

D270 (078)

FF ■■

00 GGGOOOGG
00 GGOOGGOO
00 GQGGGOOG
00 GOOOGGGG
00 OOGOnQOG
00 GGOOGGQG
00 GGQGGGGG

D278 (079)

FF

80 BGOOOQGG

80 BGOOGQOO
80 BQGGGGGG
80 BOOOOOGG
80 BGOQGQGQ

80 ■CGGGGGG

eo ■GOGOOGG

D280 (080) D28B

FF ■■■■■■■■

01 GQGGCuOi
01 OGGGGGOB
Oi GGGGGGGB
01 GGGGGDDi

01 GGGGOGGB
01 GGGGGGGB
01 GGGGGGGB

(081)

ff bbbbbbbb
fe ■■■■■■■:

fc ■■■■■■:
f8 bbbbbggg

fo bbbbgogg
eo bbbgggqg
co ■■ggoggg
80 ■GGOQGGG

D290 (082)

00 GGGGGGGG
00 GGGGGGGG

00 GGGGGGGG

00 GGQGGGGG

03 QODOOOM
04 GGGQOBOG

08 OODDBDOD
08 OOOGBGOQ

D298 (083)

00

00

OU

00

FO

FO

FO

FO

uu'juoocg
gggggggg
UUUUUULJU

IGGGG

BBBBGQCG
■■■■GGGG

!UUG

D2A0 (084) D2A8

00 GGGGGQQG

00 LjLjljGGGGC
00 GyLJULJUGG
00 JLLJUU'JUU
EO ■■■QGGGG

10 JuuiLGGG
08 GGGGBOQQ

08 GGGGBGGG

(085)

EO ■■■GGGGG

EO ■■■GGGGG
EO ■■■GGGGO
EO ■■■QGOGG
EO ■■■GGGQO
EO ■■■GGGGG
EO ■■■QGGGG
EO ■■■GGGGG

D2B0 (086)

FF

FF

FF

00 GGGGGGQG

00 QOGGGGGG
00 OGQOGGGG
00 GGGGGGGG

00 GGGGGGQG

D2BB (087)

FO ■■■■GGGG

FO ■■■■GGGG

FO ■■■■GGGG

oo oaaoooGG
00 GOGQGGGG
00 GGGDGGGG

00 GGGGGGGC

D2C0 (088)

00 GULJUULJUU
00 GGGGGGGG

00 UOULJLJUUG

00 LJLJLJLJLJLJUU
00 QGGGGGGG
FF ■■■■■■■■

FF ■■■

FF ■■■

D2C8 (089)

00 OOOOOOOO
00 ■jGuGGOGG
00 UUUUUQGQ

00 GGGGGGOO

00 GGGGGOOG
00 GGQGOOGQ

FF

FF

D2D0 (090)

FO ■■■■OQQG

FO ■■■■OGGG
FO ■■■■GGOG

FO ■■■■OGGO
FO ■■■■GGGQ

FO ■■■■OOOO

FO ■■■■GGGO

D2D8 (091)

00 GGGGGOGD

00 GGQGQGGG

00 GGGGGGGG

00 ULJUuGGGG
AA BGBGBGBG

55 GBOBGBGB
AA BGBOBGBG

55 GBOBOBGB

D2E0 (092) D2E8

Oi GQuGGGGB

01 GGQGGQGB

01 LJLJLJULJUUB
01 JUGGCGQB
01 GGGGGGQB
01 GOGGGGG*
FF ■■■■■■■■

(093)

AA BGBGBGBG
55 GBGBGBOa
AA BGBGBGBG

55 GBGBOBGB
AA ■GBGBOBO

55 nmomrmom

AA BGBGBOBG
55 GBGBGBOB

D2F0 1094)

00 GGGQGGGO

00 UUGGQOQG

01 GQQGGGGB

3E GGBBBBBO
54 OBGBQBOO
14 QOGBGBOG

14 GOGBOBGG

oo aoaooaoG

D2F8 (095)

00 UULUJUUu
00 GGOOGGDG
00 GOOGOGGG
00 GOOOOQGG

oo ooaoaoao
00 GOOOGGGO

00 GGOGOOGG
FF BBBBBBBB

448

Abacus Software C-128 Internals

D300 (096) D308 (097) D310 (098) D318 (099)

00 QGGGGGGQ
00 GOGQOQGQ

oo oaoooooo

00 GGuOOOOG
oo aaaaaooa
00 uGGOOOOO

oo aoaooaao
oo aaoooaoG

D320 (100)

08 OOOO*OOO
08 OOOO*OOC
08 OGCO*OOO
08 uuuuiaaa
F8 ■■■■■OGG

oo aooGoaoo
00 UUiJuUGGG
00 GGGGGQGG

D340 (104)

00 OOGOGGOO
00 GGQOGGGG

00 OOOOOOOG
00 GOOOOOOO
OF GGGO****
08 uuGuiUUL-
08 UU:lJU*._:._:L'
08 UUUUtUUiJ

D360 (108)

08 UULJUiULJU
10 OOO*OOOG
3C GGMNGG

42 O*OOOO*O
7E G******G

40 GBGOOGGG

3C GG****GQ
00 GuGUUUuU

D380 (112)

ic oco***ac
22 OO*OOO*O
4A o*oa*o*a
56 L_I*G*I I**LJ

4c a*oo**oo
20 OO*OOOOO
1E Glj> **B*LJ
oo ooaaaooo

D3A0 (116)

10 GGG*GGOG
28 GG*Q*GGG

38 OG***CGO
04 goaao*ga
3C i t'l <****(II I

44 G*OOO*OO
3A GG***O*O
oo aaaoaooo

08

08

08

08

08

08

08

08

UULUlULU
oooo*ooc
0000*000
0000*000
0000*000
GGQG*GGO

0000*000
0000*000

D328 (101)

08

08

08

08

OF

08

08

08

aooo*aoo
aooo*aoo
aoao*oao
OGGQ*GQQ

GGGGMM

0000*000
Qi~~iC~*mOO
0000*000

D348 (1O5)

00

00

00

00

FF

08

08

08

GGGGQGGG

OOOOOOOO
oaoaoooo
QGGGQGQQ

■•■■■■■•
GGGG*QGQ
uuGuiOuu
GGGQ*QQQ

D368 (109)

18

24

2O

70

20

21

5E

00

UUUllUULi
UUiUOiOO

00*00000
a***aooo
00*00000
OO*GOOO*
omommmmc

GGQQQQQG

D388 (113)

00

00

42

42

42

4d>

BA

80

QQGGGGQG

ooggggog

0*0000*0

n*oGO**o
■G***G*G

■ooGoaoo

D3A8 (117)

08

14

3C

42

7E

40

3C

00

ULJuU*UQQ

000*0*00
UUllllQG

O*GGOO*O
G****S*i >

a*ooooao
i |; >■■■■! II '

aaoooaao

08 0000*000
08 OCOO*OOO
08 OOOO*OOO
08 OOOO*OOO
of aooa****
oo ooaaoooo
oo aaooooao
oo ooaaooou

D330 (102)

00 GOOOOOOG

OO OOOOGOOG
oo aouuuuuG
00 GGGQGGGG
FF ********

oo ooooooao
oo aoooaooa
oo ooooooao

D350 (106)

oo aoonnnno
oo oooooogg
00 OOOOOOOO
00 CGGGQGGG
F8 ■■■■■:::

08 OOOO*OGC
08 GGGQ*GQG

08 OOOO*OOG

D370 (110)

u> ooo*ooao
08 OOOO*OOO
3C GG****GQ

42 g*oooo*g

40 a*oooaoG
3C GG****QG

00 00000000

D390 (114)

20 QQ*QQGGG

10 OOO*OOGO
38 aa***ooc
04 ggooo*gg

44 o*ooa*oo
3A GG***G*Q

00 GGQGGQGG

D3B0 a 18)

O8 OOOO*OOO
14 QQG*G*QG

08 aoGo*cao
08 i_ji_)i_ji liUHQ

08 0000*000
08 OOOO*OOO
ic ooo***ao
oo annoGGnn

08 0000*000
os aaoa*aoo
08 OOOC*OOO
08 0000*000
FF *■■•■■■•

oo oaaooooo
00 QQGGOGGG

oo aaaoaooo

D338 (103)

os oooa*oao
08 oaoo*oac
08 GGOO*GGG
08 onnninnQ

F8 ■■■■■DOG

os ooaa*caa
08 GGGO*QOQ

os aooo*aaa

D358 (107)

08 GGGG*GGG
08 QGGG*QQQ

os aoco*aac
08 GGGGiuQU
FF ■■■■■■■■

08 QGGG*GGG
08 oaao*ooa
os aaao*ocG

D378 (111)

08 GQOQBOQQ

10 QOG*OGGG

20 OO*OOOOO
00 GGGQUGUU
00 QGuGGGGQ

oo oaoaoaoc
00 QGUQULJUU
00 GGQQQQQQ

D398 (115)

io aaa*aoaa
08 aaoo*coa
42 a*aoao*a
42 a*aaao*o
42 c*aaoo*o
46 a*ooo**a
3A OO***O*O
00 GGGGGGGG

D3B8 (119)

08 oooa*Dao
14 aoa*c*oo
3c aa****aa
42 a*aaoo*c
42 a*aaoG*G

42 q*ooao*g

00 QGQQGGGG

449

Abacus Software C-128 Internals

D3C0 (120) D3C8 (121)

08 GOGGBGOG
14 GOGBGBGG
42 GBOGGGBG
42 aBGOGGBO
42 a»aaao«a
46 GBOGaB'BG
3A GOiiiGiG

00 GGGGGGOO

IF GGOBBBBB
10 GOGBaGGO
io Goa»aaao
10 GGOBGGGG
DO BBOBGOGO
30 GGBBGGGO
10 aOOBGOGG
00 OQGGQOGO

D3D0 (122)

7F GBMMM

21 GOBaaaaB
io aoGBaoaa
08 aOOOBGGO
io ogobgogo
21 aa»G
7F MMB

OO GOGGQaOG

D3D8 (123)

5A GBGMGBG
24 OaBOGBOG

42 a«aaaa»o
7E GBSaSBBG

42 GBaaaoBG
42 GBGGGOBG
42 OBOGOGBO
oo aaooaGQo

D3E0 (124)

5A GBGBBGBG
24 GOBQOBOG

42 GBGGGOBG
42 GBGGGGBG
42 OBGGGGBG
24 GGBGGBGG
18 GGGBBGOG
00 GGGGGOGO

D3E8 (125)

18 GOGBBQGG
42 GBGGGGBG
42 GBOGOGBG
42 GBGOGGBG
42 GBGDGGBG
42 GBOGOOBO
3C GGBBBBGG
00 GGaOGGOG

D3F0 (126) D3F8 (127)

3C GGBBBBOG
42 OBGOGOBG
42 OBGOCGBO
5C GBOBBBGG
42 aBOOGGBO
42 OBGOOGBG
5C GBGBBBGG
40 OBOGGGQG

08 OOGOBGGG
14 GGGBOBGG
00 QGGQOOGG
00 GGGQGOOG

oo Gaaaaooo
00 GGOGOGGQ
00 GGGGGGGO
00 GGGOGGGG

450

Abacus Software C-128 Internals

8.6 The Keyboard Matrix

The keyboard of the C-128 is designed in the form of a matrix. Imagine
it as a network (or grid) of lines. In the horizontal plane you have 11 lines
and in the vertical, 8 lines. When you press a key, you close the normally
open contact between a horizontal and a vertical line. The computer can then

recognize which key was pressed.

That's the basic principle of the keyboard matrix. In practice it is much
more complicated since a connection is not available on an I/O component
for each of the 11 horizontal and 8 vertical lines. The Commodore 128 has
two components with a total of three ports that have the task of reading the
keyboard matrix. Lines PA0-PA7 and PB0-PB7 are available on CIA 1.
These 16 lines can be programmed as either input or output Theoretically it
is also possible to transfer 16-bit values via these lines. Lines PA0-PA7 are
responsible for the first 8 matrix lines of the keyboard circuit. The missing
three lines, believe it or not, are connected to the VIC chip.

The VIC chip built into your C-128 has 2 more registers than the
component used in the Commodore 64. The first is the register at address
$D030, is responsible for the clock frequency at which the computer will
operate (1 or 2 MHz). This register does not interest us here. The other new
register is at address $D02F. The additional three keyboard matrix lines are
polled via this register. The register offers us bits 0-3 for this, but only bits
0-2 are used, since only three additional matrix lines need to be polled. The
8 matrix columns are addressed via the lines PB0-PB7 of CIA1 via port B.

The actual keyboard polling follows this pattern. Port A of CIA 1 (lines
PA0-PA7 are brought low; that is, the register is loaded with the hex value
$00). In addition, the remaining three lines must also be loaded with a low
value in the VIC register. Port B (lines PB0-PB7) of CIA 1, switched to

input, is then read. If a key is pressed at some point, one of the input lines
on port B will also be switched to a low level. This is recognized by
reading port B and finding a value other than the high value ($FF). At this
point, we can determine that a key was pressed. Which key it is cannot yet

be determined.

The exact position within the keyboard matrix is then determined by

bringing each of the 11 matrix lines low in turn and reading port B each

time. Now we can tell in which line and column of the matrix the key was

pressed. A count register is used during this process in order to record the

assignment number of the pressed key. Polling the joystick is done in the

451

Abacus Software c.128 Internals

same manner as the normal keyboard polling because the joystick
connections are wired in parallel to some keys on the keyboard.

In the schematic on the next page you can recognize the physical layout
of the keys and their connections to the three ports. One point of interest is
that, while the keys on the keypad produce the same results on the screen as
the regular digit keys, they can be differentiated from them This applies for
the cursor control keys and the other duplicate keys on the keyboard.

452

Abacus Software C-128 Internals

$DC01 Port B CIA 1
A

G 8 B H U

■ Numeric

Keypad

Cursor keys

Block

453

Abacus Software C-128 Internals

8.7 The Computer Modes

As you must know by now, your Commodore 128 contains three
computers in one. You can select whether you want to have a:

* CP/M 3.0+ computer
* Commodore 128
* Commodore 64

The various components in the computer are switched on or off
depending on the computer mode. In order to show you graphically which
components are involved, we have made the following three figures.
Shaded areas designate the devices active in the given mode while unshaded
areas indicate those which are inactive. Inactive means that the MMU does
not permit access to these components. In the C64 mode, access to the
MMU itself is prohibited (for compatibility reasons).

454

Abacus Software C-128 Internals

C-64 MODE

455

T
V
S
I
G
N
A
L
'

R
G
B
-
O
U
T
P
U
T
-

U
S
E
R
P
O
R
T

8
5
6
3
V
I
D
E
O
-

C
O
N
T
R
O
L
L
E
R

E
X
P
A
N
S
I
O
N

R
O
M

C
1
2
8
K
E
R
N
A
L
-

E
D
I
T
O
R

f
BA
SI
C
2.

0
&
J

6
4
K
E
R
N
A
L

B
A
S
I
C

7.
0

P
A
R
T
2

BA
SI

C
7.

0
I

P
A
R
T
1

R
A
M
*

R
A
M
a

C
H
A
R
A
C
T
E
R

S
E
T

C
O
L
O
R

M
E
M
O
R
Y

■
A
U
D
I
O
/
V
I
D
E
O

S
E
R
I
A
L
P
O
R
T

C
A
S
S
E
T
T
E
P
O
R
T

E
X
P
A
N
S
I
O
N
P
O
R
T

P
O
W
E
R
S
U
P
P
L
Y

C
O
N
N
E
C
T
O
R

R
E
S
E
T
S
W
I
T
C
H

S
I
D

M
M
U

J
O
Y
P
O
R
T

1

■J
OY
P
O
R
T
2

:
e
y
b
o
a
r
d

c
o
n
n
e
c
t
i
o
n

j
-
C
I
A
2

Z
8
0

P
R
O
C
E
S
S
O
R

,8
50
2

P
R
O
C
E
S
S
O
R

1
—
P
L
A

O m
A

1
0

0
0 2 O a m

c
r

C
O
o

0
0 5

T
V
S
I
G
N
A
L
-

R
G
B
-
O
U
T
P
U
T
-

U
S
E
R
P
O
R
r

8
5
6
3
V
I
D
E
O
-
_

C
O
N
T
R
O
L
L
E
R

E
X
P
A
N
S
I
O
N
-

R
O
M

C1
28
KE
RN
AI

T
E
D
I
T
O
R

|-

BA
SI
C2
.0
&J

6
4
K
E
R
N
A
L

B
A
S
I
C
7.

0

P
A
R
T
2

BA
SI

C
7.

0
I

P
A
R
T
1

R
A
M

C
H
A
R
A
C
T
E
R

M
E
M
O
R
Y

-
A
U
D
I
O
/
V
I
D
E
O

-
S
E
R
I
A
L
P
O
R
T

-
C
A
S
S
E
T
T
E
P
O
R
T

■
E
X
P
A
N
S
I
O
N
P
O
R
T

-
P
O
W
E
R
S
U
P
P
L
Y

C
O
N
N
E
C
T
O
R

■
R
E
S
E
T
S
W
I
T
C
H

■
S
I
D

"
M
M
U

■
J
O
Y
P
O
R
T

1

■
J
O
Y
P
O
R
T
2

K
E
Y
B
O
A
R
D

C
O
N
N
E
C
T
I
O
N

J
-
C
I
A
2

Z
8
0

P
R
O
C
E
S
S
O
R

8
5
0
2

P
R
O
C
E
S
S
O
R

o s 0 o m

n o

0
0

f
t 5

Abacus Software c.128 internals

8.7.1 The power-up modes

On the preceding three pages you see three diagrams. These schematic
drawings of the chips and circuits in your Commodore 128 should make it
clear to you which ROMs and controllers are active in each of the three
modes of operation. The active components in each operating mode are
shaded.

As a rule, the computer always tries to enter the 128 mode when it is
turned on. But there are some special cases in which the computer is
directly switched to a different operating mode. This is the case when you
insert a CP/M diskette into the disk drive. The CP/M mode with the Z-80
processor active is then enabled via the boot routine in the 128 mode.
Another possibility arises when you insert a Commodore 64 cartridge in the
expansion port. This is also noted during the power-up procedure and the
computer switches directly to the C-64 mode responsible for this cartridge.

Another way of entering the C-64 mode is by way of the GO 64
command. After an appropriate request for confirmation of the command,
the computer is switched to the C-64 mode. It is also possible to get around
the BASIC interpreter's confirmation request and enter the C-64 mode
directly. You can do this by directly addressing the kernal routine for
reconfiguration with a SYS command. The appropriate SYS command is:

SYS 57931 or SYS DEC(ffE24B")

These are, so to speak, the "official" options for entering another

operating mode, especially the C-64 mode. But there are a few "unofficial"

ways, which we discovered by accident while documenting the kernal and
BIOS.

One such method involves the Commodore key, designated with the

Commodore logo and found in the lower left-hand corner of the keyboard.

If you hold this key down during the power-up procedure, the computer

will enter the C-64 mode directly without trying to load a boot sector from

the diskette or entering the 128 mode. The obligatory confirmation question

is also avoided with this method. This trick with the Commodore key works

not only when the computer is being turned on, but also if you hold it down

while pressing the reset button on the right side.

458

Abacus Software C-128 Internals

Another interesting option affecting the power-up state of the computer
involves holding down the RUN/STOP key while turning the computer on.
This causes the computer to enter the 128 mode, but control is immediately
passed to the built-in monitor. Furthermore, the kernal boot routine is not
executed first. We say "first" because the test to see if the RUN/STOP key
is pressed is performed before the kernal boot routine is executed and the
test routine then jumps to the monitor in the form of a JSR command. When
you exit the monitor with the X command, then the computer resumes

operation with the normal boot routine and general initialization, provided
you have not changed the return address on the stack.

These methods are of interest both to the assembly-language
programmer and to the user who wants to use his old C-64 programs
without having to go through the boot routine.

459

CHAPTER 9

Abacus Software C-128 Internals

Chapter 9: The Hardware

Imagine the following tricky situation in which the developers are asked
to construct a computer that, on the one hand, is completely compatible with
the existing C-64, and on the other hand, is to be outfitted with completely

new, state-of-the-art features.

This task is difficult enough, but as icing on the cake, a Z-80
microprocessor should be added to the whole thing in such a way that it can
peacefully coexist in the same system with the other processor.

You can imagine the difficulties involved. But this idea is not entirely
new. Some of you no doubt remember the infamous CP/M cartridge for the
Commodore 64, which was supposed to allow it to use the CP/M operating
system. This expansion contained a Z-80 processor in addition to a few

control components.

So you take a C-64, a CP/M cartridge, an additional 64K of memory, a
new operating sytem and BASIC, mix them all together and let it all simmer

for a few months.

We have no doubt that the first C-128 prototype used a C-64 as a basis.
The tough part must have been in trying to put the whole thing together on a

single board.

Fortunately, Commodore has its own semiconductor manufacturing
company (MOS). It was clear that there was no way the necessary control
components for the coordination of the processors and switching both
memory banks and operating systems would fit onto a reasonably-sized PC
board using current TTL technology. MOS had to design a special
large-scale intergrated circuit, the MMU 8722, to handle all of the

management logic.

This undertaking proceeded very well when the VIC chip, taken from

the C-64 (but now known as the 8564), and the 6510 processor (now the

8502) were submitted to redesign. A new video controller (8563), which
can display 80 columns in color, was added. What good is such a capable

computer, which can run CP/M, if it is limited to 40 columns per line?

The address manager of the C-64 was refurbished to become the 8721.

It has 23 (significant) input lines and 16 outputs. We will discuss the details

of this and other devices shortly.

463

Abacus Software C-128 Internals

The question will no doubt arise, as to why we have not included a
complete circuit diagram in this book. The diagram takes up 4 sheets of
normal-sized paper; each so full of components, that reduction would be out
of the question. We therefore decided to divide the circuit into blocks, into
bite-sized and (hopefully) clear function groups within the text

In general the diagrams are designed so that the signal flow is from left
to right. At the left you find all input lines and at the right all of the output
lines. The I/O block is an exception to this. Here it was not possible to
retain this principle because space was too scarce and the interfaces are not
clearly assigned as input or output.

Signal names prefixed by a minus sign are active low, meaning that
they are "true" (or active) when the logical signal =0. Bus lines are
emphasized in the diagrams. Everything having something to do with the
address bus is dotted, the data bus has diagonal stripes, and all of the
remaining bus-like structures are checkered.

The components filled with the rings are intended to indicate that
something special happens to the input signals which cannot be represented
individually. In general, there is not a single IC behind it, but a whole
system of them.

The CPU

Naturally there isn't just one processor, but two. The block diagram on

the next page should, despite its simplicity, convince you that a good deal of

switching effort is required to allow two microprocessors to use the same
system components, even if not at the same time.

It is clear that only one processor can be running at any given time. The

other must wait during this period. The trick is to get the processor in

question to actually stop (that is, to interrupt it in such a manner that it can

resume its work at a later time without any problems) and not crash when

the system bus is blocked off. This can be done in various ways:

The bus must be given up (and this applies to both processors) when

the 40-column video controller has to access the RAM, in order to refresh

the screen. The lines BA (Bus Available) and AEC (Address Enable

Control), both of which come from the VIC chip, are used to signal this

condition to the switching logic.

464

Abacus Software C-128 Internals

; < DC Ui Ui

i =c <J u o

o

465

Abacus Software C-128 Internals

The second possibility is offered by the DMA line (Direct Memory
Access), which comes from the expansion slot. Here too, both processors
must relinquish the bus because the system bus is controlled from the
outside in these cases, by a RAM expansion or other add-on hardware.

The programmer (or CP/M) is responsible for the third variant Here the
two processors can be selected with the -Z80EN line. This signal comes
from the MMU.

The meaning of additional input lines:

Z80PHI is the system clock created by the VIC for the Z-80.
-RES resets the processors, which causes the Z-80 to start

execution at address 0, and the 8502 to start at the reset
vector in the ROM.

-IRQ is the interrupt line connected to both processors by
means of which devices like the CIAs can signal the
occurrence of an event

-NMI is also an interrupt, but only for the 8502. This signal
is derived from the RESTORE key.

CASS SENSE comes from the Datasette and indicates that the
PLAY button is pressed.

CAPLK SENSE indicates the status of the SHIFT LOCK key .
1-2MHZ is the system clock for the 8502 and is provided by the

VIC. This line supplies a clock signal of 1 or 2 MHz,

depending on bit 0 in register 48 of the VIC.

The output lines:

R/-W tells connected peripheral components whether data is

to taken from the bus or whether they are to supply the

bus with data on their part.

-Ml is a Z-80 specific signal and means that the processor

is currently fetching a command byte (in contrast to an

operand) from the data bus. This line is used to

prevent access to peripheral ICs during Ml (which

could otherwise happen because the I/O addresses in

the hardware are "normal" memory addresses).

-Z80I/O signals an I/O access of the Z-80 by means of the

command IN or OUT. The lock-out mentioned above

is removed by this signal.

DO-7 comprise the data bus.

AO-15 make up the address bus.

LORAM puts RAM in place of the BASIC ROM in the C-64

mode.

466

Abacus Software C-128 Internals

HIRAM is like LORAM, except the kernal ROM is replaced by

RAM.

CHARENmakes it possible to read the character generator.

Normally the color memory and I/O lie in this range.

CASS WRT is the write line for the Datasette.

CASS MTR controls the Datasette motor.

The address logic

In order to give you an idea of the complexity of this function block, we
have illustrated the complete memory layouts for the C-64 and 128 modes
on the following two pages. Try to imagine the memory in layers. One layer
applies as the user surface, in which changing combinations are possible.
The MMU is responsible for the global division (operating mode, bank
selection, processor). Depending on this, the AM brings the desired
portions to the surface, that is, it generates the necessary selection signals.

In connection with this we would like to list the pin layouts of these two

ICs, as well as a description of each pin:

2 -RES
3-10 TA8-15. This is the translated address bus. The address A8-15 are

"translated" depending on the configuration. For example, the
address $0000 must be converted to $D000 during Z-80 operation,
because part of the BIOS is located here and after reset the Z-80

starts execution at address 0.

11+12 -CAS0 and -CAS1. These two signals are responsible for the

selection of the RAM bank, depending on register 1.

13-15 I/OSEL, ROMBANKHI, and ROMBANKLO. These signals are

used to control the AM and result from the combination of bits 0-5

of register 1.

16 GAEC results from the combination ofDMA and AEC and permits

the MMU to take the lines LA8-15 from the bus.

17 MUX is created by the VIC. The MMU uses this to activate the

signals -CAS0 and -CAS1.

18-31 AO-15, whereby the lines A6/7 and A4/5 are externally combined

into one signal. The MMU also decodes its selection signal from

the address bus.

35-42 DO-7

43 -Z80EN reflects bit 0 of register 5 and is responsible for selecting
the processor.

467

Abacus Software
C-128 Internals

E000

D000

COOO

0000

468

S
O

F
U
N
C
T
I
O
N
L
O

\
F
U
N
C
T
I
O
N

H
I

IN
TE
RN

\
IN

TE
RN

F
U
N
C
T
I
O
N
L
O

\
F
U
N
C
T
I
O
N

H
I

EH
TE
RN

\
EH

TE
RN

Abacus Software C-128 Internals

44 -FSDIR corresponds to bit 3 of register 5. Here the data direction
of the serial bus -SRQIN, which is responsible for the data clock
for the high-speed transfer using the 1571 disk drive, is switched.

45-46 -GAME and -EXROM come from the expansion slot and can be
read as bits 4 and 5 of register 5.

47 64/-128 is a control line for the AM and corresponds to bit 6 of
register 5.

48 40/80 comes from the keyboard and can be read as bit 7 of register

With a few exceptions we will simply list the AM pins, since no set
assignment can be given to many of them because of the complex internal
combination possibilities* Imagine how many combinations have to be
checked with 23 input bits (about eight million). Naturally, not that many
are used, since the IC has only 16 output lines, of which a maximum of
only four can reasonably be active at any given time.

You can easily recognize the function of the outputs from the names and
the block diagrams, since they are really only chip select lines.

1-6 A15-10

7 VICFIX. This input is tied to ground on the board via jumper J2.
The significance of this line is not clear.

9 AEC

10 R/-W. This signal is evaluated such that, at least in the C64 mode

(nothing is known about the C128 mode), write access to the ROM

address area always write to the "hidden" RAM, even if it is not

explicitly selected.

11-12 -GAME and -EXROM exchange the BASIC and/or kernal ROM for

the software found in a cartridge in the C64 mode, as is the case for

games, for example.

13 -Z80EN

14 -Z80I/O
15 64/-128. Here it is decided which kernal or BASIC is active.

16 I/OSEL

17-18 ROMBANKHI and ROMBANKLO

19-20 MA4-5

21 BA

22-23 LORAM and HIRAM

25 CHAREN

26 -VA14

470

Abacus Software C-128 Internals

(o »- <\» «— <\i

co co o o — —

21?
ap

a fa ra fa fa fa fa

I.I.I. I

ffi

o

§

471

Abacus Software C-128 Internals

27 128/-256. This signal indicates what type ofROM is in the sockets
R0M1 and ROM3. It is possible to have two 16K ROMs in the
sockets ROM1/4 and ROM2/3 form one 32K ROM each. It is
possible to specify one or the other possibility during production.
In the second case, the free sockets R0M2 and ROM4 are not free
for other purposes!

30-31 -ROML and ROMHI go to the expansion slot.

32 CLRBANK switches between two possible banks of the color
RAM. The dependency of this signal is not yet known. -VA14 may
play a role here.

33 -FROMI (Funtion ROM Internal)
34-37 -ROM4to-ROMl

38 -IOCS is the general selection for all peripheral ICs. The sole
exception is the MMU, which decodes itself.

40 -DWE is the write signal for the RAM banks.

41 -CASENB is the address strobe for the RAM banks (simultaneous
selection signal).

42 -VIC

43 -IOACC signals to the VIC an access to a peripheral IC, which
brings the system clock down to 1 MHz if it was previously at

2MHz. This is necessary because the peripheral components can be

supplied only with 1MHz, so this signal synchronizes them to the

8502.

44 -GWE is the write signal for the color RAM.

45 -COLORAM

46 -CHAROM

47 -CAS is actually responsible for the creation of -CASENB.

The greatest portion of the address logic is described in the pin

descriptions. Worthy of mention is the funnel-shaped symbol in the upper

right-hand corner of the diagram. This is the address multiplexer. As you

may already know, not all of the address lines are applied to the dynamic
RAMs at once, but one half at a time to the same lines. For this reason, the

two halves of the address bus must be brought together. The decision as to

which half is applied to the lines is taken care of by the MUX signal. The

RAM chip recognizes the bottom half on -RAS and the top half on -CAS.

The RAM

The RAM consists of two banks of 64K each. No more are possible!
Banks 2 and 3 indicated in the memory map are to be understood as external

expansion and are accessed in a different manner.

472

Abacus Software C-128 Internals

One interesting thing in the block diagram is the buffer at the bottom.
In cases of memory access from the outside, this supplies the top half of the

address bus.

473

Abacus Software C-128 Internals

The ROMs

The function block contains the combined "intelligence" of the
computer. The selection signals for the individual ROMs come from the
AM. Worthy of mention is the function of the 64/128 signal. If a 32K ROM
is inserted in ROM1, this signal switches between the two halves, the
lower half contains the kernal for the C-128 and the upper half contains the
entire operating system software for the C-64. Jumper J6 must be connected
on the PC board for this.

TA12 provides for the conversion of the area at $D000 to $0000 for the
Z-80 operation.

474

Abacus Software C-128 Internals

475

Abacus Software C-128 Internals

40 column

The jumble of bus lines in this section is because the VIC controls the
system bus itself in order to get the information necessary to refresh the
screen picture from the RAM. To do this, it must stop the currently active
processor by means of the BA and AEC lines, so that no concurrent RAM
accesses can occur. As much as possible, however, it chooses a time when

the processors will not be disturbed. It uses die clock gaps during which the
computer is not accessing the bus. An exception to this is when sprites are
displayed. Here the VIC must get the entire point map, which in the case of
a "normal" character it would get from the character generator, from the
RAM, which naturally takes time.

So that the VIC "knows" when it may do something, it is in charge not
only of the screen display, but of the clock generation for the whole
computer. So at any time it is informed about the current state of the system.
To display a character, it first gets the ASCII value of the character from the
RAM, then the corresponding bit pattern from the character generator, and
finally the color information from the color RAM.

This last point, by the way, is a special case: The color RAM is

connected directly to the VIC via its own four-bit wide data bus, so that the

ASCII value and the color arrive simultaneously when the refresh address is
given.

Another interesting feature is the composition of the RAM address. It is

placed on the bus in two halves, whereby the base address of the video

RAM is formed from bits VA6-7 of the VIC and bits VA14-15 of CIA2.

The video RAM is therefore movable within a large area.

In the upper left-hand corner is the master clock. This is an oscillator

running at 17.73447 MHz. This strange frequency was chosen for the color

creation in the PAL standard. The VIC produces the various system clocks

from this clock.

If by chance you are familiar with the VIC in the C-64, you may notice

something unusual about this version of the VIC. A bus heads to the right

with the designation KO-2. These lines are responsible for the column

selection of the ten-key pad.

We should mention the little box in the lower left corner. This is a

device similar to the buffer in the RAM block for the lower half of the

address bus.

476

-
I
O
A
C
C

D
O
T

C
L
O
C
K

V
I
D
E
O

l
i
n
n

ii
h
i
m

i
ii

I
ii
n

II
II
I
i
f
f
l
f
f
l

t
a
8
-
n

\:
::
•:
•:
•:
•:
•:
•:
•:

:•
:•
:•
:•
:♦
::
•:
♦:
:♦
:■
:

Abacus Software C-128 Internals

80 column

Although this section represents one of the most interesting features of
the computer, it offers little in the way of circuit technology. The reason for
this is the 80-column video controller which MOS (a subsidiary of
Commodore) developed for this computer. This video controller contains all
of the logic for accessing the video RAM, color RAM, and character

generator, as well as the necessary circuitry for creating the screen picture.

The reason the function diagram is so uncluttered is that the interface to
the system consists only of the data bus and one address line. But the main
reason is that only a single memory component can be seen, namely a

dynamic RAM with 16K. Actually there two ICs with 4 bits each. But
there is nothing resembling a character generator or color RAM.

The trick lies in the fact that everything is done in the RAM, even the

character generator. Since this normally consists of a ROM, because the bit

patterns of the characters are normally unchangeable, the character generator

from the 40-column section is copied into this RAM when the 80-column
mode is switched on.

You may wonder how the data gets to the video RAM since it has no

direct connection to the system. All communication with the video RAM is

done through the controller. First, the controller loads the low order byte of

the register that specifies the RAM address. Next the data is loaded. Then

the desired address is passed, followed by the data. The controller ensures

that the data end up in the right place. This isnft the fastest way of doing

things, of course, but it works.

The little box to the left of the video controller is an oscillator that runs

at 16 MHz. This is the normal frequency for the Dot Clock in 80-column

monitors. The two boxes in the lower middle create a clean reset signal

(from which -DRESET is derived. -DRESET is used to reset one of the

built-in disk drivesand to form the -NMI pulse from the RESTORE key.

478

Abacus Software C-128 Internals

<

oo oo

z z u o
UJUJUtZ Z

O UJ 3 »—>->-
UJ O£ _J Z CO CO

k u a » x >

GJGlElEJ

GJGJGJCJ
a fc3 fc3 f3

apyafa

arayafa

ana fa

afara

afara

afara

arara

aroja

a

a

a

a

a

a

a

a

a

a

a

a

[a
[a

[a

[a

urn

rafa

ara

raro

arararafa

ara [3P
ara

ara

ararara

"am

arararafa

479

Abacus Software C-128 Internals

Input/Output

This section looks quite chaotic largely because all of the connections to

the outside world run through it.

Let's start at the top left. There we find the two joystick ports. Their

digital components, the stick movement and fire button, are wired in parallel

to the keyboard matrix. This is why characters appear on the screen when

the stick is moved. The analog components (such as those for the paddles)

are multiplexed by an analog switch because the SID has only two analog

inputs, but two pairs must be read.

Below the analog switch is the CIA1. This has by far the largest share

of work to do. It is responsible for reading the keyboard, as well as the

serial bus. Here Commodore makes an improvement over the C-64.

Instead of constructing the data bytes from the disk drive one bit at a time,

this task is automatically assumed by the CIA. An entire byte is simply

loaded into the shift register and the CIA shifts it out to SP automatically. It

works the same way in the opposite direction. The bit speed is dependent on

the clock at SP.

Here the -FSDIR signal from the MMU takes on significance. It is, as

already mentioned, a direction switch for this same clock which is always

supplied by the sending device, sometimes the computer and sometimes the

disk drive. This clock is sent over the -SRQIN line since this line is not

used by devices that cannot use the fast serial mode.

A good half of CIA2 is dedicated to the user port, but part of it is also

used for the serial bus. Bits VA14-15 are also created for switching the

video RAM.

On the left side is a signal name which you probably cannot place

(normally the signal names are self-evident). This is 9VAC. This is nothing

other than 9-Volt alternating current from the power supply. What purpose

does this voltage serve on the board? Quite simple: This signal is rectified

and limited and used as the clock for the real-time clocks in the CIAs.

This is the end of our little excursion into the hardware. We hope that

you have gained at least some insight into the operation of the computer.

480

Abacus Software C-128 Internals

AUDIO OUT

EXT AUDIO

•CIA1

\N^

•CIA2

PB 0-7

PC2

481

CHAPTER 10

Abacus Software
C-128 Internals

Chapter 10: Decimal-Hexadecimal-Binary Conversion Table

Dec. Hex Binary Dec. Hex Binary

#000

#002

#004

#006

#008

#010

#012

#014

#016

#018

#020

#022

#024

#026

#028

#030

#032

#034

#036

#038

#040

#042

#044

#046

#048

#050

#052

#054

#056

#058

#060

#062

#064

#066

#068

#070

#072

#074

#076

$00

$02

$04

$06

$08

$0A

$0C

$0E

$10

$12

$14

$16

$18

$1A

$1C

$1E

$20

$22

$24

$26

$28

$2A

$2C

$2E

$30

$32

$34

$36

$38

$3A

$3C

$3E

$40

$42

$44

$46

$48

$4A

$4C

%00000000

%00000010

%00000100

%00000110

%00001000

%00001010

%00001100

%00001110

%00010000

%00010010

%00010100

%00010110

%00011000

%00011010

%00011100

%00011110

%00100000

%00100010

%00100100

%00100110

%00101000

%00101010

%00101100

%00101110

%00110000

%00110010

%00110100

%00110110

%00111000

%00111010

%00111100

%00111110

%01000000

%01000010

%01000100

%01000110

%01001000

%01001010

%01001100

#001

#003

#005

#007

#009

#011

#013

#015

#017

#019

#021

#023

#025

#027

#029

#031

#033

#035

#037

#039

#041

#043

#045

#047

#049

#051

#053

#055

#057

#059

#061

#063

#065

#067

#069

#071

#073

#075

#077

$01

$03

$05

$07

$09

$0B

$0D

$0F

$11

$13

$15

$17

$19

$1B

$1D

$1F

$21

$23

$25

$27

$29

$2B

$2D

$2F

$31

$33

$35

$37

$39

$3B

$3D

$3F

$41

$43

$45

$47

$49

$4B

$4D

%00000001

%00000011

%00000101

%00000111

%00001001

%00001011

%00001101

%00001111

%00010001

%00010011

%00010101

%00010111

%00011001

%00011011

%00011101

%00011111

%00100001

%00100011

%00100101

%00100111

%00101001

%00101011

%00101101

%00101111

%00110001

%00110011

%00110101

%00110111

%00111001

%00111011

%00111101

%00111111

%01000001

%01000011

%01000101

%01000111

%01001001

%01001011

%01001101

485

Abacus

Dec.

#078

#080

#082

#084

#086

#088

#090

#092

#094

#096

#098

#100

#102

#104

#106

#108

#110

#112

#114

#116

#118

#120

#122

#124

#126

#128

#130

#132

#134

#136

#138

#140

#142

#144

#146

#148

#150

#152

#154

#156

#158

Software

Hex

$4E

$50

$52

$54

$56

$58

$5A

$5C

$5E

$60

$62

$64

$66

$68

$6A

$6C

$6E

$70

$72

$74

$76

$78

$7A

$7C

$7E

$80

$82

$84

$86

$88

$8A

$8C

$8E

$90

$92

$94

$96

$98

$9A

$9C

$9E

Binary

%01001110

%01010000

%01010010

%01010100

%01010110

%01011000

%01011010

%01011100

%01011110

%01100000

%01100010

%01100100

%01100110

%01101000

%01101010

%01101100

%01101110

%01110000

%01110010

%01110100

%01110110

%01111000

%01111010

%01111100

%01111110

%10000000

%10000010

%10000100

%10000110

%10001000

%10001010

%10001100

%10001110

%10010000

%10010010

%10010100

%10010110

%10011000

%10011010

%10011100

%10011110

Dec.

#079

#081

#083

#085

#087

#089

#091

#093

#095

#097

#099

#101

#103

#105

#107

#109

#111

#113

#115

#117

#119

#121

#123

#125

#127

#129

#131

#133

#135

#137

#139

#141

#143

#145

#147

#149

#151

#153

#155

#157

#159

Hex

$4F

$51

$53

$55

$57

$59

$5B

$5D

$5F

$61

$63

$65

$67

$69

$6B

$6D

$6F

$71

$73

$75

$77

$79

$7B

$7D

$7F

$81

$83

$85

$87

$89

$8B

$8D

$8F

$91

$93

$95

$97

$99

$9B

$9D

$9F

C-128 Internals

Binary

%01001111

%01010001

%01010011

%01010101

%01010111

%01011001

%01011011

%01011101

%01011111

%01100001

%01100011

%01100101

%01100111

%01101001

%01101011

%01101101

%01101111

%01110001

%01110011

%01110101

%01110111

%01111001

%01111011

%01111101

%01111111

%10000001

%10000011

%10000101

%10000111

%10001001

%10001011

%10001101

%10001111

%10010001

%10010011

%10010101

%10010111

%10011001

%10011011

%10011101

%10011111

486

Abacus

Dec.

#160

#162

#164

#166

#168

#170

#172

#174

#176

#178

#180

#182

#184

#186

#188

#190

#192

#194

#196

#198

#200

#202

#204

#206

#208

#210

#212

#214

#216

#218

#220

#222

#224

#226

#228

#230

#232

#234

#236

#238

#240

Software

Hex

$A0

$A2

$A4

$A6

$A8

$AA

$AC

$AE

$B0

$B2

$B4

$B6

$B8

$BA

$BC

$BE

$C0

$C2

$C4

$C6

$C8

$CA

$CC

$CE

$D0

$D2

$D4

$D6

$D8

$DA

$DC

$DE

$E0

$E2

$E4

$E6

$E8

$EA

$EC

$EE

$F0

Binary

%10100000

%10100010

%10100100

%10100110

%10101000

%10101010

%10101100

%10101110

%10110000

%10110010

%10110100

%10110110

%10111000

%10111010

%10111100

%10111110

%11000000

%11000010

%11000100

%11000110

%11001000

%11001010

%11001100

%11001110

%11010000

%11010010

%11010100

%11010110

%11011000

%11011010

%11011100

%11011110

%11100000

%11100010

%11100100

%11100110

%11101000

%11101010

%11101100

%11101110

%11110000

C-128 Internals

Dec. Hex Binary

#161

#163

#165

#167

#169

#171

#173

#175

#177

#179

#181

#183

#185

#187

#189

#191

#193

#195

#197

#199

#201

#203

#205

#207

#209

#211

#213

#215

#217

#219

#221

#223

#225

#227

#229

#231

#233

#235

#237

#239

#241

$A1

$A3

$A5

$A7

$A9

$AB

$AD

$AF

$B1

$B3

$B5

$B7

$B9

$BB

$BD

$BF

$C1

$C3

$C5

$C7

$C9

$CB

$CD

$CF

$D1

$D3

$D5

$D7

$D9

$DB

$DD

$DF

$E1

$E3

$E5

$E7

$E9

$EB

$ED

$EF

$F1

%10100001

%10100011

%10100101

%10101001

%10110001

%11000001

%11000011

%11000101

%11001001

%11010001

%11100001

487

Abacus

Dec.

#242

#244

#246

#248

#250

#252

#254

Software

Hex

$F2

$F4

$F6

$F8

$FA

$FC

$FE

Binary

%11110010

%11110100

%11110110

%11111000

%11111010

%11111100

%11111110

Dec.

#243

#245

#247

#249

#251

#253

#255

C-128 Internals

Hex Binary

$F3 %11110011

$F5 %11110101

$F7 %11110111

$F9 %11111001

$FB %11111011

$FD %11111101
$FF %11111111

488

Abacus Software C-128 Internals

INDEX

ACPTR 307
A/D-CONVERTER 73, 79, 80, 81
ADSR 73,83
AMPLITUDE 76

ASCH/DIN l9Ai
ATN 64,66
ATTACK 77, 83, 84
ATTRIBUT-RAM 97,108,120
BACKGROUND COLOR 112
BASEADRDESS 101 Q3

BA^IC-7.0 24 34,43,52', 65,75

BAUD-RATE 9,11, 322
BCD-FORMAT 61,62
BIT-MAP 45,46,48

BLOCK-CURSOR 113
BOOT-BLOCK 1S9
BOOT-ROUTINE 152,188, 387,4UU

BOOT-SECTOR I88
BSOUT 348
BURST 365,367

C-64MODE

C-128 MODE

CARTRIDGE
CASSETTE 4, 324, 351,372

CBM-CODE 189
CHAR GENERATOR 40,107, 290,438
CHAR-MODE 38,45,107
CHARACTER-ROM 451
CHKIN 354
CHRGET 414
CHRGOT 415
CIA 55,56,59,63,179,451

CIA1 35,63,80,451

CIA2 38,40,64,80

CIOUT 310
CKOUT 355
CLALL 359
CLK 66
CLOCK 64,67,143,312

489

Abacus Software c.12g Interna,s

CLOSE 356

CLRCH 359

^ARE 144) 147 296
CMPFAR ^oi

CNT 31
COLOR-RAM 40 46
COMMON-AREA 135
CONFIGURATION 382
CONHGURATION INDEX 148
CONHGURATION REGISTER 399
CPM-MODE 3> 182,458,463

C£U 138, 143,464

58, 60,64

59,60,61

r^^ni? 10,12,64,113
CURSOR 181

CURSORMODE 113

DATA 64,66
DATASETTE 4

DCLCH 400
DDR 56>57

DECAY 77 83, 84
DEVICE-REQUEST-FAST 69
DISK DIRECTORY 233
DIN 438

DMA 13 152 380 400
DOS 389' '
DSR 10,12
DTR 10,12,64
EDITTOR 236

ENVELOPE GENERATOE 77,79
ESC-SEQUENCE 272

EXPANSION-PORT 14

EXROM-LINE 133,182, 301

EXTENDED-COLOR-MODE 49,50

FAST-MODE 67,313,364,400
FETCH 144, 145, 296, 380

FILTER 78,79, 87

FILTER FREQUENCY 78-87

FILTER RESONANCE 78-87

FLAG 55,59

FORCE-LOAD 61

490

Abacus Software C-128 Internals

FUNCTION KEYS 260,285, 292,400,421

GAME-LINE 133,182
GETCONF 147,156,400

GO64 182
(TRAPHTCS 41, 120
GRAPfflC MEMORY 120,121,421,422,423

HANDSHAKE 10
HI-RES-GRAPHIC 109,120-126
HI-RES-MODE 42,109,120-126
HOST-REQUEST-FAST 67,69
HRF 67 69

I/O BASE 379
I/O-PORTS 59,359
ICR 58,64

INPUT-MODE 61
INTERRUPT 35,180
IRQ 143,180,296

IRQ-ROUTINE 240,391,399
IRQ-VECTOR 179,344
IRR 35
jMPFAR 148,156,294,296,383,

400

TOY^iTTr^ic 63 65
JSRFAR 148,156,294,296,383,

400

KERNAL-ROUTDSfES 144,151,400,401,402,
427

KEYBOARDTABLE 392,393,396,397,451

LIGHTPEN 97
LISTENER 64,304
LKUPLA 379
LKUPSA 400
LOAD 360
MATRIX 254,457
MEMORY-MANAGEMENT 129,145,468,469
MMU 129,136,139,146,294,

454,463,466

MODE-CONFIGURATION 133

MONITOR 194

MOVSPR 24

MULTI-COLOR 32,

MULTI-COLOR-MODE 32

NDAC 70

491

Abacus Software
C-128 Internals

NMI

NMI-ROUTINE
ONE-SHOT
OPEN

PADDLE

PAGE-POINTER
PHOENIX

POKE

POSITION
POTX

POTY

PRA

PRB

PRINT

RAM

RAM-BANK

RAM-CONFIGURATION
RASTER LINE
RDTIM

READST

RELEASE

RESET

RING-MODULATION
ROM

RS-232

RTS

RUN/STOP-RESTORE
SAVSP

SCROLL

SDR

SECONDARY ADDRESS

SERIAL BUS

SETBANK

SETLFS

SETNAM

SETMSG

SETMO

SETTM

SID

SLOW-MODE

SMOOTH-SCROLLING

SPRITE

143,178, 296, 298M 321,
399

323, 391

61

349

63,81

130,136

384,400

24,104

181

80,425

80,425

56,59, 64

56,59,64

157

93,422

131, 135, 136, 297
131,132,134

25

374

377

78, 83, 84

66,182, 293

88

40,474

8, 12,64,314,352
64

67,109

370

276

58,59, 60

69,161,309

65,66,353,360

400

377,400

377,400

378

378

374

73, 75, 76, 80, 87, 100,425

67

51,110

21, 22, 25-34/36, 312,425

492

Abacus Software

ST

STACK POINTER

STASH

STATUS BYTE

STOP

STOP/RESTORE

STOP BIT

SUSTAIN

SYNCHRONIZATION

SYSTEM CONTROLMESSAGES

SYSTEM VARIABLE

SWAPPER

TIMER

TKSA

TOD

TOD-REGISTER

TOKEN

UDTIM

UNLSN

UNTLK

UPDATE-ADDRESS

UPDATE-REGISTER

USER-PORT

VDC

VDC-CHIP

VDC-RAM

VDC-REGISTER

VDC-MEMORY

VECTOR

VECTORTABLE

VERIFY

VERSIONS-REGISTER

VIC-CHIP

VIDEO-CONTROLLER

VIDEO-RAM

WAVEFORM

WORD COUNT-REGISTER

Z80

ZERO PAGE

40 COLUMN

80 COLUMN

C-128 Internals

12, 74

136,137,148

144,146, 296, 380

166

177,375

63,178

10

78, 83, 84

88

376,377

74,136

287,400

60

309

55,57,58, 61

57,58

435

373
67,68,69,164,310

67,68,69,164,310

97

97

5, 15

93-110

93

93
93,95-110,298,299,303

93,290

161,413

294

365

139
19,24,25,27,35,38,51,

52

93

38,44,50

73, 77, 85

111

133,182,184

136,404

476

478

493

Abacus Software c.128 Internals

Optional Diskette

C-128 INTERNALS

Optional diskette

For your convenience, the program listings contained in this book are
available on a 1541 formatted floppy disk.

You should order the diskette, if you want to use the programs, without
typing them in from the listings in the book.

All programs on the diskette have been fully tested. You can change the
programs for your particular needs. The diskette is available for $14.95 +
$2.00 ($5.00 foreign) for postage and handling.

When ordering, please give your name and shipping address. Enclose a
check, money order or credit card information. Mail your order to:

Abacus Software
P.O. Box 7211

Grand Rapids, MI 49510

Or for fast phone service, call 616/241-5510.

494

AUTHORATATIVE, COMPREHENSIVE, DEFINITIVE

booksbooksbooks

INTERNALS

Abacus Software

&-128
TRICKS & TIPS

Abacus Software

CM571

INTERNALS

Abacus Software

CP/M
ON THE €p -128

Abacus Software

With ROM listings For the programmer With ROM listings Especially for the "128
Avail. Nov. $19.95 Avail. Nov. $19.95 Avail. Dec. $19.95 Avail. Dec. $19.95

...and more books.

OTHER

BOOKS

COMIN
SOON!

Most in depth treatment Intro to machine Ian- Techniques never cov- AH about using printers A must for cassette Write your own adven- Dozens of interesting
available. Dozens of guage geared to C-64. wed before interrupts, and '64. Graphics, text, owner. Hi speed cas- tures. Learn strategy, pro-ects for your '64.
techniques. $19.95 Assembler incl. $14.95 controllers, etc. $14.95 interfaces. $19.95 sette system. $19.95 motivation. $14.95 Easy to read. $12.95

OPTIONAL DISKETTES

are also available for

each of our book titles.

Each diskette contains

the programs found in the

book to save you the time
of typing them in at the

keyboard. Price of each

diskette is $14.95.

Call now, for the name of your nearest dealer. Or order

directly from ABACUS with your MC, VISA or AMEX card.
Add $4.00 for postage and handling. Foreign orders add

$6.00 per book. Other software and books are also avail

able. Call or write for free catalog. Dealer inquiries welcome

- over 1200 dealers nationwide. Call 616 / 241-5510

Abacus 1531 Software
P.O. Box 7211 Grand Rapids, MI 49510

Phone 616/241-5510 Telex 709-101

POWER PLAN

For C-64/C-128 on diskette

For C-64/C-128 on diskette

POWER & KNOWLEDGE

...at your fingertips
POy^qrRlan - super spreadsheet

''Sfarf^Vith'-ian; easy to learn spreadsheet,
convenient menus and 90+ help

screens. Add fast, shortcut commands for

the advanced user. Build in a full range of

flexible features for use with complex

worksheets. Corhbine it with graphics for

2D/3P charts and graphs so you can

displayyour "what-if data both visually

and1 numerically. Finally price it low

enough for everyone's budget. That's

what vi/e:call powerful software. $49.95

XPER - KNOWLEDGE BASESGVFTWARE
Ordinary data bases are good at memor

izing and playing back facts. But expert;

systems help you wade through^ uri-
dreds of items to make important de

cisions. XPER has an easy-to-use entry

editor to quickly build your knowledge

base from raw information; a sophis

ticated inquirer to guide you through thp
complex decision-making .pri^teria;

complete data editing ,;and:; re parting
features for analyzing your daita. $59^95

Call now for free software and book catalog and the name of your local dealer. If he is

out of stock, have your dealer order our quality products for you. To order i?y credit

card call 616/241-5510. We accept MC, VISA and AMEX. Add $4.0bposfage^hd
handling per order (foreign $8.00 per item). Michigan residents add 4% sales tax.

Abacuslinii Software
P.O. Box 7211 Grand Rapids, Ml 49510 For Fast Service Call (616) 241-5510

...available

today!

>
• 4*

*;
man<)

(int start, end, step;

double fahr. Celsius;

colsfus-start;

whSo(ce)s>us<-end)

| lahf-(9.<V5.0)'celsiu8t32.0;

p<intff%4.Of%7.1ta-,C0lsius,fahr):

oetsius-cetsiusxiBp;

getohofO;

For C-64/C-128 on diskette

Super C-■■Most advanced C package for

the C-64/C-128. Since Super C supports

the foil K&R language (w/o bit fields),
program? are transportable to other

computers. It's a perfect learning tool for

schools arid industry. Super C package
includes a complete source editor with 80

column display using horizontal scrolling,

search/replace, 41K source files. Linker
binds up to 7,separate modules. I/O library

supports standard functions like printf and

fprintf. Includes runtime package. $79.95

Compiler and Software

Development System

For C-64/C-128 on diskette

Super Pascal - Not just a compiler, but a

complete development system: It rivals even

Turbo Pascal® in features. Super Pascal
includes an advanced source file editor; a
full Jensen & Wirth compiler; system

programming extensions, a buiitin
Assembler for specialized requirements,
and a new high speed DOS which is 3X
faster than standard 1,541. Produces fast
machine code. Supports program overlays,
high precision 11 digit arithmetic, debugging
tools, graphic routines and more. $59.95

Call now for our free software and book catalog and the name of
your nearest dealer. If he's out of stock, have him order our
products for you. Credit card orders call 616/241-5510. Add

■ $4.00 shipping and handling per order (foreign add $8.00/item).

Abacus IBffiffll Software
P.O. Box 7211 Grand Rapids, Ml 49510

For fast service call 616/241-5510

POWER PLAN
Powerful spread

sheet plus builtin

graphics - display

your important data

visually as well as

numerically. You'll

learn fast with the

90+ HELP screens.

Advanced users

can use the short

cut commands. For complex spreadsheets,

you can use POWER PLAN'S impressive

features: cell formatting, text formatting, cell

protection, windowing, math functions, row

and column sort, more. Then quickly display

your results in graphics format in a variety of

2D and 3D charts. Includes system diskette
and user's handbook. $49.95

N.mei

Down

Dunien

ll>KR>n»
Me Donild

Nimiu

Smah 1

Smith 2

Wimpy

W.gtpw nu

6.00

1

1

1

.JO

.70

.90

.00

.10

.20

.99

.90

.00

6.00

Mo T\»

1

!

11

Minimum

Muimtim 1

.SO 1

.70 — 3

.90 K

.SO K

.SO 1

.00 K

.20 4

.40 13

.10 4

.20 1

.90 3

.62 1

..10 13

.10

.SO

.so

60

.00

.10

.40

.40

.10

.40

.60

.SO

.93

.10

CADPAK Revi

CADPAK is a

superb design and

drawing tool. Ypu

can draw directly on

the screen from

keyboard or using

optional lightpen.

POINTS, LINES,

BOXes, CIRCLES,

and ELLIPSES; fill

with solids or patterns; free-hand DRAW;
ZOOM-in for intricate design of small section.

Mesuring and scaling aids. Exact positioning

using our AccuPoint cursor positioning.

Using the powerful OBJECT EDITOR

you can define new fonts, furniture, circuitry,

etc. Hardcopy to most printers. $39.95

McPen lightpen, optional $49.95

XPER - expert system
XPER is the first

expert system - a

new breed of

intelligent software

for the C-64 & C-

128. While ordinary

data base systems

are good at repro

ducing facts, XPER

can help you make

decisions. Using its simple entry editor, you
build the information into a knowledge base.
XPER's very efficient searching techniques
then guide you through even the most
complex decision making criteria. Full
reporting and data editing. Currently used

by doctors, scientists and research
professionals.

DATAMAT - data management

INVENTORY FILE

Item Number Description

Onhtnil Price

LociUon

Reort PL Reord. Qty.

"Best data base

manager under $50"

RUN Magazine

Easy-to-use, yet

versatile and power
ful features. Clear

menus guide you

from function to function. Free-form design

of data base with up to 50 fields and 2000

records per diskette (space dependent).

Simple data base design. Convenient and

quick data entry. Full data editing

capabilities. Complete reporting: sort on

multiple fields and select records for printing

in your specific format. $39.95

CHARTPAK

Make professional

quality charts from

your data in

minutes. Quickly

enter, edit, save

and recall your data.

Then interactively

build pie, bar, line or

scatter graph. You

can specify scaling,

labeling and positioning and watch

CHARTPAK instantly draw the chart in any

of 8 different formats. Change the format
immediately and draw another chart.
Incudes statistical routines for average,

deviation, least squares and forecasting.

Hardcopy to most printers. $39.95
CHARTPLOT-64 for 1520 plotter $39.95

RT -c-31°

TAS - technical analysis

Technical analysis

charting package to

help the serious

investor. Enter your

data at keyboard or

capture it through

DJN/RS or Warner

Services. Track

high, low, close,

volume, bid and

ask. Place up to 300 periods of information

for 10 different stocks on each data diskette.

Build a variety of charts on the split screen

combining information from 7 types of

moving averages, 3 types of oscillators,

trading bands, least squares, 5 different

volume indicators, relative charts, much
more. Hardcopy to most printers. $59.95

•♦ *; ■ +

The most advanced

C development

package available

for the C-64 or C-

128 with very com

plete source editor;

full K&R compiler

(w/o bit fields);

linker (binds up to

7 separate mod

ules); and set of disk utilities. Very complete

editor handles search/replace, 80 column

display with horizontal scrolling and 41K

source files. The I/O library supports

standard functions like printf and fprintf. Free

runtime package included. For C-64/C-128

with 1541/1571 drive. Includes system

diskette and user's handbook. $79.95

BASIC-64

full compiler

ID DIVKLOtMUT PACKAGE

E-CENERATOR; p-CODE

D SYMBOL-TABLE: OTF

E SYMBOL-TABLE: orr

E-ADDRESS-TABLE: off

The most advanced

BASIC compiler

available for the C-

64. Our bestselling

software product.

Compiles to super-

fast 6510 machine

code or very

compact speed-

code. You can even

mix the two in one program. Compiles the

complete BASIC language. Flexible memory

management and overlay options make it

perfect for all program development needs.

BASIC 64 increases the speed of your

programs from 3 to 20 times. Free runtime

package. Includes system diskette and

user's handbook. $39.95

Compiler*od Software

cniSyaiem

—

Not just a compiler,

but a complete

development sys

tem. Rivals Turbo

Pascal© in both
speed and features.

Produces fast 6510

machine code.

Includes advanced

source file editor;

full Jensen & Wirth compiler with system

programming extensions, new high speed

DOS (3 times faster); builtin assembler for

specialized requirements. Overlays, 11-digit

arithmetic, debugging tools, graphics

routines, much more. Free runtime

package. Includes system diskette and

complete user's handbook. $59.95

VIDEO BASIC

development The most advanced

graphics develop

ment package avail

able for the C-64.

Adds dozens of

powerful commands

to standard BASIC

so that you can

use the hidden

graphics and sound

capabilities. Commands for hires, multicolor,

sprite and turtle graphics, simple and

complex music and sound, hardcopy to most

printers, memory management, more. Used

by professional programmers for commerical

software development. Free runtime

package. Includes system diskette and

user's handbook. $39.95

FORTH

Language

40 /MOO (COLUMN. LINE)

Our FORTH lang

uage is based on

the Forth 79

standard, but also

includes much of

the 83 level to give

you 3 times vocabu

lary of fig-Forth.

Includes full-screen

editor, complete

Forth-style assembler, set of programming

tools and numerous sample programs to get

you deeply involved in the FORTH

language. Our enhanced vocabulary

supports both hires and lores graphics and

the sound synthesizer. Includes system

diskette with sample programs and user's

handbook. $39.95

Other software also available!

Call now for free catalog and the name of your

nearest dealer. Phone: 616/241-5510.

Abacus Software
P.O.Box 7211 Grand Rapids, Ml 49510 616/241-5510

For fast service call 616/241-5510. For postage

and handling, include $4.00 per order. Foreign

orders include $8.00 per item. Money orders and
checks in U.S. dollars only. Mastercard, Visa and

Amex accepted.

Dealer Inquiries Welcome

More than 1200 dealers nationwide

Manage your Money
on your Commodore128 or 64

Tufiajmt

Portfolio: portwt

Aflaa Smitt 1U5 Kiwvisw Mtf Oral &ipi4i VIA 49510

10/1/1915

3yabolTyp«Urit Co* Proc.

50. 04/13/1915 10/12/1915 5367.15 C297.I0 930*5 17.34 ST

SD. 07/13/1985 11/05/19151 90715 1035.01 117.7* 14.01 IT

Alka Imitt l«05 Blwvisw St7 Onnl K^Ua USA 4*510

Stock

Stock

_ Stock

Ttx ht 030177BO B«*

03/31/1915

03/31/1915

Of/30/1915

Of/30/1915

09/30/19t5

09/30/1915

09/30/1915 150.00

313 50

13.50

50.00

50.00

75.00

§5.00

50.00

TAS-M

Vanlea LOO

MAINMBNU

2. VrOiiaa

4. Canpaimauns

1 araratDBtrfc

■■■ii

1 ».^:«l-.0» M/OS/M

f)*4! 1-C.S.1V 1-CS.29 S2: •!•

Personal Portfolio Manager
° online data collection thru DJNRS or

Warner Computer or manual entry

• manage stocks, bonds, options, mutual

funds, treasury bills, others.

• record dividends, interest and transactions

for year end tax requirements

• unique report generator produces reports

in any desired format

• 30 day money back guarantee

$39.95 + $4.00 shipping

Technical Analysis System
• online data collection thru DJNRS or

Warner Computer or manual entry

• 7 moving averages, 5 volume indicators,

least squares, trading band, comparison

and relative charts, more.

• 300 trading days for up to 10 stocks per

disk. Unlimited number of disks

• Hardcopy of charts

• 30-day money back guarantee

$59.95 + $4.00 shipping

JA I You Can Count On

Abacus Software
P.O. Box 7211 Grand Rapids, Ml 49510 Phone 616/241-5510 Telex 709-101

COMMODORE

THE AUTHORITATIVE

INSIDERS' GUIDE

This book guides you deep into the heart of the Commodore 128. 128 Internals
is written for those of you who want to push your computer to the limits. This book
contains the complete, fully commented ROM listings of the operating system
kernal. Here is a list of just some of the things that you can expect to read about:

Using the interrupts

Assembly language programming and Kernal routines
Z-80 processor and the boot ROM
Peripherals and the ports

Programming for sound and music

Programming the various graphic modes
Understanding and using the Input/Output ports
Programming the Memory Management Unit (MMU)
Using the 80-column chip -

getting 64Q X 200 point resolution

getting more than 25 lines on the screen
smooth scrolling

copying blocks in screen memory

character length and width management

About the authors:

Klaus Gerits is the Director of Product Development at Data Becker Software
House. Joerg Scheib, a highly experienced programmer and book author, and
Frank Thrun, an avid Commodore programmer, are also members of the Data
Becker development staff based in Duesseldorf, W. Germany.

A Data Becker book published by
j» ■ You Can Count On

Abacus

